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ABSTRACT 

Java applications represent a broad class of programs, ranging 
from programs running on embedded products to high-
performance server applications. Standard Java benchmarks 
ignore this fact and assume a fixed workload. When an actual 
application’s behavior differs from that included in a standard 
benchmark, the benchmark results are useless, if not 
misleading. In this paper, we present HBench:Java, an 
application-specific benchmarking framework, based on the 
concept that a system's performance must be measured in the 
context of the application of interest. HBench:Java employs a 
methodology that uses vectors to characterize the application 
and the underlying JVM and carefully combines the two vectors 
to form a single metric that reflects a specific application’s 
performance on a particular JVM such that the performance of 
multiple JVMs can be realistically compared. Our performance 
results demonstrate HBench:Java’s superiority over traditional 
benchmarking approaches in predicting real application 
performance and its ability to pinpoint performance problems. 
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1. INTRODUCTION 
In recent years, the Java programming language has enjoyed 
increasing popularity and there has been a proliferation of Java 
Virtual Machine (JVM) implementations. This poses a 
question for end users: which JVM should they choose to run 
their applications? There have been many attempts to evaluate 
different JVM implementations. Unfortunately, these 
approaches share a common drawback: they assume a fixed set 
of workloads and ignore the application’s performance 
concerns. Java applications represent a diverse set of programs, 
ranging from those running on embedded products such as 

PDAs, to applets running in browser environments, to scientific 
computing applications, and recently to server applications, 
which have traditionally been the stronghold of system 
languages such as C and C++. Often the actual application 
under test differs enough from any standard benchmark that the 
results from traditional benchmarks are useless and sometimes 
even misleading. Moreover, since the workloads are fixed, 
traditional benchmarks encourage vendors to over-optimize 
their JVM implementations to achieve good results on the 
benchmarks. This may potentially hurt the performance of real 
applications. Such incidents have already been reported in the 
area of OS benchmarking, where graphics card vendors employ 
a hack, which can severely hamper the performance of other 
devices, to improve their results in standard benchmarks [8]. 

We believe that the goals of benchmarking in general should be 
threefold: 

1. To compare the performance of systems and to reason 
about why applications run faster on one system than on 
another. Not only should benchmarks produce meaningful 
results, they should also provide a reasonable explanation 
for the performance differences. 

2. To guide performance optimizations. Benchmarks should 
reveal performance bottlenecks or limitations of the 
underlying system in the context of a particular 
application, and thus help system implementers improve 
the system in a way that will benefit the application of 
interest. 

3. To predict an application’s performance on non-existent 
platforms. Benchmarks should help answer “what if” 
questions and provide users with a reasonable estimate of 
the application’s performance when some components of 
the underlying system change, or when the behavior of the 
application changes. 

In this paper, we present HBench:Java, part of a more general 
application-specific benchmarking framework called HBench 
designed to realize the above goals. 

The rest of the paper is organized as follows. Section 2 gives an 
overview of some of the most popular standard Java 
benchmarks. Section 3 describes the design of HBench:Java, 
and Section 4 describes our prototype implementation of 
HBench:Java in detail. Section 5 presents experimental results. 

 
 
 

 

 



Section 6 describes some related work. Section 7 discusses 
some unresolved issues and Section 8 concludes. 

2. JAVA BENCHMARKS 
Traditional Java benchmarks can be classified into the 
following three categories: 

1. Microbenchmarks. CaffeineMark [3] is a typical example, 
in which a set of JVM primitive operations such as method 
invocation, arithmetic and graphics operations, and short 
sequences of code (kernels) that solve small and well-
defined problems, are measured, and the mean (typically 
geometric mean) of the individual times (or scores as a 
function of the time) is reported. Microbenchmarks are 
useful in comparing the low-level operations of JVMs, but 
it is difficult to relate them to actual application 
performance in a quantitative way. 

2. Macrobenchmarks that contain one or more medium-scale 
to large-scale Java applications. Examples include the 
SPECJVM98 suite [15], which includes a set of programs 
similar to those found in the SPECCPU suite, and 
VolanoMark from Volano LLC, which is based on the 
company’s VolanoChat™ server. VolanoMark focuses on 
a JVM’s ability to handle “long-lasting network 
connections and threads” [16]. 

