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ABSTRACT

Increasing interest is being shown in the use of Java for sci-
entific applications. The Java Grande benchmark suite [4]
was designed with such applications primarily in mind. The
perceived lack of performance of Java still deters many po-
tential users, despite recent advances in just-in-time (JIT)
and adaptive compilers. There are however few benchmark
results available comparing Java to more traditional lan-
guages such as C and Fortran. To address this issue, a sub-
set of the Java Grande Benchmarks have been re-written in
C and Fortran allowing direct performance comparisons be-
tween the three languages. The performance of a range of
Java execution environments, C and Fortran compilers have
been tested across a number of platforms using the suite.
These demonstrate that on some platforms (notably Intel
Pentium) the performance gap is now quite small.
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1. INTRODUCTION

Java has a number of important features which make it an
attractive language for scientific applications. Perhaps the
most important of these is portability—despite standardis-
ation efforts, the process of creating truly portable Fortran
or C programs is time consuming and requires considerable
experience. Portability is especially important for high per-
formance applications, where the hardware architecture typ-
ically has a much shorter lifespan than the application soft-
ware. Java also avoids the need for complex makefiles and
configure scripts. Portability may be of even greater impor-
tance in the context of the computational grid, where the
target architecture could be unknown to the user.

Java is also a highly network-centric language with exten-
sive support for, amongst others, remote method invoca-
tion, remote file access and database access. Such facilities

are important for applications with remote visualisation or
computational steering requirements.

Java is also generally considered to offer a better software
engineering environment than C or Fortran. Features such
as the absence of pointers, automatic garbage collection and
strict type checking allow rapid prototyping, and lead to less
buggy code and faster development times.

The nature of many scientific applications makes them well
suited to Java execution environments. They typically
spend a large amount of execution time in a small number of
user-written methods, making them good candidates for JIT
compilation, and less susceptible than other applications to
poor implementations of the Java API. Scientific applica-
tions, when written in a traditional, non-objected oriented
manner, often have large and persistent data structures, re-
sulting in low garbage collection overheads.

Java is also rapidly becoming the language of choice for
many mainstream and commercial applications, as well as
being a very popular teaching language in many institu-
tions. This popularity has led the major vendors to expend
significant resources on developing robust and efficient Java
execution environments (far more than, say, on Fortran com-
pilers).

On the other hand, Java still suffers from some significant
disadvantages compared to more traditional languages. The
core Java language still lacks some features which scien-
tific programmers find attractive and useful. These include
complex numbers as a basic type, multidimensional arrays,
generics, and operator overloading. The Java Grande Forum
[13] is actively addressing these shortcomings, but whether
they will be adopted in the language specification remains
to be seen.

Another shortcoming of Java for high performance appli-
cations is the absence of the familiar parallel programming
models such as MPI and OpenMP, available to C and For-
tran programmers. Despite research efforts both in message
passing [2] and shared memory directives [14], standardisa-
tion is still some way off.

Perhaps the most important of Java’s shortcomings, at least
in terms of users’ perceptions, is performance. Direct com-
parisons are not easy to make, and have not been widely
publicised. The benchmarking effort described in this paper



is intended to address precisely this issue, and may serve to
dispel some of the myths about lack of performance of Java
codes.

The Java Grande benchmark suite has been run on a range
of Java execution environments and systems. While this
provides valuable information about the relative merits of
Java implementations, it cannot answer the question of how
much performance (if any) will be sacrificed by abandoning
C or Fortran in favour of Java. To address this issue, a sub-
set of the benchmarks have been translated into C and For-
tran, allowing direct performance comparisons to be carried
out. While object-oriented design and programming holds
significant potential for the future of scientific programming,
this is not our principal focus. Comparing a highly object
based Java implementation with non-object-oriented C or
Fortran would be hard to interpret, as we cannot readily
distinguish between differences due to language implemen-
tations and differences due to abstraction penalties. Since
the latter have been studied elsewhere, it is more appropri-
ate to separate the two issues.

