
4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 1

An Introduction to XML

Nancy McCracken,
Ozgur Balsoy

Northeast Parallel Architectures Center at
Syracuse University

111 College Place, Syracuse, NY 13244
http://www.npac.syr.edu/projects/webtech/xml

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 2

Outline
• Overview of XML and its relationship to HTML and

SGML
• XML extensible tags: DTD
• Some simple examples
• XSL and XLL
• XML tools
• Details on writing XML
• Example showing the use of XML to store a simple

database

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 3

References
• XML Complete, Steven Holzner [McGraw-Hill, 1998], old

but good for DOM processing
• “XML, Java, and the future of the Web”, Jon Bosak, Sun

Microsystems, 1997
• “Weaving a Better Web”, S. Mace, U. Flohr, R. Dobson, T.

Graham, Byte, March 1998, pp.58-68
• NPAC’s XML Resources page,

http://www.npac.syr.edu/projects/webtech/xml
• Sun XML tutorial: java.sun.com/xml/tutorial_intro.html,

concentrating on SAX and DOM API’s
• XML and XSL tutorials: www.xml101.com, and its

predecessor: www.refsnesdata.no

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 4

Overview of HTML
• HTML = Hypertext Markup Language

– the lingua franca of the World Wide Web
– HTML is a simple language well suited for hypertext,

multimedia and the display of small and reasonably simple
documents

• HTML 2.0 spec completed in Nov 95
• HTML+ and HTML 3.0 never released
• HTML 3.2 (Jan 97) added tables, applets, and other

capabilities (approximately 70 tags)
– this is what most people are familiar with today

• HTML 4.0 spec released in Dec 97

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 5

Beyond HTML
• Limitations of HTML:

– Extensibility: HTML does not allow users to specify their
own tags or attributes in order to parameterize or otherwise
semantically qualify their data.

– Structure: HTML does not support the specification of
deep structures needed to represent database schema or
object-oriented hierarchies.

– Validation: HTML does not support the kind of language
specification that allows applications to check data for
structural validity when it is imported.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 6

What is XML?
• XML = eXtensible Markup Language
• XML is a subset of Standard Generalized Markup

Language, but unlike the latter, XML is specifically
designed for the web

• Specification of W3C: http://www.w3.org/XML
• XML 1.0 in February 98, related specifications since then
• How XML fits into the new HTML world:

– XML describes the logical structure of the document.
– CSS (Cascading Style Sheets) or other style language describes the

visual presentation of the document.
– The DOM (Document Object Model) allows scripting languages, such

as JavaScript to access document objects.
– DHTML (Dynamic HTML) allows a dynamic presentation of the

document.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 7

Logical vs. Visual Design
• The logical design of a document (content) should be

separate from its visual design (presentation)
• Separation of logical and visual design

– promotes sound typography
– encourages better writing
– is more flexible

• XML can be used to define the logical design, while the
XSL (Extensible Style Language) is used to define the
visual design.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 8

What is SGML?
• SGML = Standard Generalized ML
• A SGML document carries with it a grammar called a

Document Type Definition (DTD). The DTD defines the
tags and the meaning of those tags

• Presentation is governed by a style sheet written in the
Document Style Semantics and Specification Language
(DSSSL)

• Note that HTML is a fixed SGML application, a hard-
wired set of about 70 tags and 50 attributes, and does not
need to have a DTD.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 9

SGML Example
• A simple SGML document with embedded DTD:

<!DOCTYPE DOCUMENT [
 <!ELEMENT DOCUMENT O O (p*,BIGP*)>
 <!ELEMENT p - O (#PCDATA)>
 <!ELEMENT BIGP - O (#PCDATA)>
]>
 <DOCUMENT>
 <p>Welcome to
 <BIGP>XML Style!
 </DOCUMENT>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 10

SGML Example (cont’d)
• A corresponding DSSSL style sheet:

<!DOCTYPE style-sheet PUBLIC "-//James
 Clark//DTD DSSSL Style Sheet//EN">

(root (make simple-page-sequence))

(element p (make paragraph))
(element BIGP (make paragraph
 font-size: 24pt
 space-before: 12pt))