3. Combinations of the above. The JavaGrande benchmark 
[2][9] is an example of this type. Designed to compare the 
ability of different Java Virtual Machines to run large-
scale scientific applications, the JavaGrande benchmark 
suite contains three sections. The first section consists of 
microbenchmarks such as arithmetic operations, 
mathematical functions, and exception handling. The 
second section consists of kernels, each of which contains 
a type of computation likely to appear in large scientific 
programs. The final section includes realistic applications, 
such as a financial simulation based on Monte Carlo 
techniques. This hybrid approach of combining 
microbenchmarking and macrobenchmarking provides the 
ability to reason about performance disparities between 
Java Virtual Machines and is particularly useful in 
pinpointing performance anomalies in immature Java 
Virtual Machine implementations. 

The common drawback with the above approaches is that Java 
applications are so diverse that it is difficult, if not impossible, 
to find a set of workloads that are representative of the 
applications in which end users are interested, even within a 
sub-field. If the behavior of the benchmark’s workloads does 
not match that of the intended application, then the benchmark 
might give misleading information regarding which JVM is the 
best for the application of interest. In comparison, HBench:Java 
is a general benchmarking framework that can be applied to 
any specific workload. 

3. HBENCH:JAVA DESIGN 
3.1 Overview 
HBench:Java is based on the vector-based methodology of the 
HBench framework [14]. The principle behind the vector-based 
methodology is the observation that a system’s performance is 
determined by the performance of the individual primitive 

operations that it supports, and that an application’s 
performance is determined by how much it utilizes the 
primitive operations of the underlying system. As the name 
“vector-based” indicates, we use a vector ),...,,( 21 ns vvvV = , to 

represent the performance characteristics of a JVM, with each 
entry vi representing the performance of a primitive operation 
of the JVM. We call this vector Vs a system vector, and it is 
obtained by running a set of microbenchmarks. 

A key feature of HBench:Java is that it incorporates 
characteristics of the application into the benchmarking 
process. This is achieved using an application vector, 

),...,,( 21 nA uuuV = , with each element ui representing the 

number of times that the corresponding ith primitive operation 
was performed. Intuitively, the application vector indicates how 
much demand the application places on the underlying JVM 
and is obtained through profiling. The dot product of the two 
vectors produces the predicted running time of the application 
on a given JVM. 

The basic strategy behind HBench has been to use the simplest 
model possible without sacrificing accuracy. To that end, we 
use a simple linear model, until we find that it is no longer able 
to provide the predictive and explanatory power we seek. In 
some cases, rather than going to a more complex model, we 
retain the simplicity of a linear model by adding multiple data 
points for a single primitive. For example, on some systems, 
TCP connect times grow non-linearly with the number of 
connections. Rather than modeling the non-linearity explicitly, 
we provide three or four points in the system vector that 
correspond to differing orders of magnitude for the number of 
connections. 

HBench:Java addresses the benchmarking goals outlined in 
Section 1 in the following ways: 

1. The system vector and the application vector provide an 
effective way to study and explain performance differences 
between different JVMs.  

2. The application vector indicates which primitive 
operations are important, and the system vector reveals 
which primitive operations are performance bottlenecks. 
System implementers can use this information to improve 
primitive operations that are significant for the 
application. At the same time, application programmers 
can use this information to optimize the application by 
reducing the number of calls to expensive primitive 
operations. 

3. One can predict the performance of the application on a 
given JVM without actually running the application on it, 

as long as the system vector is available
1
. One might also 

answer “what if” questions such as “What if this primitive 
takes twice as long?” by modifying the appropriate system 
and application vector entries.  

                                                             
1 HBench:Java will work best with support from JVM vendors 

who supply the system vectors for their JVM products. 



