
An OpenMP-like Interface for Parallel Programming in Java

M. E. Kambites
Department of Mathematics, University of York,

Heslington, York YO10 5DD, England, U.K.

mek100@york.ac.uk

J. M. Bull
Edinburgh Parallel Computing Centre,

University of Edinburgh,
Mayfield Road, Edinburgh EH9 3JZ,

Scotland, U.K.
m.bull@epcc.ed.ac.uk

ABSTRACT
This paper describes the de�nition and implementation of
an OpenMP-like set of directives and library routines for
shared memory parallel programming in Java. A speci�ca-

tion of the directives and routines is proposed and discussed.
A prototype implementation, consisting of a compiler and a
runtime library, both written entirely in Java, is presented,
which implements a signi�cant subset of the proposed spec-
i�cation.

1. INTRODUCTION
OpenMP is a relatively new industry standard for shared
memory parallel programming, which is enjoying increasing

levels of support from both users and vendors in the high
performance computing �eld. The standard de�nes a set
of directives and library routines for both Fortran [10] and
C/C++ [9], and provides a higher level of abstraction to the
programmer than, for example, programming with POSIX
threads [5].

It is, of course, possible to write shared memory parallel pro-
grams using Java's native threads model [6, 8]. However, a
directive system has a number of advantages over the native
threads approach. Firstly, the resulting code is much closer

to a sequential version of the same program. Indeed, with a
little care, it is possible to write an OpenMP program which
compiles and runs correctly when the directives are ignored.
This makes subsequent development and maintenance of the
code signi�cantly easier. It is also to be hoped that, with the
increasing familiarity of programmers with OpenMP, that it

would make parallel programming in Java a more attractive
proposition.

Another problem with using Java native threads is that
for maximum e�ciency on shared memory parallel architec-
tures, it is necessary both to use exactly one thread per pro-

cessor and to keep these threads running during the whole
lifetime of the parallel program. To achieve this, it is nec-

essary to have a runtime library which despatches tasks
to threads, and provides e�cient synchronisation between
threads. In particular a fast barrier is crucial to the e�-
ciency of many shared memory parallel programs. Such bar-
riers are not trivial to implement and are not supplied by the

java.lang.Thread class. Similarly, loop self-scheduling al-
gorithms require careful implementation|in a directive sys-
tem this functionality is also supplied by the runtime library.
These concerns could be met without recourse to directives,
simply by supplying the appropriate class library. Another
possible approach, therefore, would be to modify the run-

time library described here for direct use by the program-
mer.

Other approaches to providing parallel extensions to Java in-
clude JavaParty [11], HPJava [2], Titanium [15] and SPAR

Java [14]. However, these are designed principally for dis-
tributed systems, and unlike our proposal, involve genuine
language extensions. The current implementations of Tita-
nium and SPAR are via compilation to C, and not Java.

The remainder of this paper is organised as follows: Sec-

tion 2 discusses the design of the Application Program-
mer Interface (API), which is heavily based on the exist-
ing OpenMP C/C++ speci�cation. Section 3 describes the
JOMP runtime library|a class library which provides the
necessary utility routines on top of the java.lang.Thread

class. Section 4 describes the JOMP compiler, which is writ-

ten in Java, using the JavaCC compiler building system. In
Section 5, we see an example of the JOMP system in op-
eration. Section 6 raises some outstanding issues, which
would bene�t from further research, while Section 7 con-
cludes, evaluating progress so far.

2. A DRAFT API
In this section, an informal speci�cation is suggested for an
OpenMP-like interface for Java. This is heavily based on the
existing OpenMP standard for C/C++ [9], and only brief
details are presented here. Further information can be found
in [4].

2.1 Format of Directives
Since the Java language has no standard form for compiler-
speci�c directives, we adopt the approach used by the
OpenMP Fortran speci�cation and embed the directives as
comments. This has the bene�t of allowing the code to
function correctly as normal Java: in this sense it is not

an extension to the language. Another approach would be

to use as directives method calls which could be linked to a

dummy library. However, this places unpleasant restrictions
on the syntactic form of the directives.

A JOMP directive takes the form:

//omp <directive> <clauses>

[//omp <clauses>].....

Directives are case sensitive. Some directives stand alone, as
statements, while others act upon the immediately follow-
ing Java block or statement. A directive should be termi-
nated with a line break. Directives may only appear within
a method body. Note that directives may be orphaned|
work-sharing and synchronisation directives may appear in

the dynamic extent of a parallel region of code, not just in
its lexical extent.

2.2 The only directive
The only construct allows conditional compilation. It takes
the form:

//omp only <statement>

The relevant statement will be executed only when the pro-
gram has been compiled with an JOMP-aware compiler.
This facilitates the writing of portable code without the need

to supply dummy library routines.

2.3 The parallel construct
Parallelism in a JOMP program is initiated by a parallel

directive. A parallel directive takes the form:

//omp parallel [if(<cond>)]

//omp [default (shared|none)] [shared(<vars>)]

//omp [private(<vars>)] [firstprivate(<vars>)]

//omp [reduction(<operation>:<vars>)]

<Java code block>

When a thread encounters such a directive, it creates a new
thread team if the boolean expression in the if clause eval-

uates to true. If no if clause is present, the thread team
is unconditionally created. Each thread in the new team
executes the immediately following code block in parallel.

