ASCI Distributed Resource Management

Requirements Version7d

March 23, 1999

Tri-Lab DRM Working Group:
LANL: Tom Klingner, Jerry Melendez, Ray Miller, Cheryl Wampler
LLNL: Brian Carnes, Gregg Hommes, Moe Jette, Clark Streeter, Bob Wood
SNL: Larry Ellis, David Evensky, Barbara Jennings, John Noe, Walt Vandevender

Statement of Purpose

The primary purpose of the Resource Management System (RM system) is to be able to distribute resources to users, or groups of users, within a parallel distributed computing environment. This environment may include many different classes of resources, machine types, and architecture's operating systems, etc. The environment may be multi-site. It is assumed that the RM system will have to control the use of the resources for both single node usage and for parallel usage spread over many nodes, and across sites. It is also assumed that the users will be organized within a political hierarchy which is capable of determining the relative rights of users or groups of users to access the resources. The RM system in itself will not determine the basis for distributing the resources, i.e. by political priorities or to maximize usage on the resources, etc. It must, however, provide the capability for each site to implement its own particular balance of policies in distributing the resources.

Definitions

D.1 ACCOUNT. An account is a mechanism for tracking resource usage. The resources consumed by each organization and its users on all machines must be tallied against some account. There is no necessary relation between accounts and any billing scheme. There is no implied relation between accounts and banks. A user may be associated with more than one account.

D.2 BANK. A representation of an organization's resource allocations or shares. Each bank's resources are a dynamically configurable portion of its parent bank's allocation or shares. Banks may contain as members, users or other banks in a hierarchical fashion. The purpose of banks is to control the rate of resource delivery to organizations and their users and to prioritize work within and between organizations. There is no implied relation between banks and accounts. A user may be associated with more than one bank.

D.3 BATCH USAGE. Computer usage by processes or jobs with which no terminal is associated. These processes or jobs are understood to be under the control of the batch controller.

D.4 DEFAULT ACCOUNT. The user may specify which account is to be associated with each of his jobs. A default account exists that is tallied for a job (batch or interactive) under the circumstances that no specific account has been designated for the job.

D.5 DEFAULT BANK. The user may specify which bank is to be associated with each of his jobs. A default bank exists from which resources are drawn for a job (batch or interactive) under the circumstances that no specific bank has been designated for the job.

D.6 FAIR SHARE OF ALLOCABLE RESOURCES. The delivery of resources to organizations and their users so that, over a short but significant time period (e.g., hours to days), no organization 1) is denied access to a substantial amount of or 2) is permitted to consume substantially more than its shares or its allocation for the period. (The smaller the sample period, the greater the permitted variance. The permitted variance is not rigorously defined.).

D.7 INTERACTIVE USAGE. Computer usage by processes or jobs not under the control of a batch controller. These processes or jobs are typically associated with a terminal. Processes or jobs initiated under the control of the CRON or SSH daemon are considered interactive.

D.8 PRODUCTION CONTROL. The process of managing the delivery of resources to the batch and interactive jobs run on behalf of organizations and their users.

D.9 RESOURCE. An attribute of a computer system that makes the system usable as a compute platform. Examples of resources include CPUs (nodes in an MPP), CPU time, memory integral, working set integral (for virtual memory machines), disk space integral, remote storage integral, network bandwidth (e.g. WAN, high speed interconnects between various manageable resources), visualization systems (e.g. viz pipes, theaters) etc.

D.10 RESOURCE ALLOCATION. The reservation of computer resources for an organization and its members. (The reservation may be subject to competition between organizations and users or may be dedicated, in which case the resource is not used if the organization to which it is dedicated does not use it.) The resource allocation basically defines a user's or an organization's right to access the resources. Reserved resources should be accounted and charged for even if not fully utilized.

D.11 RESOURCE CONTROL DOMAIN. The set of computer systems being controlled by the resource allocation system.

D.12 RESOURCE CONTROL PARTITION. A set of systems within a resource control domain. No system within the domain may be contained in more than one partition. Every system must be a member of a partition. Every domain must have at least one partition.

General Requirements

G.1 ADHERENCE TO DEFINITIONS. The objects managed by the distributed resource management system must be essentially as defined in the definitions section. It is understood that different terms may be used for these objects, however, the system must support the capabilities as defined.

G.2 PORTABILITY. The system must be portable to any computer running a POSIX compliant operating system. The system may take advantage of special features available on certain POSIX implementations, but must provide for the basic functional requirements on IBM SP, Silicon Graphics and standard POSIX platforms.

G.3 DISTRIBUTED MANAGEMENT. It must be possible to administer the entire resource control domain from any system in the domain. It is expected that a wide variety of compute platforms may be contained in a resource control domain including vector processors, massively parallel processors and workstations. Production control must span the entire domain. That is, a job is a domain object that may be targeted to run on a single system or a group of systems simultaneously. The production control system must support cross-system and multi-system job submission as well as non-specific job submission (e.g., "run on any vector processor" or "run on any machine"). The distributed resource management system must be capable of managing the resource down to the smallest unit of allocation.

G.3.a On being able to administer. Depending on the access control system used (DCE, kerberos, or other) various individuals who have administrative capability may not have access to any particular machine. It is also possible that, at a given time, a particular machine may be unavailable. So the administrators should not be restricted to a particular machine or some subset of the domain in order to perform their functions.