3.2 Identifying Primitive Operations 
A JVM is a complicated piece of software. Figure 1 shows a 
schematic view of a JVM implementation. Much of a JVM’s 
functionality is supported via the system classes (also called 
built-in classes or bootstrap classes). A JVM includes a 
memory management system that automatically manages the 
heap for the application. The execution engine is responsible 
for bytecode interpretation, class loading, exception handling, 
thread scheduling and context switches, the native method 
interface, and synchronization. The JVM implementation is 
further complicated by the JIT (Just In Time) component, which 
compiles Java bytecode on the fly into native machine code. 

3.2.1 First Attempt  
In order to create a system vector for a JVM, we need to 
decompose this complexity into a set of primitive operations. 
One set of candidates is the JVM’s assembly instructions, i.e., 
bytecodes. This approach, however, proved inadequate 
primarily due to the presence of the JIT. Once bytecodes are 
compiled into native machine code, optimizations at the 
hardware level such as out-of-order execution, parallel issue 
and cache effects can lead to a running time that is significantly 
different from the sum of the execution times of the individual 
instructions executed alone. 

For example, Figure 2(a) shows two Java code sequences: an 
empty loop and a loop containing an integer addition operation. 
The corresponding native code produced by the JIT is shown in 
Figure 2(b). On a Pentium III processor, both loop iterations 
take 2 cycles to execute, due to parallel instruction issues. This 
leads one to conclude that the addition operation is free, which 
is clearly not true. 

3.2.2 Higher Level Approach 
A higher level of abstraction that is immune or less sensitive to 
hardware optimization is therefore needed. We identified the 
following four types of high-level components of a JVM system 
vector, capturing the four major components of a JVM 
implementation as depicted in Figure 1, namely, system 
classes; memory management; execution engine; and JIT 
compiler. The following subsections describe each component 
and its primitive operations in details. 

3.2.2.1 System Classes 
Identifying the primitive operations for the system classes 
component is straightforward — we use method invocations to 
the system classes, published in the standard Java API 
specification, as primitive operations. 

3.2.2.2 Memory Management 
We consider two primitive operations of the memory 
management component, namely, object allocation and dead 
object reclamation2. 

For a given memory management algorithm, the cost of object 
allocation is typically determined by the following two factors: 

1. size of allocation, 

2. status of the heap, such as number of free blocks and 
their sizes. 

We can represent this cost with a function Calloc(heap_status, 
allocation_size). Depending on the memory management 
algorithm, Calloc takes on different forms. In the case of copying 
garbage collectors, the free space is a contiguous area, and 
allocation can be implemented with a simple pointer 
advancement. Therefore, in this particular case Calloc is just a 
constant function. In the case of non-copying collectors, such as 
mark and sweep collector, the allocation time depends on the 
status of the free-block lists maintained by the collector. If we 
characterize the heap status with simple statistical measures, 

                                                             
2 More details in this subject will be presented in a forthcoming 

paper. 

// empty loop 

for (int i = 0; i < numIterations; i++) { 

; 

} 

 

// loop containing integer addition 

for (int i = 0; i < numIterations; i++) { 

sum += i; 

} 

Figure 2(a). Java code sequences 

//empty loop 

loop_start: 

 inc ecx ;; i++ 

 cmp ecx, [esi+04h] ;; i<numIterations 

 jnge loop_start 

 

// loop containing integer addition 

loop_start: 

 add edi,ecx ;; sum += i 

 inc ecx ;; i++ 

 cmp ecx, [esi+04h] ;; i<numIterations 

 jnge loop_start 

Figure 2(b). Corresponding native code sequences 

JVM

Memory System Execution Engine

JIT

User App.

System Classes

Figure 1. Schematic view of a JVM. 



such as a normal distribution with certain mean and standard 
deviation, or a uniform distribution with a certain range, we 
can represent Calloc in a concise way. Furthermore, we can 
measure Calloc using microbenchmarks that initialize the heap 
according to the statistical measures. 

An interesting fact with garbage collection performance is that 
the cost of dead object reclamation depends on the amount of 
live data on the heap, since the way a garbage collector 
identifies live objects is to traverse the connected object graph 
from a set of root objects. 