At the end of the parallel block, the master thread waits

for all other threads to �nish executing the block, before
continuing with execution alone.

The default, shared, private, firstprivate and
reduction clauses function in the same way as in the
C/C++ standard. The variables may be basic types, or

references to array or objects. Note that declaring an
object or array (reference) to be private creates only a
new, uninitialised reference for each thread|no actual
objects or arrays are allocated.

Example: computing the sum of a two-dimensional

array where each thread has one row.

//omp parallel shared(a,n) private(myid,i)

//omp reduction(+:b)

{

myid = OMP.getThreadNum();

for (i=0; i<n; i++) {

b += a[myid][i];

}

}

2.4 The for and ordered directives
A for directive speci�es that the iterations of a loop may be
divided between threads and executed concurrently. A for

directive takes the form:

//omp for [nowait] [reduction(<operator>:<vars>)]

//omp [schedule(<mode>,[chunk-size])] [ordered]

<for loop>

As in C/C++, the form of the loop is restricted to so that

the iteration count can be determined before the loop is
executed. The semantics of this directive and its clauses are
equivalent to their C/C++ counterparts. The scheduling
mode is one of static, dynamic, guided or runtime. The
ordered directive is used to specify that a block of code
within the loop body must be executed for each iteration in

the order that it would have been during serial execution.
It takes the form:

//omp ordered

<code block>

Example: Simple parallel loop.

//omp parallel shared(a,b)

{

//omp for

for (int i=1; i<n; i++){

b[i] = (a[i] + a[i-1]) * 0.5;

}

}

2.5 The sections and section directives
The sections directive is used to specify a number of
sections of code which may be executed concurrently. A

sections directive takes the form:

//omp sections [nowait]

{

//omp section

<code block>

[//omp section

<code block>]...

}

The sections are allocated to threads in the order speci�ed,
on a �rst-come-�rst-served basis. Thus, code in one section

may safely wait (but not necessarily busy-wait) for some

condition which is caused by a previous section, without

fear of deadlock.

Example: Independent methods.

//omp parallel shared(a,b,c)

{

//omp sections

{

//omp section

a.init();

//omp section

b.init();

//omp section

c.init();

}

}

2.6 The single directive
The single directive is used to denote a piece of code which
must be executed exactly once by some member of a thread
team. A single directive takes the form:

//omp single [nowait]

<code block>

A single block within the dynamic extent of a parallel re-
gion will be executed only by the �rst thread of the team
to encounter the directive. The other threads wait until the
block has been executed.

2.7 The master directive
The master directive is used to denote a piece of code which
is to be executed only by the master thread (thread number
0) of a team. A master directive takes the form:

//omp master

<code block>

Unlike the single directive, there is no implied barrier at
either the beginning or the end of a master construct.

Example: Simple I/O.

//omp parallel

{

doWork();

//omp master

{ System.out.println(" some output here "); }

doMoreWork();

}

2.8 The critical directive
The critical directive is used to denote a piece of code
which must not be executed by di�erent threads at the same
time. It takes the form:

//omp critical [name]

<block>

Only one thread may execute a critical region with a given

name at any one time. Critical regions with no name
speci�ed are treated as having the same (null) name. Upon
encountering a critical directive, a thread waits until a lock
is available on the name, before executing the associated
code block. Finally, the lock is released.

Example: see Section 5.

2.9 The barrier directive
The barrier directive causes each thread to wait until all
threads in the current team have reached the barrier. It
takes the form:

//omp barrier

To prevent deadlock either all of the threads in a team or
none of them much reach the barrier.

2.10 Combined parallel and work-sharing di-
rectives

For brevity, two syntactic shorthands are provided for
commonly used combinations of directives. The parallel

for directive de�nes a parallel region containing only a
single for construct. Similarly, the parallel sections

directive de�nes a parallel region containing only a single
sections construct.

Example: see Section 5.

2.11 Nesting of Directives
Work-sharing directives for, sections and single may not
be dynamically nested inside one another, unless they are
enclosed within nested parallel regions. Other nestings are
permitted, subject to other stated restrictions concerning
what combinations of threads may or may not encounter a
construct.

If a thread encounters a parallel directive while already
within the dynamic scope of a parallel region, a new team
is created to execute the new parallel region. By default,
this team contains only the current thread. Some com-

pilers may support nested parallelism which, if enabled by
the setNested() library method (see Section 2.12) or the
jomp.nested system property (see Section 2.14), may cause
extra threads to be created to execute the current region.