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 11

XML is SGML Lite
• XML is also an SGML application, but since XML is

extensible (XML is also a metalanguage), every XML
document must be accompanied by its DTD

• XML is a compromise between the non-extensible, limited
capabilities of HTML and the full power and complexity of
SGML

• XML offers “80% of the benefits of SGML for 20% of its
complexity”
– XML designers tried to leave out all the SGML that would be

rarely used on the web
– Note that XML specification is 30 pages and the SGML

specification is 500 pages.
• XML allows you to define your own tags and to describe

nested hierarchies of information.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 12

XML Design Goals
• 1) XML shall be usable over the Internet
• 2) XML shall support a variety of applications
• 3) XML shall be compatible with SGML
• 4) It shall be easy to write programs that process XML

documents
• 5) Optional features in XML shall be kept to the absolute

minimum, ideally zero
• 6) XML documents should be human-legible and reasonably

clear
• 7) Design of XML should be prepared quickly
• 8) Design of XML shall be formal and concise
• 9) XML documents shall be easy to create
• 10) Terseness in XML markup is of minimal importance

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 13

Features of XML
• The documents are stored in plain text and thus can be

transferred and processed anywhere.
• Inline-reusability - documents can be composed of many

pieces
• Unifying principles make it easily acceptable

– “everything is a tree”
– UNICODE for different languages

• XML documents enable several types of uses
– traditional data processing - XML documents can be the

data interchange medium
– document-driven programming
– archiving

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 14

Origins of XML
• First draft of XML spec released by W3C in Nov 96 (four

other drafts published in 1997)
• The first XML parser (written in Java) released by

Microsoft in July 97
• Microsoft released version 1.8 of its XML parser (which

supports XML 1.0) in Jan 98
• W3C finalized the XML 1.0 spec in Feb 98
• First XML-aware beta versions of NC and IE5.0 released

in June 98
• Sun announced Java Standard Extension for XML (XML

API) in March 99
• W3C working drafts for extensions - 99/00

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 15

“Hello World!” in XML
• An XML document with external DTD:

<?xml version="1.0"?>
<!DOCTYPE greeting SYSTEM "hello.dtd">
<greeting>Hello World!</greeting>

• An XML document with embedded DTD:
<?xml version="1.0"?>
<!DOCTYPE greeting [
 <!ELEMENT greeting (#PCDATA)>
]>
<greeting>Hello World!</greeting>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 16

XML and Related Acronyms
• Document Type Definition (DTD), which defines the tags and their

relationships
• Extensible Style Language (XSL) style sheets, which specify the

presentation of the document
• Extensible Link Language (XLL), which defines link-handling details
• Resource Description Framework (RDF), document metadata
• Document Object Model (DOM), API for converting the document to a

tree object in your program for processing and updating
• Simple API for XML (SAX), “serial access” protocol, fast-to-execute

protocol for processing document on the fly
• XML Namespaces, for an environment of multiple sets of XML tags
• XHTML, a definition of HTML tags for XML documents (which are

then just HTML documents)
• XML schema, to offer a more flexible alternative to DTD

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 17

Document Type Definition
• The DTD specifies the logical structure of the document; it

is a formal grammar describing document syntax and
semantics

• The DTD does not describe the physical layout of the
document; this is left to the style sheets and the scripts

• It is no mean task to write a DTD, so most users will adopt
predefined DTDs (or can write an XML document without
a DTD).

• DTDs can be written in separate files to facilitate re-use.
• Content-providers, industries and other groups can

collaborate to define sets of tags.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 18

XML must be “well-formed”
• For the data contained in an XML document to be parsed

correctly, its markup must be well-formed, meaning that
properly nested and nonabbreviated starting and ending
tags are used.
– This well-formedness provides the encapsulation mechanism

allowing designated sections of the data to be accessed
programmatically.