We divide the cost of object reclamation into three parts: the 
fixed cost (Cfixed), the per-live-object cost (Clive), and the per-
dead-object cost (Cdead). Cfixed corresponds to the fixed cost 
associated with a garbage collection run, such as the 
initialization of data structures. Cfixed normally depends only on 
the heap size. Clive is the overhead measured per live object 
(objects that survive the collection). For non-copying collectors, 
Clive is typically constant. For copying collectors, Clive is a 
function of the size of live objects, as live objects are 
compacted (copied) at the end of a collection run. Cdead 
corresponds to the per-object cost of releasing the space of the 
dead object to the available space. In most cases, this involves 
updating certain bookkeeping information for the freed object, 
and thus Cdead is usually constant for a given collector 
algorithm. In summary, the cost of object reclamation can be 
represented by three functions, Cfixed(heap_size), 
Clive(object_size), and Cdead. Let Nl be the distribution function 
of the sizes of live object, i.e. Nl(s) is the number of surviving 
objects with size s. Let Nd be the distribution function of dead 
object sizes. The total cost of garbage collecting a heap of size 
h can then be calculated using the following formula: 

∑∑ ++=
s

ddead
s

llivefixedGC sNCsNsChCT )(**)(*)()(  

3.2.2.3 Execution Engine 
Primitive operations of the execution engine include bytecode 
interpretation, exception handling, context switching, 
synchronization operations, etc. 

3.2.2.4 JIT Compiler 
Performance of the JIT compiler can be measured using two 
metrics: overhead and quality of code generated. JIT overhead 
can be approximated as a function of bytecode size, in which 
case the primitive operation is the time it takes to JIT one 
bytecode instruction. The product of this per-bytecode overhead 
and the number of JITted bytecodes yields the overall overhead. 
Note that the number of JITted bytecodes cannot be directly 
obtained from the application, as it is JVM dependent. Rather, 
it is obtained by applying a JVM dependant function J to the 
base application vector N, and S, where each entry in N and S 
represent each method’s invocation count and bytecode size, 
respectively. For example, if a JVM compiles a method the first 
time it is invoked, then  

∑=
i

isSNJ ),( ,  

where si is the ith element of S. The quality of JITted-code is 
harder to quantify, and is a subject of ongoing research. 

4. HBENCH:JAVA IMPLEMENTATION 
The HBench:Java prototype implementation currently includes 
only the system classes component, as highlighted by the circle 
in Figure 1. Our experience shows that applications tend to 
spend a significant amount of time in system classes. Therefore 
we believe that this simplistic system vector, albeit crude, can 
be indicative of application performance. Our results 
demonstrate that HBench:Java already provides better 
predictive power than existing benchmarks. 

The implementation of HBench:Java consists of two 
independent parts: a profiler that traces an application’s 
interactions with the JVM to produce an application vector and 
a set of microbenchmarks that measures the performance of the 
JVM to produce a system vector. The following two sub-
sections describe these parts in more detail. 

4.1 Profiler 
The profiler is based on JDK’s Java Virtual Machine Profiling 
Interface (JVMPI) [7]. Once attached to the JVM, a profiler can 
intercept events in the JVM such as method invocation and 
object creation. The Java SDK1.2.2 kit from Sun comes with a 
default profiling agent called hprof that provides extensive 
profiling functionality Error! Reference source not found.. 
We use this default profiler to obtain statistics of method 
invocations from which we derive an application vector. As a 
first step, our application vector (and accordingly our system 
vector) only contains method invocations to JVM system 
classes. A more complete custom profiler that incorporates the 
garbage collector (GC) and the JVM execution engine and that 
is able to directly produce an application vector is currently 
under development. 

A drawback of JVMPI is that it does not provide callbacks to 
retrieve arguments of method calls. To remedy this problem, 
we implemented a second profiler that is able to record method 
arguments; it is based on JDK’s Java Virtual Machine 
Debugger Interface (JVMDI) [6]. Since JVMDI can only be 
enabled with JIT turned off (for the classic version of JDK), we 
keep both profilers for obvious performance reasons, with the 
first profiler responsible for extensive profiling and the second 
profiler responsible for the much simpler task of call tracing. 