2.12 Library Functions
JOMP provides a range user-accessible library functions, im-
plemented as static members of the class jomp.runtime.OMP.

getNumThreads() returns the number of threads in the team
executing the current parallel region, or 1 if called from a
serial region of the program.

setNumThreads(n) sets to n the number of threads to be
used to execute parallel regions. It has e�ect only when
called from within a serial region of the program.

getMaxThreads() returns the maximum number of threads

which will in future be used to execute a parallel region,

assuming no intervening calls to setNumThreads().

getThreadNum() returns the number of the calling thread,
within its team. The master thread of the team is thread 0.
If called from a serial region, it always returns 0.

getNumProcs() returns the maximum number of processors

that could be assigned to the program or, where this cannot
be ascertained, zero.

inParallel() returns true if called from within the dy-
namic extent of a parallel region, even if the current team
contains only one thread. It returns false if called from

within a serial region.

setDynamic() enables or disables automatic adjustment of
the number of threads. getDynamic() returns true if dy-
namic adjustment of the number of threads is supported by
the OMP implementation and currently enabled. Otherwise,

it returns false.

setNested() enables or disables nested parallelism.

getNested() returns true if nested parallelism is supported
by the OMP implementation and currently enabled. Other-

wise, it returns false.

2.13 The Lock and NestLock classes
Two types of locks are provided in the library. The class
jomp.runtime.Lock implements a simple mutual exclusion
lock, while the class jomp.runtime.NestLock implements a
nested lock. Each class implements the same three methods.

The set() method attempts to acquire exclusive ownership
of the lock. If the lock is held by another thread, then the
calling thread blocks until it is released.

The unset() method releases ownership of a lock. No check
is made that the releasing thread actually owns the lock.

The test() method tests if it is possible to acquire the lock
immediately, without blocking. If it is possible, then the
lock is acquired, and the value true returned. If it is not

possible, then the value false is returned, with the lock not
acquired.

The two lock classes di�er in their behaviour if an attempt
is made to acquire a lock by the thread which already owns
it. In this case, the simple Lock class will deadlock, but the

NestLock class will succeed in reacquiring the lock. Such a
lock will be released for acquisition by other threads only
when it has been released as many times as it was acquired.

2.14 Environment
Some options can be provided to the OMP library at run-
time, in the form of Java system properties.

The jomp.schedule property speci�es the scheduling strat-
egy, and optional chunk size, to be used for loops with the
runtime scheduling option. The form of its value is the same
as that used for the parameter to a schedule clause.

The jomp.threads property speci�es the number of threads

to use for execution of parallel regions.

The jomp.dynamic property takes the value true or false
to enable or disable respectively dynamic adjustment of the
number of threads.

The jomp.nested property takes the value true or false to

enable or disable respectively nested parallelism.

2.15 Differences from C/C++ standard
The main di�erences from the C/C++ standard are as fol-
lows:

� The atomic directive is not supported. The kind of op-
timisations which the directive is designed to facilitate

(for example, atomic updates of array elements) re-
quire access to atomic test-and-set instructions which
are not readily available in Java. The atomic directive
would merely be a synonym for the critical directive.

� The flush directive is not supported, since it also
requires access to special instructions. Provided
variables used for synchronisation are declared as

volatile, this should not be a problem. However,
it is not clear what e�ect the ambiguities in the Java
memory model speci�cation noted in [12] a�ect this
issue.

� The threadprivate directive, and hence the copyin

clause, are not supported. Java has no global variables,
as such. The only data to which such a concept might

be applied are static class members, but this is both
unattractive and di�cult to implement.

� The for directive has no private clause, so a vari-
able which is shared within a parallel region cannot be
made private in an enclosed for directive.

3. THE JOMP RUNTIME LIBRARY
In this section we describe the JOMP runtime library, which
provides the necessary functionality to support parallelism
in terms of Java's native threads model.

3.1 Structure of the Library
As well as the user-accessible functions and locks speci�ed in
Sections 2.12 and 2.13, the package jomp.runtime contains
a library of classes and routines used by compiler-generated
code.

The core of the library is the OMP class. As well as the user-
accessible functions documented in Section 2.12, this class
contains the routines used by the compiler to implement
parallelism in terms of Java's native threads model.

The BusyThread and BusyTask classes are used for thread-

management purposes. The Machine class contains
platform-speci�c code, such as JNI calls required to set up
the system for parallelism. Increasingly, as JVMs become
multiprocessor aware, this will no longer be required. The
Barrier class implements a barrier, and is used for internal
thread-management purposes, as well as for implementing

the directives which require this construct. The Orderer

class is used to facilitate implementation of the ordered

construct, while the Reducer class implements reductions
of variables. The Ticketer and LoopData classes are used
to facilitate scheduling. The Lock and NestLock classes im-
plement the user-accessible locks described in Section 2.13.
The latter is also employed by the library to implement the
critical directive.

3.2 A Question of Personal Identity
In order that threads can perform di�erent tasks, it is nec-
essary that the code they execute has some way of distin-
guishing between them. The need to support orphaned di-

rectives (see Section 2) means that it is not su�cient simply
to give each thread a private variable indicating its identity.
Upon encountering an orphaned directive, the variable may
no longer be in scope. The only variables which will cer-
tainly be in scope are static class �elds. Unfortunately, the

values taken by these are by nature common to all threads,
and so cannot be used to di�erentiate between them.