The remainder of this paper is structured as follows: in
Section 2 we review related work, while in Section 3 we
describe the structure and contents of the language com-
parison benchmarks. In Section 4 we describe the systems
and environments tested, and present and discuss the results
obtained. Section 5 summarises and provides some conclu-
sions.

2. RELATED WORK

A considerable number of benchmarks and performance
tests for Java have been devised. Some of these consist
of small applets with relatively light computational load,
designed mainly for testing JVMs embedded in browsers—
these are of little relevance to Grande applications. Of more
interest are a number of benchmarks [3, 8, 9, 20, 16] which
focus on determining the performance of basic operations
such as arithmetic, method calls, object creation and vari-
able accesses. These are useful for highlighting differences
between Java environments, but give little useful informa-
tion about the likely performance of large application codes.
They are also highly vulnerable to JIT warm-up effects (it is
difficult to be certain whether interpreted or compiler code
is being measured) and to optimisations which make use of
run-time information (for example division by one).

Other sets of benchmarks, from both academic [7, 18] and
commercial [17, 21] sources, consist primarily of computa-
tional kernels, both numeric and non-numeric. This type
of benchmark is more reflective of application performance,
though many of the kernels in these benchmarks are on the
small side, both in terms of execution time and memory re-
quirements. Finally there are some benchmarks [6, 12, 22]
which consist of a single, near full-scale, application. These
are useful in that they can be representative of real codes,
but it is virtually impossible to say why performance differs
from one environment to another, only that it does.

Few benchmark codes attempt inter-language comparison.
In those that do, (for example [20, 23]) the second language
is usually C++, and the intention is principally to compare
the object oriented features, rather than basic memory and

arithmetic operations. The Scimark 2.0 suite citeBull:pozo
(from which some of the Java Grande benchmarks are de-
rived) has a C version, though no results have been pub-
lished.

3. THEBENCHMARK SUITE

The aim of the Java Grande benchmark suite is to provide
a standard benchmark suite that can be used to:

e Demonstrate the use of Java for Grande applications.
Show that real large scale codes can be written and
provide the opportunity for performance comparison
against other languages.

e Provide metrics for comparing Java execution environ-
ments thus allowing Grande users to make informed
decisions about which environments are most suitable
for their needs.

e Expose those features of the execution environments
critical to Grande Applications and in doing so en-
courage the development of the environments in ap-
propriate directions.

We adopt the structure of the GENESIS Benchmark
suite [1], providing three types of benchmark: low-level op-
erations (which we refer to as Section I of the suite), simple
kernels (Section II) and applications (Section IIT) within a
single suite. A subset of these benchmarks have been re-
written in C and Fortran to allow inter-language compar-
isons. These benchmarks are described here. For further
details of the complete set of benchmarks and the rational
for their design see [4] or www.epcc.ed.ac.uk/javagrande.

A range of data sizes for each benchmark in Sections II and
III is provided to avoid dependence on particular data sizes
(sizes A, B and C for Section II and sizes A and B for Sec-
tion III). To remove any ambiguity in the question of what
is being tested the source code for all the benchmarks is
distributed.

For the language comparison benchmarks, we omit Section
I for the following reasons: many do not have suitable direct
translations into C or Fortran, while those that do (such as
arithmetic operations) have been found to be too sensitive to
compiler optimisation to give meaningful results. The lan-
guage comparison benchmark suite is therefore structured
as follows:

Section I1: Kernels
Series Computes the first N Fourier coefficients of the func-
tion f(z) = (x + 1)® on the interval 0,2.

LUFact Solves an N x N linear system using LU factorisation
followed by a triangular solve. This is a Java version of the
well known Linpack benchmark [7].

HeapSort Sorts an array of N integers using a heap sort
algorithm.

SOR The SOR benchmark performs 100 iterations of suc-
cessive over-relaxation on an N X N grid.