4.2 Microbenchmarks 
The current set of microbenchmarks consists of approximately 
thirty methods including frequently invoked methods and 
methods that take a relatively long time to complete, based on 
traces from sample applications. Even though these methods 
represent only a tiny portion of the entire Java core API, we 
found them quite effective in predicting application 
performance, as shown later in Section 5. 

The microbenchmark suite is implemented using an abstract 
Benchmark class. To add a microbenchmark to the suite, one 
implements a class that extends the Benchmark class. 
Specifically, this means implementing the runTrial() abstract 
method. A utility program facilitates this process by 
automatically generating the corresponding source Java 
program from a template file and a file that specifies key 
information about the particular microbenchmark. 



Typically, the runTrial() method invokes the method to be 
measured in a loop for some number of iterations. A nice 
feature of our microbenchmarks is that the number of iterations 
is not fixed, but rather dynamically determined based on the 
timer resolution of the System.currentTimeMillis() function of 
the specific JVM. A microbenchmark is run long enough that 
the total running time is at least n times the timer resolution (to 
allow for accurate measurement), and less than 2n times the 
timer resolution (so that the benchmark doesn’t run for an 
unnecessarily long time). For the experiments reported in this 
paper, we used a value of 10 for n. 

For methods whose running time also depends on parameters, 
such as the BufferedReader.read() method that reads an array 
of bytes from an input stream, we measure the per-byte reading 
cost and the corresponding entry in the application vector 
includes the total number of bytes instead of the number of 
times the read() method is called. Our current prototype 
implementation supports this simple case of linear dependency 
on a single argument, and we found it sufficient for the sample 
applications we tested. For more complicated argument types, 
the system vector entry would consist of a list of (n+1)-tuples, 
(t, a1, a2,…, an), where ai is the value of the ith argument, and t is 
the time it takes to invoke the method with the given 
arguments. We then measure several data points in this n-
dimension space, and extrapolate the running time based on the 
actual parameters included in the corresponding application 
vector entry. 

Figure 3 shows some sample microbenchmark results for 
JDK1.2.2 (Windows NT). The time for the read() method of 
BufferedReader is the per-byte read cost, and the 
Class.forName() method loads an empty class. 

4.3 JVM Support for Profiling and 
Microbenchmarking 

For some primitive operations such as class loading, the first-
time invocation cost is the true cost and subsequent invocations 
just return a cached value. As a result we cannot simply 
measure the cost by repeatedly calling the method with the 
same arguments in a loop and dividing the total time by the 
number of iterations. In the case of class loading, it means we 
need to load a different class every iteration. With the timer 
resolution of current JVM implementations, to achieve 
reasonable accuracy, the number of iterations required is on the 
order of hundreds and increases as processor speed increases. 

We could automatically create these dummy classes before 
starting the loop. However, not only does this approach not 
scale well, creating a large number of class files also perturbs 
the results since the number of classes within a directory is 
usually not that large. A better solution is to have the JVM 
provide a high-resolution timer API. This approach has the 
added advantage of reduced benchmark running time (recall 
that the number of loop iterations is inversely proportional to 
the timer resolution). Most modern CPUs provide cycle 
counters that are accessible in user mode, and many popular 
operating systems such as Solaris and Windows NT already 
provide high-resolution timer APIs. 

One of the difficulties of microbenchmarking is that sometimes 
a good JIT will recognize the microbenchmark code as dead 
code and optimize it out. We have to insert code to fool the JIT 
into believing that the variables used in the microbenchmark 
loop are still live after the loop, and subsequently not optimized 
out of the loop. However, there is a limit as to how much this 
workaround can do. A better solution would be for the JIT to 
include command-line options that allow users to specify 
optimization levels, similar to those present in C/C++ 
compilers. 

Advanced JIT techniques such as the adaptive compilation used 
in HotSpot [5] pose some difficulties measuring JIT overhead, 
which cannot be overcome without help from JVM 
implementers. An adaptive compiler compiles methods based 
on their usage. Methods might be interpreted initially. As time 
progresses, some are compiled into native code with a 
lightweight compiler (with little optimization). Frequently 
executed methods might be re-compiled with a more powerful 
backend compiler that performs extensive optimization. The 
problem lies in how to model the JVM dependent function J 
which, given the number of method invocations and method 
bytecode sizes, yields the number of bytecodes 
compiled/optimized. We think the following enhancement to 
JVM would be useful: 

• A JVMPI event should be generated at the beginning and 
end of the compilation of a method, so that we can model 
and evaluate J. 