Nor can we simply pass an ID down the dynamic call chain,
as an extra parameter for each function. Apart from the
complexity involved in deciding which functions need such

parameters and which do not, there is no guarantee that the
call chain does not encompass functions for which the source
code is not available.

The only way to distinguish between threads is by use of the
static currentThread() method of the Thread class, which

returns a reference to the appropriate instance of the Thread
class. It would be nice to give our BusyThread class an
integer �eld in which to store its own ID. Unfortunately,
the master thread is not an instance of BusyThread. One
approach would be to perform a runtime type check on the
currentThread(), assuming that we are the master thread

if we cannot cast to type BusyThread.

We can circumvent this problem by storing an absolute
numerical ID for each process, in ASCII decimal format,
in the process name �eld. The library getAbsoluteID()

call simply parses the name �eld of the currentThread().

This is evidently not very e�cient, but we can reduce
performance impact by minimising the number of calls to
getAbsoluteID().

To facilitate this, many of the methods in the library have

two versions, one of which takes as an extra (�rst) parameter
the absolute process ID of the calling thread.

3.3 Initialisation
Initialisation is divided into two parts. The static initialisa-

tion for the class jomp.runtime.OMP reads the system prop-
erties documented in Section 2.14. These are used to set
up the numbers of threads to use, and to set up the static
subclass Options, which contains con�guration information.

The start() method is called on demand, when the �rst

parallel region is encountered. It initialises the critical re-
gion table (see Section 3.12) and all the thread-speci�c data,
creates a team of threads, and sets them running, whereupon
they wait to be assigned a task.

3.4 Tasks and Threads

Tasks to be executed in parallel are instances of the class

BusyTask. They have a single method, go(), which takes as
a parameter the number (within its team) of the executing
thread.

All threads but the master are instances of the class
BusyThread, which extends Thread and has a BusyTask ref-

erence as a member. Each non-master thread executes a
loop, in which it reaches a global barrier, executes its task,
and reaches the barrier again. The loop may be terminated
after the �rst barrier call, on the setting of a
ag by the
master thread.

During execution of serial regions of the program, the
threads all pause at the �rst barrier in the loop, waiting
for the master thread to reach the barrier. When the mas-
ter thread calls the doParallel() method, it sets up the
tasks of each thread and reaches the global barrier, thus
causing the other threads to execute the task. The master

then executes the task in its own right, before reaching the
barrier again, causing it to wait for all other threads to �n-
ish parallel execution before continuing with serial execution
alone.

All but the master thread are set up to be daemon threads,

so that they die if the master thread terminates. The im-
plicit barrier at the end of every parallel region ensures that
the master thread cannot terminate while the others are do-
ing useful work.

The thread scheduling policy is largely the responsiblility of
the operating system. In almost all circumstances, the num-
ber of threads used to execute a parallel program should not
exceed the number of available processors. In order to pre-
vent the posiibility threads from tying up resources inde�-
nitely, threads waiting at a barrier will eventually yield|see

Section 3.7.

3.5 The Machine class
For some purposes, it is necessary to use the Java Native In-

terface to make system calls not accessible directly through
Java. For example, the getNumProcs() routine can only be
implemented, if at all, by a call to an appropriate system
routine.

The Machine class is designed to encapsulate all machine-

speci�c code, making it accessible through a single interface.
Thus, to compile on di�erent platforms requires only the
insertion of the appropriate Machine.java �le. A generic,
pure Java version of Machine.java is provided, so that the
system can be ported to any platform without changes being

necessary. If this is used, the getNumProcs() function always
returns zero.

3.6 Nested Parallelism
Nested parallelism is not currently supported, as is generally
the case in current implementations of the OpenMP C/C++
and Fortran speci�cations. If the doParallel() method is
called by a thread in parallel mode, thread-speci�c data is
copied, the thread is recon�gured to be in its own team of
size one, and the task is executed. Finally, the original val-

ues of the thread-speci�c data are restored.The setNested()

method does nothing, and the getNested() method always

returns false.

3.7 Barriers
The Barrier class implements a simple, static 4-way tour-
nament barrier [3] for an arbitrary number of threads. Its
constructor takes as a parameter the number of threads to

use.

The DoBarrier() method takes as a parameter a thread
number, and causes the calling thread to block until it has
been called the same number of times for each possible
thread number.

To avoid the overhead of a system call, threads busy-wait.
Unfortunately, many Java systems implement co-operative
rather than pre-emptive multitasking. If the threads are
not each allocated their own processor, busy-waiting can
cause deadlock. To avoid this, a thread busy-waits by

going around an empty loop a set number of times, be-
fore Yield()ing to other threads. The number of itera-
tions perfromed before yielding can be set by calling the
setMaxBusyIter() method, and can be tuned for di�erent
systems.

The OMP class maintains a Barrier reference for each
thread pointing to a single barrier for each team. The
OMP.doBarrier() method reaches the appropriate barrier
for the calling thread.

3.8 Reductions
The Reduction class is used to implement the reduction

clause. It provides methods for the di�erent reductions on
di�erent types described in Section 2. A call to a reduc-
tion method causes the calling thread to wait until all other
threads have called the routine with their respective values.