FFT This performs a one-dimensional forward transform of
N complex numbers.

SparseMatmult Performs matrix-vector multiplication using
an unstructured sparse matrix stored in compressed-row for-
mat with a prescribed sparsity structure.

Section I11: Applications
Euler Solves the time-dependent Euler equations for flow in
a channel with a “bump” on one of the walls.

MolDyn A simple N-body code modelling the behaviour of
N argon atoms interacting under a Lennard-Jones potential
in a cubic spatial volume with periodic boundary conditions.

Of these, all have C versions while LUFact and Moldyn have
also been translated into Fortran. For the C versions, we
have attempted to keep as close as possible in terms of syn-
tax to the Java code: this is possible thanks to the strong
similarities between much of the basic syntax of the two lan-
guages. Indeed in many cases the computationally intensive
loops are syntactically identical. The Fortran versions are
of necessity somewhat less closely related to the Java source
code. For example, in the Java version of MolDyn, each
particle is represented by an object. In the C version, it is
represented by a struct, but in the Fortran version the data
for each particle is simply a series of entries (at the same
index) in a number of arrays.

Performance metrics for the benchmarks are provided in
three forms: execution time, temporal performance and
relative performance (see [4]). However, in this paper we
simply report execution time, the wall clock time required
to execute the benchmark, excluding initialisation, valida-
tion and clean-up phases. For the Java versions we use the
System.currentTimeMillis() method. For the Fortran and
C versions there is no fully portable timing routine, so we
use system specific high-resolution timers.

4. RESULTS

The benchmark suite has been tested on a range of execu-
tion environments on the following platforms: a 700MHz
Pentium IIT with 256 Mb of RAM, running Windows NT
4.0; a 7T00MHz Pentium IIT with 256 Mb of RAM, running
Linux 6.2; a 300 MHz Sun UltraSparc II with 1Gb RAM; a
Compaq ES40, (500 MHz Alpha EV6) with 4Gb of RAM,
running Digital UNIX V4.0F; an SGI Origin 3000 (400 MHz
MIPS R12000 processors) with 128 Gbytes of main memory
running IRIX 6.5. The Java execution environments, C and
Fortran compilers studied are summarised in Table 1. The
flags shown are compile time flags for C and Fortran and
runtime flags for Java. All Java compilation was performed
using javac -0. For the C and Fortran compilers, a standard
set of optimisation flags was chosen for all the benchmarks—
no attempt was made to tune the flags for individual codes.
The results reported are, in all cases, the best time obtained
over three runs of the code. Data size B was used for Section
IT codes, and data size A for Section III.

It is worth noting that Sun significantly altered the structure
of their JDK between versions 1.2 and 1.3. The production
1.2 JDK contained the Classic Virtual Machine, while the
HotSpot Engine was available as a plug-in to the reference

version. In the 1.3 JDK the Hotspot Engine has replaced
the Classic VM, and has two modes available: Client and
Server.

Table 2 gives the execution timings for all the benchmarks.
The execution times are represented graphically in Fig-
ures 1-8. Table 3 shows the mean ratio (over benchmarks)
of execution times for every Java environment to every C
or Fortran compiler. Since some runs failed, the number of
benchmarks used to compute the mean is also shown. Ta-
ble 4 shows, for each benchmark, the ratio of the fastest Java
execution time to the fastest C or Fortran execution time for
the given hardware platform. This comparison seems rea-
sonable, since there is very little effort or expense involved
in downloading a number of Java environments for a given
platform, and choosing the best for a given application.

4.1 Intd Pentium, Windows NT

On the Pentium III NT platform we tested eight Java en-
vironments. No one of these was a clear winner on all the
benchmarks. The IBM 1.2 and 1.3 JDK’s give very similar
performance, with one or other giving the fastest time on
all the codes except FFT and MolDyn. There is also little
to chose between the HotSpot Client and HotSpot Server
modes of the Sun 1.3.0 JDK. Although there are differences
on individual benchmarks, neither version can be considered
better than the other. In general, the Sun 1.2 JDK (with the
Classic VM) performs better than the Sun 1.3.0, 1.3.1 and
1.4.0b JDKs, so for scientific applications, it seems that the
move to HotSpot has been a retrograde step. The Microsoft
JDK performs moderately well across all the codes, being
rarely either the fastest or the slowest Java environment.