• To measure the per-bytecode compiler/optimize overhead, 
the java.lang.Compiler class should be augmented with 
APIs for compiling and optimizing methods. 

Method Name Method Signature Time(us) 

java.lang.Character.toString ()Ljava/lang/String; 2.498 

java.lang.String.charAt (I)C 0.092 

java.io.BufferedReader.read ([CII)I 6.897 

java.lang.Class.forName (Ljava/lang/String;)Ljava/lang/Class
; 

5309.944 

java.net.Socket.<init> (Ljava/net/InetAddress;I)V 2171.552 

Figure 3. Sample microbenchmark results. 



5. EXPERIMENTAL RESULTS 
5.1 Experimental Setup 
We ran our experiments on a variety of Java Virtual Machines. 
Table 1 shows the list of JVMs tested and their configurations. 

Three non-trivial Java applications (Table 2) were used to 
evaluate HBench:Java. First, we ran the applications with 
profiling turned on and derived application vectors from the 
collected profiles. Next we ran the HBench:Java 
microbenchmarks on the JVMs listed in Table 1 and obtained 
their system vectors. The dot products of the system and 
application vectors gave the estimated running time for each 
application on each JVM, which was then compared with the 
actual running time to evaluate the effectiveness of 
HBench:Java. Since our initial goal is to correctly predict the 
ratios of execution times of the applications on different JVM 
platforms, we use normalized speed in reporting experimental 
results. This also allows us to compare HBench:Java with 
conventional benchmarking approaches such as SPECJVM98 
that report results in the form of ratios. 

5.2 Results 
Figure 4 shows the results for the scripting language WebL. In 
this experiment, three primitive operations account for the 
majority of the running time, shown in Table 3. Also shown in 
Table 3 are the measured performance on the five Java Virtual 
Machine tested. The corresponding application vector is (80, 
121, 32768). It’s interesting to note that the SPECJVM98 score 

of JDK1.2.2 on the PentiumPro NT machine is higher than that 
on the SparcStation. However, WebL runs close to three times 
faster than on the SparcStation. HBench:Java’s system vector 
reveals the problem. Class loading is twice as fast for the 
SparcStation JDK, and the BufferedReader.read() method 
executes almost 35 times faster. It turns out that for some 
reason, the NT JDK1.2.2’s JIT didn’t compile the method 
sun.io.ByteToCharSingleByte.convert(), an expensive method 
called many times by java.io.BufferedReader.read(). The 
differences result in superior performance on the SparcStation. 
Besides explaining performance differences, the predicted 
ratios of execution speeds are within a small margin of the real 
execution speed ratios.  

Figure 5 shows the results for Cloudscape, a database 
management system. We did not report the result for the Sun 
JDK1.2.2 classic version on the SparcStation because 
Cloudscape wasn’t able to run on it. Similarly to what we 
observed for the WebL results, not only does HBench:Java 
correctly predict the order of the running speed on the different 
JVM platforms, the predicted ratios of the execution speeds 
closely match the actual ratios. On the other hand, 
SPECJVM98 does not predict the order correctly, and its 
predicted speed ratios are off by a large margin in most cases. 
Also similar to the case of WebL, Cloudscape spends large 
amount of time in class loading. 

Table 1. Java Virtual Machines tested. 

JVM CPU Memory (MB) Operating System JVM Version Vendor 

JDK1.2.2_NT_PRO 1.2.2 Classic Sun Microsystems 

SDK3.2_NT_PRO 

Pentium Pro 
200MHz 

128 
5.00.3167 Microsoft 

JDK1.2.2_NT_II 1.2.2 Classic Sun Microsystems 

SDK3.2_NT_II 

Pentium II 
266MHz 

64 

Windows NT 4.0 

5.00.3167 Microsoft 

JDK1.2.2_SunOS_Classic 1.2.2 Classic Sun Microsystems 

JDK1.2.1_SunOS_Prod 

UltraSparc IIi 
333 MHz 

128 Solaris 7 
1.2.1_O3 Production Sun Microsystems 

 

Table 2. Java applications used in the experiments. 