The method then returns the result of the reduction. The
Reducer is implemented using a static 4-way tournament
algorithm, in almost exactly the same way as the Barrier.

The OMP class maintains a Reducer reference for each thread,
which points to a common Reducer for the team. Calls to the

di�erent OMP.do...Reduce() methods from within a parallel
region are passed to the relevant method in the appropriate
Reducer. During serial execution, the calls simply return
their argument.

3.9 Scheduling
3.9.1 The LoopData class
A LoopData object is used to store information about a loop
or a chunk of a loop. It contains details of the start, step and
stop of a loop. The stop value is stored so as to make the
loop continuation expression a strict inequality. The object
also contains a �eld to indicate the chunk size to be used

when dividing up the loop.

In addition, it contains a secondary step value. This al-
lows a LoopData object to represent a set of chunks, evenly
spaced throughout a loop. Finally, there is a
ag to indicate
whether a chunk is the last which could be executed by the

calling thread.

3.9.2 The Ticketer class
The Ticketer class is used to facilitate dynamic allocation
of work to di�erent threads. A ticketer operates either in
counter mode (the default) or in loop mode.

In counter mode, the synchronized issue() method is used

to issue tickets. Successive calls to the issue() method
return integer tickets, starting at zero. This facility is used
to implement the single and sections constructs.

The �rst call to issueBlock() or issueGuided() switches
the ticketer to loop mode. Calls to the issueBlock() and

issueGuided() methods issue successive chunks of a loop,
using a block and a guided scheduling strategy respectively.

Only one of the three issuing methods may meaningfully
be used with each instance of the class Ticketer. They
are implemented in a single class, to reduce the number of

references that must be maintained by the library during
execution.

The resetTicketer() method returns the next in a con-
ceptually in�nite list of ticketers, to be used for the next
operation. This allows a thread with no work to begin exe-

cuting the next work-sharing construct without waiting for
its peers.

3.9.3 Scheduling Support
The OMP class maintains for each thread a reference to
a Ticketer. The getTicket(), getLoopGuided() and
getLoopBlock() methods use the thread's Ticketer to
return tickets and loop chunks as appropriate. The
resetTicket() method advances the thread's reference to
point to the next Ticketer. When all threads have advanced

past a Ticketer, no reference to the object remains, and so
it will be available for garbage collection.

The getLoopStatic() method is implemented directly in
the OMP class without use of the ticketer. It is the only func-

tion which uses the secondary step �eld in the loop counter,
and it returns the entire work allocation for each thread.
This function maintains no internal state, so is reliant on
the caller respecting the isLast
ag and not trying to re-
quest another chunk.

The getLoopRuntime() function has the same e�ect as
getLoopStatic(), getLoopGuided() or getLoopBlock(),
depending on the user-speci�ed runtime scheduling strategy.

The setChunkBlock(), setChunkGuided() and
setChunkRuntime() methods are used to set a chunk

size for use during scheduling, when none is provided by the
user. The �rst two methods use sensible defaults, while the
latter uses the user-speci�ed size if available, or a sensible
default otherwise.

3.10 Ordering Support
The Orderer class is used to implement the ordered con-
struct. It stores, as its state, the next iteration of a loop
to be executed. The reset() method takes a loop counter
value indicating the �rst iteration of the following loop, and

returns the next in a conceptually in�nite list of Orderers.

The startOrdered() method blocks until the given loop it-

eration is the next to be executed, and then returns. The
stopOrdered() method sets the next iteration indicator to
the given value.

The OMP class maintains maintains for each thread a ref-
erence into a conceptually in�nite list of Orderers. The

startOrdered() and stopOrdered() methods pass their pa-
rameters on to the appropriate methods of the relevant
Orderer.

The resetOrderer() method advances the thread's refer-
ence to point to the next Orderer, setting up the value of

the �rst iteration if it is not already set. When all threads
have advanced past an Orderer, no reference to the object
remains, and so it will be available for garbage collection.

3.11 Locks
The Lock and NestLock classes described in Section 2.13 are

implemented in a straightforward manner, using the Java
synchronized method modi�er to provide mutual exclusion.

3.12 Critical Regions
The requirement that names of critical regions be global
in scope presents a problem. JOMP directives are to be

replaced by Java code, so we need some construct in Java
which allows us to access the same lock regardless of the
current scope.

One approach would be to create a public class for each

critical region name, in a predetermined place in the class
hierarchy|say jomp.runtime.critical. Such a class would
have static members to facilitate locking. However, the re-
quirement imposed by Java compilers that such classes oc-
cupy a predetermined place in the directory structure may
cause problems. Quite apart from the obvious messiness,

there is no guarantee that the user will have permission to
write to the appropriate location!

Instead, we choose a neater, if less e�cient, solution. The
OMP class maintains, as a static member, a hash table, in-
dexed by name and containing, for each name, an instance

of class NestLock. The getLockByName() method returns a
reference to the lock associated with a given name, creating
it and adding it to the hash table if necessary. Thus, we
can think of the table as containing a lock for every possible
name.