Comparisons with C are very reasonable on this system. For
example, for the Sun 1.2, Microsoft and IBM JDKs the over-
all performance loss is less than 10% compared to Borland
C++ and less than 60% compared to Portland Group cc.
The ratio of the best Java to best C execution time has a
mean of 1.23 and exceeds 2.0 only in the case of the FFT
benchmark.

Java also fares well compared to Fortran on this system,
especially with respect to the (somewhat dated) version of
Digital Fortran. Comparing the best Java to best Fortran
execution time shows an increase of less than 25%.

4.2 Intel Pentium, Linux

We tested four Java environments under Linux. Of these,
the IBM 1.3 JDK gave the best performance on all bench-
marks except MolDyn. In almost all cases the execution
times are less than for the NT version of the same JDK. The
Blackdown 1.3 and the two versions of Sun 1.3 were roughly
comparable overall, though there are significant differences
on individual benchmarks.

Comparisons with C compilers on the system are very
favourable. The IBM 1.3 JDK is on average slightly faster
than KAI C++, and only 15% slower than gcc. The mean
ratio of fastest Java to fastest C execution times is only 1.07.
At this level of difference there is no case for preferring C to
Java on grounds of performance.

Comparisons with Fortran are not quite as impressive, as



Time (seconds)

Time (seconds)

Pentium ITT, NT Pentium III, Linux

Sun JDK 1.2.2_006 Sun JDK 1.3.0 (-client)

Sun JDK 1.4.0b Sun JDK 1.3.0 (-server)

Sun JDK 1.3.1 Blackdown JDK 1.3

Sun JDK 1.3.0 (-client) IBM JDK 1.3.0

Sun JDK 1.3.0 (-server) gee 2.91.66 (-O3 -funroll-loops)
IBM JDK 1.2.0 KAI C++ v4.0b (+K3 -O)
IBM JDK 1.3.0 g77 2.91.66 (-O3 -funroll-loops)
Microsoft SDK for Java 4.0 pgr7 3.1-2 (-fast)

Borland C++ 5.5.1 (-5 -02 -OS)
Portland Group pgcc 3.2-3 (-fast)
Portland Group pgf90 3.2-3 (-fast)
Digital Fortran V5.0 (-fast)

Sun UltraSparc 11 Compaq ES40

Sun JDK 1.2.1 (-Xoptimize) Compagq Java 1.3.0-alphal

Sun JDK 1.4.0b, HotSpot Client Dec C V5.9-005 (-fast -O4 -ieee -tuneev6 -archev6)

Sun JDK 1.4.0b, HotSpot Server Compaq Fortran V5.3-1120 (-fast -O4 -ieee -tuneev6 -archev6)
Sun JDK 1.3.1, HotSpot Client

Sun JDK 1.3.1, HotSpot Server SGI Origin 3000

Sun JDK 1.3.0, HotSpot Client SGI JDK 1.3.0

Sun JDK 1.3.0, HotSpot Server MIPSpro V7.3.1.1m CC (-03)

LaTTe 0.9.1

Sun WS 6 cc 5.2 (-fast -xarch=v8plusa)
gee 2.95.2 (-03 -funroll-loops)

Apogee C 4.0

Sun WS 6 90 95.6.1 (-fast -xarch=v8plusa)
g77 2.95.2 (-O3 -funroll-loops)

Apogee 190 4.0

Table 1: Tested Java execution environments, C and Fortran compilers (with flags)
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Figure 1: Execution time for the FFT benchmark
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Figure 2: Execution time for the HeapSort benchmark
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Figure 3: Execution time for the LUFact benchmark
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Figure 5: Execution time for the SOR benchmark
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Figure 6: Execution time for the SparseMatmult benchmark
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Figure 7: Execution time for the Euler benchmark
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Figure 8: Execution time for the MolDyn benchmark
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none of the Java environments comes close to the perfor-
mance of the Portland Group compiler on MolDyn (unlike
the Sun 1.2 JDK under NT!). On LUFact, however, the best
Java execution time is within 20% of the best Fortran.