Application Description Input Data 

WebL 
A scripting language designed specifically for 
processing documents retrieved from the web [17]. 

A WebL script that counts the number of images 
contained in a sample html file. 

Cloudscape 

A Java- and SQL-based ORDBMS (object-relational 
database management system). The embedded version 
is used, i.e., the database is running in the same JVM 
as the user program [4]. 

The JBMSTours sample application included in the 
Cloudscape distribution kit. Only the BuildATour 
program, which simulates the task of booking flights and 
hotels, is used. 

Mercator 
A multi-threaded web crawler [11]. The synthetic proxy provided by the Mercator kit that 

generates web documents on the fly instead of retrieving 
them from the Internet. 
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Figure 4. Normalized running speeds for WebL. 

 

 

Table 3. Important primitive operations for WebL. 

Time (µs) 
JVM 

Class.forName() ClassLoader.loadClass() BufferedReader.read() 

JDK1.2.2_NT_PRO 5309.944 4564.824 6.897 

SDK3.2_NT_PRO 3011.411 2710.269 0.317 

JDK1.2.2_NT_II 4155.065 3961.282 5.108 

SDK3.2_NT_II 2281.390 2053.251 0.244 

JDK1.2.2_SunOS_Classic 2264.093 2037.331 0.195 

JDK1.2.1_SunOS_Prod 2487.306 2145.458 0.139 
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Figure 5. Normalized running speeds for Cloudscape. 

Figure 6 shows the results for Mercator, the web crawler. We 
ran the proxy server and the web crawler on two different 
machines connected with a 100Mb Ethernet switch, isolated 
from the outside network. The machine that hosted the proxy 

server was at least as fast as the machine that hosted the client, 
to insure that the proxy server was not the bottleneck. We only 
collected results for a limited number of JVMs due to the 



difficulty of setting up the machines in an isolated network
3
. 

The results, however, are quite encouraging. Even though 
HBench:Java predicted the order for JDK1.2.2_NT_Pro and 
SDK3.2_NT_Pro incorrectly, the predicted ratio still matches 
the actual ratio quite closely. As a matter of fact, the actual 
ratio is so close to one, it is difficult to tell which one is faster. 
SPECJVM98 again predicted the wrong order for Sun 
JDK1.2.2.  In this case, two primitive operations, the 
constructor of java.net.Socket and 
java.net.SocketInputStream.read(), account for the majority of 
the running time. Table 4 lists the cost of these two primitives 
for the four Java Virtual Machines tested. The per-byte socket 
read time is quite similar for the four JVMs. The socket 
initialization time, which includes the cost of creating a TCP 
connection, varies a lot among the four JVMs. The 
corresponding application vector entry is (19525, 147550208). 

To understand why SPEC performs poorly, we examined the 
time breakdown for user versus system classes. Tables 5 and 6 
show the percentage of time spent in system classes for SPEC 
programs and the three sample applications we tested, 
respectively. These numbers were obtained using the sampling 
facility of the hprof agent included in Sun’s JDK1.2.2. As the 

                                                             
3 We have an agreement with Compaq that requires 

experiments concerning Mercator to be run in an isolated 
(disconnected) network environment. 

Table 5. Time breakdown for SPECJVM programs. 

Program System Time (%) User Time (%) 

_201_compress 2.6 97.4 

_202_jess 4.5 95.5 

_209_db 33.1 66.9 

_213_javac 6.1 93.9 

_222_mpegaudio 1.4 98.6 

_227_mtrt 1.4 98.6 

_228_jack 15.1 84.9 

Average 9.2 90.8 

Table 6. Time breakdown for sample applications. 

Program System Time (%) User Time (%) 

WebL 54.0 46.0 

Cloudscape 33.9 66.1 

Mercator 92.9 7.1 
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Figure 6. Normalized running speeds for Mercator. 

 

Table 4. Important primitive operations for Mercator. 