In parallel mode, the public startCritical() and
stopCritical() methods get the appropriate lock, and at-
tempt to set it and release it, respectively. In serial mode,
both functions simply return with no e�ect.

4. THE JOMP COMPILER
In this section, we describe a simple compiler which imple-
ments a large subset of the speci�cation suggested above.
Currently, a few parts of the speci�cation have yet to be im-
plemented, such as nested parallelism, the default clause
and reductions other than for + and �.

4.1 Basic Structure

The JOMP Compiler is built around a Java 1.1 parser pro-

vided as an example with the JavaCC [7] utility. JavaCC
comes supplied with a grammar to parse a Java 1.1 pro-
gram into a tree, and an UnparseVisitor class, which un-
parses the tree to produce code. The bulk of the com-
piler is implemented in the OMPVisitor class, which extends
the UnparseVisitor class, overriding various methods which

unparse particular nonterminals. Because JavaCC is itself
written in Java, and outputs Java source, the JOMP system
is fully portable (with the sole exception of the Machine

class), and requires only a JVM installation in order to run
it.

These overriding methods output modi�ed code, which in-
cludes calls to the runtime library to implement appropriate
parallelism.

4.2 Personal Identity Revisited
As discussed in Section 3.2, there is no cheap way for a
thread to identify itself. To alleviate this problem, the com-

piler creates code which attempts to keep track of its own
ID, in the variable omp me.

Where omp me is not in scope, and library calls are inserted
which might entail in multiple calls to getAbsoluteID(),
code is inserted to declare omp me and initialise it to

the value returned by a call to getAbsoluteID(). The
isMeDefined
ag is set in the compiler, to provide infor-
mation for visitors within the static scope of the new dec-
laration. Where a library call would entail a single call to
getAbsoluteID(), the value of omp me is used if available.

For simplicity, these technicalities are largely ignored in the
sections that follow, and all library calls are shown without
their thread number parameters.

4.3 The parallel directive
Upon encountering a parallel directive within a method,
the compiler creates a new inner class, within the class con-

taining the current method. If the method containing the
parallel directive is static then the inner class is also
static.

For each variable declared to be shared, the inner
class contains a �eld of the same type signature and

name. For each variable declared to be firstprivate,
the inner class contains a �eld of the same type sig-
nature, named omp fptemp <varname>. For each vari-
able with a reduction operation speci�ed, the inner
class contains a �eld of the same type signature, named

omp lptemp <varname>.

The inner class has a single method, called go, which takes a
parameter indicating an absolute thread identi�er. For each
variable declared to be private or firstprivate, the go()

method declares a local variable with the same name and

type signature. firstprivate variables are initialised from
the corresponding �eld in the containing inner class, while
private variables are uninitialised.

The main body of the go() method is the code to be exe-
cuted in parallel. It is not necessary to make any changes to

this block, other than to implement such work-sharing di-

rectives as may be found within it. The use of an inner class,

and the declaration of appropriate local and class variables,
e�ectively recreates the naming environment in which the
code was originally located, so no modi�cation is required
to variable names. Finally, there is some code to perform
any reductions, and to copy the resulting values into the
appropriate class �elds.

In place of the parallel construct itself, code is inserted to
declare a new instance of the inner class, and to initialise
the �elds within it from the appropriate local variables. The
OMP.doParallel() method is used to execute the go method
of the inner class in parallel. Finally, any values necessary

are copied from class �elds, back into local variables. Fig-
ures 1 and 2 illustrate this process for a trivial \Hello World"
program.

import jomp.runtime.*;

public class Hello {

public static void main (String argv[]) {

int myid;

//omp parallel private(myid)

{

myid = OMP.getThreadNum();

System.out.println("Hello from " + myid);

}

}

}

Figure 1: \Hello World" JOMP program

import jomp.runtime.*;

public class Hello {

public static void main (String argv[]) {

int myid;

__omp_class_0 __omp_obj_0 = new __omp_class_0();

try {

jomp.runtime.OMP.doParallel(__omp_obj_0);

}

catch(Throwable __omp_exception) {

System.err.println("OMP Warning: exception

in parallel region");

}

}

private static class __omp_class_0

extends jomp.runtime.BusyTask {

public void go(int __omp_me) throws Throwable {

int myid;

myid = OMP.getThreadNum();

System.out.println("Hello from " + myid);

}

}

}

Figure 2: Resulting \Hello World" Java program

4.4 The for directive
Upon encountering a for directive, the compiler inserts code
to create two LoopData structures. One of these is initialised
to contain the details of the whole loop, while the other is

used to hold details of particular chunks. The generated

code then repeatedly calls the appropriate getLoop...()

function for the selected schedule, executing the blocks it is
given, until there are no more blocks. If a dynamic schedul-
ing strategy was used, the ticketer is then reset. Any re-
ductions are carried out, and if the nowait clause is not
speci�ed, the doBarrier() method is called.

4.5 The ordered clause and directive
If the ordered clause is speci�ed on a for directive, then
a call to resetOrderer() is inserted immediately prior to

the loop, when the value of the �rst iteration number is
de�nitely known.