4.3 Sun Ultrasparc

On this platform we also tested eight Java environments.
We observe that the later Sun JDKs (1.3.0, 1.3.1 and 1.4.0b)
are generally (but not always) faster in Server mode than in
Client mode, but that performance in either mode is often
worse than the Sun 1.2 JDK. The overall performance of
the LaTTe VM lies between that of the Sun 1.2 and 1.3/1.4
versions.

Comparison with the C compilers shows a wider gap on
the Ultrasparc platform than on the Pentium. The Sun 1.2
JDK is, on average, 1.43 times slower than gcc, 1.72 times
slower than the Sun WorkShop 6 C compiler and 1.40 times
slower than the Apogee C compiler. Taking the best Java
execution time and comparing to the fastest C execution
time, we observe a mean ratio of 1.74, with a range from
1.29 (HeapSort) to 2.61 (SparseMatmult).

The differences between the C and Fortran execution times
on the Sun are small, so very similar observations to the
above apply when comparing Java and Fortran.

4.4 Compaq Alphaand SGI Origin 3000

On these platform we tested only the vendor supplied Java,
C and Fortran environments. We observe a significant gap
between Java and C performance, with execution time ratios
varying from 2.15 (FFT) to 17.6 (Euler) on the Compaq
and between 1.45 (SOR) and 26.0 (Sparse) on the SGI. The
mean is just under 4 for both systems. The comparison with
Fortran on the Compaq yields similar observations.

5. CONCLUSIONSAND FUTURE WORK

The results of Section 4 demonstrate that the performance
gap between Java and more traditional scientific program-
ming languages is no longer a wide gulf. Although for each
platform there are differences between the benchmark codes
in terms of Java/C and Java/Fortran performance ratios,
the variance is small enough to give some confidence that
the benchmark suite is representative of a class of applica-
tions.

On Intel Pentium hardware, especially with Linux, the per-
formance gap is small enough to be of little or no concern
to programmers. On the Sun Ultrasparc platform the gap
is a little wider, but generally less than a factor of two. On
the Compaq Alpha and SGI platforms, the gap is around
a factor of four. These differences between platforms prob-
ably reflect the relative effort expended by vendors on de-
veloping Java environments compared to that expended on
C and Fortran compilers, rather than intrinsic properties
of the hardware. However, the possibility cannot be dis-
counted that the highly super-scalar nature of Pentium III
micro-architecture has some influence.

Future work will extend the coverage of the language com-
parison benchmarks (particularly in the Fortran version).
We will continue to monitor latest software releases, and