Time (µs) 
JVM 

Socket.<init>() SocketInputStream.read() 

JDK1.2.2_NT_PRO 2171.552 0.210 

SDK3.2_NT_PRO 2575.459 0.214 

JDK1.2.2_SunOS_Classic 826.780 0.262 

JDK1.2.1_SunOS_Prod 660.711 0.254 



data show, the SPEC programs spend most of the time in user 
classes. Therefore, they are poor predictors for applications that 
spend a lot of time in system classes. Notice that even though a 
larger percentage of time goes to user classes for the 
Cloudscape case, HBench:Java was still able to predict the 
ratios quite accurately. We suspect that this is because 
performance of user classes is largely determined by JIT 
quality. System classes are also compiled by the same JIT, thus 
performance of a collection of system classes in some way 
reflects the JIT quality, which applies to user classes as well. 

In theory we can use HBench:Java to predict the running time 
of SPEC programs. However, since SPEC programs spend little 
time in system classes, the few system classes serve as poor 
sample data for measuring JIT quality, resulting in large error 
rate. Therefore, for SPEC-like applications, more sophisticated 
techniques to measure JIT quality are needed. 

In summary, the three examples presented demonstrate 
HBench:Java’s ability to predict real applications’ performance. 
The results are especially encouraging since the system vector 
contains only a small set of system class methods. We expect 
the accuracy of HBench:Java to improve as the system vector is 
completed. 

6. RELATED WORK 
The HBench:Java approach is similar to the abstract machine 
model [10], where the underlying system is viewed as an 
abstract Fortran machine, and each program is decomposed into 
a collection of Fortran abstract operations called AbOps. The 
machine characterizer obtains a machine performance vector, 
whereas the program analyzer produces an application vector. 
The linear combination of the two vectors gives the predicted 
running time. This approach requires extensive compiler 
support for obtaining the accurate number of AbOps and is 
limited to programming languages with extremely regular 
syntax. It is also highly sensitive to compiler optimization and 
hardware architecture [13]. As hardware becomes more 
sophisticated, the accuracy achievable with this technique tends 
to decrease. This is the key reason we did not use bytecodes as 
primitive operations. 

Brown [1] used the vector-based approach of HBench to 
evaluate operating systems. They demonstrated that it 
effectively predicts the performance of the Apache web server 
on different platforms. The primitive operations in this case are 
system calls, and the application vector is essentially the 
system call trace. 

7. DISCUSSION AND FUTURE WORK 
HBench:Java is still in the early stages of its development. Here 
we identify a few unresolved issues and describe how we plan 
to address them. 

The first issue is the large number of API method calls. We 
plan to attack this problem by identifying a set of core methods, 
including methods executed frequently by most applications 
(such as those in the String class), and methods upon which 
many other methods are built (such as those in the 
FileInputStream class). We then plan to analyze method inter-
dependencies and derive running time estimates of non-core 
methods from the running times of the core methods. For 

instance, a length() method typically takes the same time as a 
size() method. We believe that it is acceptable if the estimates 
of non-core classes are not 100% accurate, since we expect 
these methods to be infrequently invoked. Our goal is to keep 
the number of microbenchmarks for the system class method 
calls under 200. 

Another issue is that JIT compilers could alter an application 
enough that no single application vector could be used across 
all JVM platforms. Our experience so far indicates that this is 
not yet a problem. However, we will closely follow this issue as 
JIT technologies become more advanced. 

Our short-term goal is to implement a complete set of system 
class microbenchmarks for HBench:Java and to test it on more 
JVM varieties and commercial applications. In the long run, we 
will implement other parts of the system vector, including 
components representing the memory system and the execution 
engine. 

8. CONCLUSION 
HBench:Java is a vector-based, application-specific 
benchmarking framework for JVMs. Our performance results 
demonstrate HBench:Java’s superiority over traditional 
benchmarking methods in predicting the performance of real 
applications and in pinpointing performance problems. By 
taking the nature of target applications into account and 
offering fine-grained performance characterizations 
HBench:Java can provide meaningful metrics to both 
consumers and developers of JVMs and Java applications. 
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