– It is important to remember that XML is a markup language, not a
programming language

• Scenario #1: the server offers the XML document without
its DTD, the parser does a syntax check, and the DTD
follows if the XML document is “well-formed”

• Scenario #2: the server checks the XML document against
its DTD (“validity”) before sending the document to the
client

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 19

XML Example
• Another example which could be used for URL exchanges

between network capable applications:
 <LINK>
 <TITLE>XML Recommendation</TITLE>
 <URL>
 http://www.w3.org/TR/REC-xml
 </URL>
 <DESCRIPTION>
 The official XML spec from W3C
 </DESCRIPTION>
 </LINK>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 20

XML Example (cont’d)
• A document may have many such links:
 <DOCUMENT>
 <LINKS>
 <LINK>…</LINK>
 <LINK>…</LINK>
 …
 </LINKS>
 </DOCUMENT>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 21

XML Example (cont’d)
• Now write a DTD for this document:
 <!ELEMENT DOCUMENT (LINKS)>
 <!ELEMENT LINKS (LINK)*>
 <!ELEMENT LINK
 (TITLE,URL,DESCRIPTION)>
 <!ELEMENT TITLE (#PCDATA)>
 <!ELEMENT URL (#PCDATA)>
 <!ELEMENT DESCRIPTION (#PCDATA)>

• PCDATA stands for “parsed character data”

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 22

XML Example (cont’d)
• Store the DTD in a file (links.dtd) and write an XML

document based on this DTD:
 <?XML version="1.0"?>
 <!DOCTYPE DOCUMENT SYSTEM "links.dtd">
 <DOCUMENT>
 <LINKS>
 <LINK>…</LINK>
 <LINK>…</LINK>
 …
 </LINKS>
 </DOCUMENT>

• Note that you need an XML compiler to generate regular
HTML in Netscape browsers - Internet Explorer 5.0 has a
compiler built in.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 23

XML Prolog and instructions
• Every XML file starts with the prolog, giving information

about the document. The minimal prolog identifies it as an
xml document
 <? version=“1.0”?>

• The prolog may also include the encoding and whether it is a
standalone document:
<?xml version="1.0"
 encoding="ISO-8859-1” standalone="yes"?>

• If it is not standalone, it may specifiy external “entities”
which may be named in the document or an external DTD

• An XML file may also contain processing instructions for
the application processing the document:
 <?target instructions?>
where target is the name of the application.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 24

XML tag structure
• In XML terminology, a pair of start and end tags is an

element.
• XML documents allow only one root element.
• XML documents must have a strict hierarchical structure.

– All start tags must have an end tag.
– Any element must be properly nested within another.

 XML requires <I>proper nesting</I>.
• Empty tags are allowed as elements in XML documents.

– An empty tag is a start and end tag together and is identified by
a trailing / after the tag name.
XML requires empty tags, such as
.

– A start tag and end tag with nothing in-between can also be
considered an empty tag.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 25

XML tag details
• All attribute values must be within single or double quotes.

 quoted attribute

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 26

Syntactic details
• XML tags are case-sensitive. (<H1> is not the same as <h1>.
• White space in the data between tags is relevant. But within

the markup itself and within quoted attribute values, white
space is normalized (removed).

• XML allows you to specify different character set encodings.
<?xml version=‘1.0’ encoding=‘UTF-8’ ?>

• Predefined entities:
– < replaced by <
– & &
– > >
– ' ‘
– " “

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 27

Document Type Definition
• An optional, but powerful feature of XML that provides a

formal set of rules to define a document structure
• Defines the elements that may be used, and dictates where

they may be applied in relation to each other; therefore
specifies the document hierarchy and granularity

• Comprises a set of declarations that define a document
structure tree

• Declarations stored either at the top of each document that
must conform to the rules, or alternatively, and more
usually, in separate data files, referred by a special
instruction at the top of each document.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 28

Document Type Definition
• Each DTD element must either be a container element, or

be empty (a place holder). Container elements may contain
text, child elements, or a mixture of both.

• DTD also specifies the names of attributes, and dictates
which elements they may appear in. For each attribute it
specifies whether it is optional or required.

• DTD tree describing a book as containing a number of
Chapter elements, with each chapter containing either a
number of Paragraph elements, or a single Sections
element

• A particular document tree has a node for each actual
chapter and paragraph present, and may omit some of the
optional elements

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 29

DTD definitions
• A DTD allows you to create new tags by writing grammar

rules which the tags must obey. The rules specify which
tags and attributes are valid and their context.