Upon encountering an ordered directive, the compiler in-
serts a call to startOrdered() before the relevant block with
the parameter being the current value of the loop counter.

After the block is inserted a call to stopOrdered(), with the
parameter being the next value the loop counter would take
after its current value, during sequential execution.

jomp.runtime.OMP.startOrdered(i);

<block>

jomp.runtime.OMP.stopOrdered(i+step);

4.6 The critical directive
Upon encountering a critical directive, the compiler in-
serts a call to startCritical() before the relevant block,
and a call to stopCritical() after the block.

jomp.runtime.OMP.startCritical("name");

<block>

jomp.runtime.OMP.stopCritical("name");

4.7 The barrier directive.
Upon encountering a barrier directive, the compiler inserts

a call to the doBarrier() method.

4.8 The master directive
Upon encountering a master directive, the compiler in-
serts code to execute the relevant block if and only if the
OMP.getThreadNum() method returns 0.

if(jomp.runtime.OMP.getThreadNum()==0) {

<block>

}

4.9 The single directive
Upon encountering a single directive, the compiler inserts
code to get a ticket, execute the relevant block if and only if
the ticket is zero, and then reset the ticketer. If the nowait
clause is not speci�ed, the doBarrier() method is called.

if(jomp.runtime.OMP.getTicket()==0) {

<code block>

}

jomp.runtime.OMP.resetTicket();

[jomp.runtime.OMP.doBarrier();]

4.10 The sections directive
Upon encountering a sections directive, the compiler in-
serts code which repeatedly requests a ticket from the tick-
eter, and executes a di�erent section depending on the ticket
number. When there are no sections left, the ticketer is re-
set. If the nowait clause is not speci�ed, the doBarrier()

method is called.

some_label : for(;;) {

switch(jomp.runtime.OMP.getTicket()) {

case 0 : <section 0>; break;

case 1 : <section 1>; break;

case 2 : <section 2>; break;

default : break some_label;

}

}

jomp.runtime.OMP.resetTicket();

[jomp.runtime.OMP.doBarrier();]

5. JOMP IN PRACTICE
JOMP has been applied to the Java Grande Forum Mon-
teCarlo Benchmark [1]. This is a �nancial simulation, us-
ing Monte Carlo sampling techniques, which exhibits coarse

grain parallelism.

The main loop of the program consists of 10000 iterations.
Each iteration consists of a large calculation, capable of con-
current execution, and the writing of the resulting data,
which must not overlap (but need not be ordered). The

loop before parallelisation is:

results = new Vector(nRunsMC);

// Now do the computation.

PriceStock ps;

for(int iRun=0; iRun < nRunsMC; iRun++) {

ps = new PriceStock();

ps.setInitAllTasks(initAllTasks);

ps.setTask(tasks.elementAt(iRun));

ps.run();

results.addElement(ps.getResult());

}

The following changes instruct JOMP to parallelise the main
loop, while ensuring that the addElement() method of the
results vector is not called by more than one thread at
once. The reference ps is declared to be private, since each
thread will need its own copy. The reference results is a

class �eld rather than a local variable, and so is shared by
default.

results = new Vector(nRunsMC);

// Now do the computation.

PriceStock ps;

//omp parallel for private(ps) schedule(static)

for(int iRun=0; iRun < nRunsMC; iRun++) {

ps = new PriceStock();

ps.setInitAllTasks(initAllTasks);

ps.setTask(tasks.elementAt(iRun));

ps.run();

//omp critical

{

results.addElement(ps.getResult());

}

}

When tested on a Sun E3500/8 UltraSPARC, the original
serial code took 80.46 seconds, the parallel code on one pro-
cessor took 81.02 seconds, and the parallel code on all eight
processors took 12.23 seconds. This represents a speedup

factor of 6.58, and an e�ciency of 82.2%. Similar results
were obtained when the same code was parallelised by hand.

6. OUTSTANDING ISSUES
In this section, we brie
y outline some of the outstanding
issues which have yet to be resolved, and which require more
work.

6.1 Data scope attributes
One issue deserving of more consideration in the design of
the API is that of which kinds of variables should be allow to
appear in data scope attribute clauses. In the current imple-
mentation, only local variables may appear in these clauses,
all other variables being shared by default. This could be
seen as overly restrictive, and it would be worth consider-

ing allowing other variable types to be non-shared. Fields
of this, for example, could be allowed to be take di�erent
attributes. However, this may prove awkward to implement,
and raises issues of consistency where multiple distinct ref-
erences to the current object exist. Due to inheritance, type
analysis beyond the scope of the current class is required,

which is not readily available in the current implementation
framework. Some types of variable, on the other hand, such
as class �elds, probably should only allowed to be shared.

6.2 Exception Handling
Exceptions are an important feature of the Java language,
and it is worth considering how they will be handled by

an OpenMP-like implementation. Exceptions are present
in C++, but they are less widely used than in Java and
the OpenMP C/C++ speci�cation ignores the issue, thus
providing no guidance.