broaden the coverage to more platforms. A further possi-
bility is to include some parallel versions of the benchmarks
(for both shared and distributed memory) in the language
comparison suite.
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Environment Benchmarks
FET | HeapSort | SOR | LUFact | Series | SparseMatmult | Euler [ MolDyn
Pentium III, 700 MHz, NT
Sun JDK 1.2.2_006 93.9 12.9 22.2 24.2 117 39.9 63.7 7.80
Sun JDK 1.4.0b 140 18.4 23.7 33.1 302 39.9 44.3 20.2
Sun JDK 1.3.1 114 18.1 22.0 26.3 311 40.2 43.0 10.6
Sun JDK 1.3.0, client 113 18.0 22.3 25.9 294 37.9 39.4 26.0
Sun JDK 1.3.0, server 110 11.9 25.7 26.5 315 43.5 53.5 28.2
IBM JDK 1.2. 94.4 10.2 20.2 21.3 111 35.4 38.7 55.9
IBM JDK 1.3.0 126 10.2 20.3 21.1 114 34.7 39.1 54.2
Microsoft SDK for Java 4.0 94.1 13.1 22.2 23.7 146 35.4 54.2 19.2
Borland C++ 5.5.1 for Win32 57.5 11.7 22.5 28.2 167 31.7 35.4 21.0
Portland Group cc 41.6 10.2 17.3 18.0 127 26.6 26.1 7.13
pgf9o 3.2-3 17.9 6.13
pgf77 3.2-3 19.0 6.00
Digital Fortran V5.0 18.3 14.9
entium I1T, 700 MHz, Linux
Sun JDK 1.3.0, client 96.0 16.5 21.0 22.3 287 32.2 36.8 141
Sun JDK 1.3.0, server 87.3 10.5 23.3 22.7 301 35.9 F 30.3
Blackdown 1.3 119 16.6 21.1 22.5 241 32.1 37.5 14.3
IBM JDK 1.3.0 79.1 9.18 17.1 17.7 121 28.1 33.9 21.9
gee 2.91.66 53.0 10.1 15.8 19.0 139 27.8 24.1 12.5
KAI C++ v4.0b F 9.68 14.7 19.5 153 26.4 F F
g77 2.91.66 16.3 12.5
pg77 3.1-2 15.2 6.21
Sun UltraSparc, 300MHz
Sun JDK 1.2.1 189 235 36.1 29.3 710 75.6 65.5 23.2
Sun JDK 1.4.0b, client 217 52.1 69.2 67.0 792 88.8 84.7 56.3
Sun JDK 1.4.0b, server 239 25.2 27.0 23.6 633 70.6 117 37.1
Sun JDK 1.3.1, client 227 37.7 51.0 474 659 80.4 76.6 50.3
Sun JDK 1.3.1, server 236 25.4 38.4 23.5 660 76.8 109 31.8
Sun JDK 1.3.0, client 220 37.5 50.8 47.2 695 78.7 78.5 50.7
Sun JDK 1.3.0, server 236 25.6 41.6 35.2 600 79.0 93.8 23.4
LaTTe 0.9.1 188 254 374 31.0 531 81.3 83.5 27.2
Sun Workshop 6 cc 5.2 91.3 18.2 25.7 21.9 345 28.9 33.7 15.7
gee 2.95.2 91.0 18.9 31.1 23.0 695 30.7 46.4 18.4
Apogee C 4.0 113 20.5 25.1 20.5 470 72.9 43.8 14.5
Sun Workshop 6 Fortran 95 6.1 19.8 16.8
g77 2.95.2 22.0 20.5
Apogee 190 4.0 12.4 20.4
Compaq ES40, 500MHz Alpha EV6
Compaq Java 1.3.0-alphal 148 25.8 20.2 16.7 738 20.8 110 16.3
Dec C V5.9-005 68.6 10.4 8.26 5.88 89.0 7.86 6.24 5.75
Compaq Fortran V5.3-1120 3.29 6.88
Origin 3000, 400 MHz MIPS R12000

SGI JDK 1.3.0 166 22.2 17.2 12.6 218 9.61 71.3 19.6
MIPSpro V7.3.1.1m CC (-03) 73.9 9.7 11.8 4.02 88.2 0.37 7.66 5.35

Table 2: Benchmark results (seconds) for various Java execution environments. Benchmarks which failed to
execute correctly are denoted by F.