• A DTD element declaration looks like:
<!ELEMENT person(name, email*)>
– ELEMENT is the type
– person is the element declaration
– (name,email*) is the element content model
– name and email are the children of person and define the

hierarchy of the document.
– Note that this is called a grammar rule because it could

have been written in BNF: person ::= (name, email*)

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 30

Document Type Definition
• Each declaration must follow markup format <!…>, and

can only use the one of the following keywords:
– ELEMENT (tag definition)
– ATTLIST (attribute definitions)
– ENTITY (entity definition)
– NOTATION (data type notation definition)

• Declarations are grouped within a DTD
<!DOCTYPE MYDTD [
<!-- The MYDTD appears here -->
<!……>
]>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 31

Document Type Definition
• Declarations stored externally and shared by different

documents linked as:

<!DOCTYPE MYDTD SYSTEM “EXTRNL.DTD” [
<!-- Some of MYDTD appears here -->
<!……>
]>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 32

Element Declarations
• Keyword ELEMENT Introduces a new element
<!ELEMENT title ………>

• Element name must begin with a letter, and may
additionally contain digits and some punctuations, i.e. ‘.’, ‘-
’, ‘_’, and ‘:’

• If an element can hold no child elements, and also no text,
then it is known as empty element and denoted by EMPTY

• An element declared to have a content of ANY may
contain all of the other elements declared in the DTD

• <!ELEMENT p ANY>
<!ELEMENT image EMPTY>

• Empty element usage:  or
<image/>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 33

Element Declarations
• A model group is used to define an element that has mixed

content or element content.
• A model group is bounded by brackets, and contains at

least one token.
• When a model group contains more than one content

token, the child elements are controlled using two logical
connector operators; sequence connector ‘,’, and choice
connector ‘|’

• <!ELEMENT element1 (a, b, c)> indicates a is followed by
element b, which in turn is followed by c.

• <!ELEMENT element2 (a | b | c)> indicates either one can
be selected.

• Combinations are possible: (a,b,(c|d)), or ((a,b,c) | d)

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 34

Element Declarations
• Quantity indicators can also be used.

– ‘?’ indicates an element is optional or cannot repeat
– ‘+’ indicates an element is required and may repeat
– ‘*’ indicates an element is optional, and also repeatable

• Document text is indicated by the keyword PCDATA
(Parsable Character Data)

<!ELEMENT emph (#PCDATA|sub|super)*>
<!ELEMENT sub (#PCDATA)>
<!ELEMENT super (#PCDATA)>
<emph>H₂0 is water.</emph>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 35

Attributes
• The rules for attribute declarations follow a similar

structure to elements.
<!ATTLIST person gender (male|female)#IMPLIED >
– ATTLIST is the type
– person is the element
– gender is the attribute declaration
– (male|female)#IMPLIED is the attribute definition

• The keywords following an attribute definition can be
– #IMPLIED attribute is optional
– “unknown” string in quotes is the default attribute
– #REQUIRED attribute is required
– #FIXED if attribute is present, it is assigned a fixed

value

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 36

Attribute Types
• Enumerated types

 (male|female|unknown)
• CDATA type is character data - may include markup

<!ATTLIST form method CDATA #FIXED ‘POST’>
• Tokenized types include the following tokens with special

meanings:
– ID requires that the attribute have a unique value
– IDREF is rquired to match an ID attribute within the same

document

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 37

Entities
• The DTD of an XML document can contain entity

declarations. These are like constants in other languages.
– An entity declaration specifies replacement text for the

entity including some macro-preprocessing capability.
<!ENTITY % pub “Éditions Gallimard”>
<!ENTITY rights “All rights reserved”>
<!ENTITY book “La Pest: Albert Camus, &#sA9; 1947
 %pub; . &rights;”>

– This entity would have replacement text for book:
La Peste: Albert Camus, c 1947 Editions Gallimard.
&rights;
where c would be copyright symbol, and E has accent
mark.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 38