The case of interest is that where an exception is thrown

by some thread within a parallel construct, but not caught
inside it. The most natural behaviour would be for parallel
execution to terminate immediately, and the exception to
be thrown on in the enclosing serial region by the master
thread.

This has been attempted in the JOMP preprocessor and
library. The throws clause on the parallel directive is used
to specify classes of exception which may be thrown from
within the dynamic extent of the parallel construct, but not
caught inside it. In practice, though, the desired behaviour

proves very di�cult to implement. It is necessary that the
thread throwing the exception has some way of interrupting
the master thread. Unfortunately, no mechanism is provided
in the Java language for interrupting a running thread. The
Thread.interrupt() method only actually interrupts if the
target thread is waiting. If it is running, it merely sets a

ag.

Even more complex issues arise when an exception is thrown

by one thread within a synchronisation or work-sharing con-
struct, and caught outside this construct but inside the dy-
namically enclosing parallel region.

6.3 Task based parallelism
OpenMP does not provide much support for task based par-
allelism: this shortcoming was noted in [13], and a solution
proposed in the form of task and taskq directives. These
provide a compact but powerful extension to OpenMP, al-
lowing parallelism over while loops, in recursive methods,

and over complex data structures such as trees and lists, to
be readily exploited. Since such parallelism is likely to be
common in Java programs, a similar extension should be
considered for JOMP.

7. CONCLUSIONS AND FUTURE WORK
We have de�ned an OpenMP-like interface for Java which
enables a high level approach to shared memory parallel pro-
gramming. A prototype compiler and runtime library which
implement most of the interface have been described, show-

ing that the approach is feasible. Only minor changes from
the OpenMP C/C++ speci�cation are required, and the im-
plementation of both the runtime library and the compiler
are shown to be relatively straightforward. The system has
been demonstrated in action on a simple parallel code.

Nevertheless, much more remains to be done. A complete
speci�cation is required, taking particular care with scop-
ing issues. Although performance was taken into considera-
tion in the design of the runtime library, it would undoubt-
edly bene�t from further analysis and optimisation. It may

also be of interest to explore the possibilities of designing a
cleaner interface to the runtime library with the intention
of it being used directly by the programmer. The compiler
should be extended to implement the whole speci�cation.
Finally, the issues raised in Section 6 should be addressed.

8. REFERENCES
[1] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty,

and R. A. Davey. A Methodology for Benchmarking
Java Grande Applications. In Proceedings of ACM

1999 Java Grande Conference, pages 81{88. ACM

Press, June 1999.

[2] B. Carpenter, G. Zhang, G. Fox, X. Li and Y. Wen.
HPJava: Data Parallel Extensions to Java.
Concurrency: Practice and Experience,
10(11-13):873-877, 1998.

[3] D. Grunwald and S. Vajracharya. E�cient Barriers for
Distributed Shared Memory Computers. In
Proceedings of 8th International Parallel Processing

Symposium, April 1994.

[4] M. E. Kambites. Java OpenMP: Demonstration
implementation of a compiler for a subset of OpenMP

for Java, EPCC Summer Scholarship Programme
Technical Report, September 1999, available from
www.epcc.ed.ac.uk/ssp/1999/ProjectSummary/

kambites.html.

[5] International Organization for Standardization (ISO).

Portable operating system interface (POSIX)|Part 1:

system application program interface. ISO/IEC

Standard 9945-1, 1996.

[6] D. Lea. Concurrent Programming in Java: Design

Principles and Patterns. Addison-Wesley, 1996.

[7] Metamata Inc. JavaCC|The Java Parser Generator.
www.metamata.com/JavaCC.

[8] S. Oaks and H. Wong. Java Threads. O'Reilly, 1997.

[9] OpenMP Architecture Review Board. OpenMP C and
C++ Application Program Interface, Version 1.0.
Available from www.openmp.org, October 1998.

[10] OpenMP Architecture Review Board. OpenMP
Fortran Application Program Interface, Version 1.1.
Available from www.openmp.org, November 1999.

[11] M. Philippsen and M. Zenger.
JavaParty|Transparent Remote Objects in Java.

Concurrency: Practice and Experience,
9(11):1225{1242, 1997.

[12] W. Pugh. Fixing the Java Memory Model. In
Proceedings of ACM 1999 Java Grande Conference,
pages 89{98. ACM Press, June 1999.

[13] S. Shah, G. Haab, P. Petersen, and J. Throop. Flexible
Control Structures for Parallelism in OpenMP. In
Proceedings of First European Workshop on OpenMP,

Lund, Sweden, pages 99{105, Spetember 1999.

[14] K. van Reeuwijk, A. J. C. van Gemund, and H. J.

Sips. SPAR: A Programming Language for
Semi-automatic Compilat ion of Parallel Programs.
Concurrency: Practice and Experience,
9(11):1193{1205, 1997.

[15] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. N. Hil�nger, S. L.
Graham, D. Gay, P. Colella, and A. Aiken. Titanium:

A High-Performance Java Dialect. Concurrency:
Practice and Experience, 10(11-13):825-836, 1998.