Pentium III, NT

Borland C+4 5.5.1 pgcc pgfa0 3.2-3 Digital F V5.0

Sun JDK 1.2.2.006 0.99 (3) 1.44 (8) 131 (2) 0.83 (2)
Sun JDK 1.4.0b 1.38 (8) 2.01 (8) 2.47 (2) 1.57 (2)
Sun JDK 1.3.1 1.19 (8) 1.73 (8) 1.59 (2) 1.01 (2)
Sun JDK 1.3.0, client 1.30 (8) 1.87 (8) 2.48 (2) 1.57 (2)
Sun JDK 1.3.0, server 1.35 (8) 1.97 (8) 2.61 (2) 1.66 (2)
IBM JDK 1.2.0 1.10 (8) 1.60 (8) 3.30 (2) 2.10 (2)
IBM JDK 1.3.0 1.13 (8) 1.65 (8) 3.22 (2) 2.05 (2)
Microsoft SDK for Java 4.0 1.10 (8) 1.60 (8) 2.04 (2) 1.29 (2)

entium IIT, Linux

gee 2.91.66 KAT C++ v4.0b g77 2.91.66 pg77 3.1-2

Sun JDK 1.3.0, client 1.45 (3) 1.45 (5) 124 (2) 1.82 (2)
Sun JDK 1.3.0, server 1.54 (7) 1.40 (5) 1.83 (2) 2.70 (2)
Blackdown 1.3 1.46 (8) 1.40 (5) 1.25 (2) 1.84 (2)
IBM JDK 1.3.0 1.15 (8) 0.97 (5) 1.38 (2) 2.03 (2)

Sun UltraSparc 1T

Sun WS6 cc 5.2 gce 2.95.2 T Apogee C | Sun WS6 90 95.6.1 | g77 2.95.2 | Apogee 190
Sun JDK 1.2.1 172 (3) 143 (8) | 1.40 (8) 143 (2) 1.23 (2) 1.64
Sun JDK 1.4.0b, client 2.78 (8) 2.30 (8) 2.26 (8) 3.37 (2) 2.89 (2) 3.86
Sun JDK 1.4.0b, server 1.87 (8) 1.55 (8) | 1.52 (8) 1.62 (2) 1.39 (2) 1.86
Sun JDK 1.3.1, client 2.32 (8) 1.54 (8) 1.89 (8) 2.68 (2) 2.30 (2) 3.07
Sun JDK 1.3.1, server 1.93 (8) 1.93 (8) 1.57 (8) 1.50 (2) 1.29 (2) 1.72
Sun JDK 1.3.0, client 2.33 (8) 1.93 (8) 1.89 (8) 2.68 (2) 2.30 (2) 3.08
Sun JDK 1.3.0, server 1.92 (8) 1.59 (8) | 1.56 (8) 1.58 (2) 1.35 (2) 1.81
LaTTe 0.9.1 1.80 (8) 1.49 (8) | 1.46 (8) 1.59 (2) 1.37 (2) 1.83
Compaq ES40
Dec C V5.9-005 Compaq Fortran V5.3-1120

Compaq Java 1.3.0-alphal 3.77 (8) 3.47 (2)

SGI Origin 3000

MIPSpro V7.3.1.1m CC

SGI JDK 1.3.0 3.88 (8)

Table 3: Mean execution time ratios for various Java execution environments. Figures in brackets represent

the number of benchmarks used to calculate the ratios.

Pentium IIT, NT | Pentium III, Linux | Sun UltraSparc IT | Compaq ES40 | SGI 03000
FFT 2.26 1.49 2.07 2.15 2.25
HeapSort 1.00 0.95 1.29 2.48 2.28
SOR 1.17 1.17 1.44 2.45 1.45
LUFact 1.17 0.93 1.43 2.84 3.12
C Series 0.87 0.87 1.54 8.29 2.47
Sparse 1.30 1.07 2.61 2.64 26.0
Euler 1.48 141 1.94 17.6 9.31
MolDyn 1.09 1.12 1.61 2.84 3.67
Mean 1.23 1.07 1.74 3.78 3.88
LUFact 1.18 1.16 2.36 5.07
Fortran | MolDyn 1.27 2.27 1.39 2.38
Mean 1.22 1.62 1.88 3.47

Table 4: Ratios of fastest Java execution times to fastest C/Fortran execution time.