XML Example - the DTD
• Create a DTD file for an address book named “ab.dtd”
• <!ELEMENT addressBook (person)+>
• <!ELEMENT person (name, email*, link?) >
• <!ATTLIST person id ID #REQUIRED >
• <!ATTLIST person gender (male|female)#IMPLIED >
• <!ELEMENT name (#PCDATA|(family,given))>
• <!ELEMENT family (#PCDATA)>
• <!ELEMENT given (#PCDATA)>
• <!ELEMENT email (#PCDATA)>
• <!ELEMENT link EMPTY >

<!ATTLIST link manager IDREF #IMPLIED
 subordinates IDREFS #IMPLIED >

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 39

XML Example - the XML document
• <?xml version="1.0"?>

<!DOCTYPE addressBook SYSTEM ”ab.dtd">
<addressBook>
 <person id=“B.WALLACE” gender=“male”>
 <name>
 <family>Wallace</family> <given>Bob</given>
 </name>
 <email>bwallace@megacorp.com</email>
 <link> manager=“C.TUTTLE”/>
 </person>
 <person id=“C.TUTTLE” gender=“femail”>
 <name>
 <family>Tuttle</family> <given>Claire </given
 </name>
 <email>ctuttle@megacorp.com</email>
 <link subordinates=“B.WALLACE”/>
 </person>
</addressBook>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 40

Additional XML/DTD Topics
• Encoding, internalization and languages
• Entities: Internal and External, the constants and macro-

processing of XML
• Processing instructions - allow documents to contain

instructions for applications
• W3C is considering draft proposals for schemas that

would allow you an easier syntax to write DTD grammar
rules.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 41

Extensible Style Language
• XSL is to XML as Cascading Style Sheets (CSS) are to

HTML
• Like a CSS, an XSL style sheet describes the presentation

of the XML document
• Advanced layout features of XSL include: rotated text,

multiple columns, and independent regions
• Development of XSL lags behind XML - currently a

Working Draft of the W3C.
• Content of XML documents is intended to be easily read by both

people and software, but raw XML data is not suitable for viewing by
people who are not interested in structure.

• To publish information held in XML format it is necessary to replace
the tags with appropriate text styles.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 42

Document Formatting (XSL)
• A style rule is used to assign a style to a particular XML

element.
• It is possible to embed a style rule within an attribute:

<p xsl::font-size=“9pt” xsl::color=“blue”>A blue, 9pt
paragraph.</p>

• The problem with this approach is that the rule must be
repeated each time the element is used. The style sheets are
developed to solve this problem so that rules are grouped
together, and can be shared by multiple files.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 43

XSL Processing Overview
• In general, XSL first specifies how to process the source

tree to get a result tree.
• The pattern of a template rule is matched with the source

tree and replaces it with the template.
• The result tree is then processed with formatting to achieve

a document suitable for display, printing, speech or other
media.

• XSL and XML may have their own namespaces for rules.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 44

Document Formatting (XSL)
• General Structure

<?xml-stylesheet href=“article.stl”
type=“text/xsl”?>
<!DOCTYPE article ………>
<article>
…
</article>

• Each style sheet has a root element called xsl. It may
contain any combination of Rule and Stylerule elements.

• <xsl>
<rule>…</rule><rule>…</rule><stylerule>…</stylerule>
</xsl>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 45

Applying Styles to XML Elements
• The simplest XSL templates consist of HTML tags and

styles with references to the tags of XML document pieces
that should be formatted. For example, putting XML
elements tagged TITLE and ARTIST as elements inside a
table definition:
 <td><xsl:value-of select="TITLE"/></td>
 <td><xsl:value-of select="ARTIST"/></td>

• This could be repeated over many elements of the XML
document:
<xsl:for-each select="CATALOG/CD”>
<tr>
<td><xsl:value-of select="TITLE"/></td>
<td><xsl:value-of select="ARTIST"/></td>
</tr>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 46

XSL Control Structures
• Styles can be conditionally applied with if:

<xsl:if match=".[ARTIST='Bob Dylan']">
 ... some output …
 </xsl:if>

• Or with conditional choose:
<xsl:choose>
<xsl:when match=".[ARTIST='Bob Dylan']">
... some code ...
 </xsl:when>
 <xsl:otherwise>
 ... some code
</xsl:otherwise>
 </xsl:choose>

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 47

Extensible Link Language
• XLL supports simple links (like HTML) plus:

– Location-independent naming
– Bidirectional links
– External links
– N-ary hyperlinks
– Aggregate links and link types
– Transclusion

• XLL components: Xlink and XPointer

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 48

Uses of XML
• XML can be used as Electronic Data Interchange (EDI):

– Applications requiring client to mediate between two
heterogeneous databases

– Applications that attempt to redistribute processing load
from server to client

– Applications requiring client to present multiple views of
same web document

– Applications that perform or require detailed, domain-
specific search results

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 49

DOM
• The Document Object Model is a specification of the

representation of XML and other documents from the W3C
consortium.

• It is a platform- and language-neutral interface that allows
programs and scripts to dynamically access and update the
content, structure and style of documents.

• Document Object Model Level 2, Candidate
Recommendation, March 7, 2000.

• DOM consists of a set of core interfaces and also specialized
interfaces dedicated to XML, HTML, an abstract view,
generic stylesheets, Cascading Style Sheets, Events,
traversing the document structure, and a Range object.

• There are language bindings for several languages, including
JavaScript and Java, which has the package org.w3c.dom

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 50

SAX
• The Simple API for XML (SAX), aka Serial API for XML,

is a specification arrived at by a group related to W3C, the
XML Dev mailing list.

• While the DOM is the specification of an entire document,
the SAX API specifies how to process the document in a
serial order by giving processing methods (aka the callback
functions) for each node or element of the document.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 51

Java packages for XML
• javax.xml.parsers contains

– SAXParserFactory gives you a SAX parser
– DocumentBuilderFactory gives you a DocumentBuilder,
– The Document Builder can process XML to produce a

Document object or create an empty Document object..
• The factory API’s allow you to plug-in various vendor

parsers at run-time without changing the code. For
example, you can load
– com.ibm.xml.parser (IBM’s parser)
– com.ms.xml.parser (Microsoft’s parser)
– com.sun.xml.parser or com.sun.xml.ValidatingParser

• parsers can validate to various degrees depending on whether they
process all external entities

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 52

Starting the DOM process in Java
• Java X API:

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.DocumentBuilder;

• Parsing errors come from the SAX implementation:
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

• The W3C definition for a DOM and DOM exceptions:
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 53

Parsing the XML
• Get the parser

DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
DocumentBuilder builder =
 factory.newDocumentBuilder();

• The default is to get a non-validating parser. Add
configurations
 factory.setValidating(true);
 factory.setNamespaceAware(true);

• Run the parser:
Document document = builder.parse(**XML file**);

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 54

Document
• The Document interface is actually a child of Node and

inherits most of its classes for processing the document
from there.

• The Document interface itself has methods to create
various parts of the document:
– createElement, createAttribute, createCDatasection,

createTextnode, . . .
• and other methods such as

– getElementsByTagName, which returns a NodeList of all
the tags in order as you traverse the document.

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 55

The Node interface
• Has methods to give information about the node:

– getNodeValue, getNodeType, getNodeName, getAttributes
• It primarily has methods to traverse the tree:

– getParentNode
– hasChildNodes (returns Boolean)
– getChildNodes (returns a NodeList)
– getFirstChild, getLastChild, getNextSibling,

getPreviousSibling
• And also methods to update the tree:

– insertBefore, appendChild, removeChild, replaceChild

4/1/99 cps616xmlapril99 http://www.npac.syr.edu njm@npac.syr.edu 56

Recursively Process Tree
• Write a method that accepts a Node (and other args as

needed):
 void doTree(Node node, . . .)
 { if (! node.hasChildNodes())
 { process all leaf nodes according to node.getNodeType
 }
 else
 { NodeList l = node.getChildNodes();
 for (int i = 0; i<l.getLength(); i++)
 { doTree (item(i), . . .); }
 }
 }