G.4 HIGH RELIABILITY. It must be possible to provide redundant hardware and shadowed databases to ensure a high level of system reliability. Failure of the resource management system must never cause the failure of a user's job or of a system in the resource control domain. In the event of a system instability or deadlock administrative staff must be able to gracefully recover to avoid failure of the DRM system
.

G.5 PERSISTENCE. The system must have mechanisms that cause it to be restarted on failure where appropriate. Catastrophic failures that preclude automatic restart by their nature, after repeated attempts or after some time period should be reported to operations immediately upon detection. Detection of such failures must be within seconds.

G.6 DETAILED EVENT LOGGING. All significant events taken by the system must be logged. Each log must be time stamped. There must be the ability to dynamically set a debug level that determines the type of logging done.

G.7 MANAGEMENT TOOLS. There must be a graphical, X-windows interface to enhance the system's ease of use for users and managers. There must also be a command-line interface consistent with the UNIX environment. There must be mechanisms that support bulk updates of the databases. For instance, when installing the system the system administrator must be able to easily upload the entire database of users, shares, etc.

G.8 CHECKPOINTING. The RM system must be capable of utilizing operating system supported checkpoint mechanisms where available (e.g. Cray Research's Unicos) for greater job control flexibility. On other systems, alternate checkpoint mechanisms must be provided where possible (e.g. Condor's library based checkpointing). The RM system must automatically checkpoint jobs in order to satisfy system scheduling requirements and automatically restart those checkpointed jobs when sufficient resources are available for doing so.

G.9 CONCURRENT SCHEDULING. The RM system must be capable of concurrently scheduling resources including network bandwidth
 for a job spanning multiple computers and computer types. The RM system must interoperate with the gang scheduler on systems providing for concurrent execution of a parallel program's tasks and the time-sharing of those tasks across multiple heterogeneous computer architectures and operating systems. Silicon Graphics' IRIX
, Cray Research's PscheD, and Digital Unix are examples of some of the systems offering concurrent scheduling options.

G.10 JOBS. The distributed resource management system must provide a means to declare a job such that the job can be globally recognized throughout the system. A job may utilize MPI (Message Passing Interface) or PVM (Parallel Virtual Machine) libraries to span multiple computers and computer types. A job must be accounted for and managed as a single entity including all processes associated with a job spanning multiple computers.

G.11 CONSUMERS. The RM system must provide a method to declare resource consumers, allowing hierarchical definition, sets, subsets, etc. It must be capable of recognizing a consumer across the resource control domain. Examples of possible consumers are organizations, persons, projects, or funding sources.

G.12 PROJECTS. The RM system must provide a method of declaring and globally recognizing projects. It must be capable of associating jobs with a project across the resource control domain.

G.13 SECURITY. The distributed resource management system must conform to the security requirements of the environment in which it will be operating. This environment will include DCE authentication using the GSSAPI binding to DCE. While the resource control domain may contain computers lacking DCE support DCE credentials must be supported where possible. Batch jobs should be initiated with freshly renewed credentials. Vendor will document mechanism providing DCE support. Jobs submitted from a computer in one DCE cell and ultimately executed in another DCE cell should use DCE for mapping user ID's and credentials from one cell to the other.

G.14 SYSTEM EFFICIENCY. The RM system should utilize a minimum of resources in the computing environment and enable the resources to be used as efficiently as possible within the political context.

G.15 SYSTEM DEFAULTS. There must be reasonable defaults throughout so that various decisions required from managers and users can be inferred implicitly.

G.16 TURNING OFF RESOURCE MANAGEMENT. The RM system must be capable of being turned off without de- installation. It must also provide an easy means of being restarted, retaining its previous configuration and status. Subsystems which impose machine overhead on the production computational servers, such as the real-time accounting subsystem, must be able to be turned off and restarted independently of the RM system as a whole (it is realized that this will most likely effect the efficiency or accuracy of the RM system). In addition, certain subsystems may need to be turned off on sub-domains independent of other sub- domains. This functionality is needed for cases where benchmarking is being performed on the resource or on a sub-domain of the resource, or the total capability of the resource is needed.

G.17 OVERRIDE MECHANISMS. In general, all parts of the RM system shall provide override mechanisms for use by the system administrators. Override capability should be provided to queue/bank managers for the part of the system under their jurisdiction.

Production Control Requirements

P.1 RESOURCES. The RM system must provide a method to declare and manage a set of resources and their properties, which includes as a minimum:

MPPs

· Number of processors

· Number of nodes

· Processor groups

· Shared/dedicated processors

· Memory per processor (May vary within an MPP)

· Processor performance (May vary within an MPP)

SMPs

· Number of processors

· Processor groups

· Shared/dedicated processors

· Addressable memory per SMP

Clusters

· Number nodes

· Processor groups

· Type of nodes

Viz

· Visualization pipes (e.g. SGI’s IR pipes) within a visualization server for local Theater displays or remote frame buffer use

· Local theater visualization displays

Memory

· Hierarchy

· Shared/dedicated

Scratch disk space

· Local

· Remote

Network Bandwidth

· Local area network

· Wide area network

· Control and allocation of network adapters within clusters of SMPs

Archival Storage

· Capacity

· Bandwidth

 Standard kernel threads should be handled just like processes by a DRM system in that processors should be allocated as requested by the user for processes and/or threads alike and the user's job should be restricted to those processors requested regardless of whether the user is using individual processes on them, or multiple threads within a single process, or some combination of the two.

A feature was requested to have a DRM system allocate scarce system resources such as exclusive/controlled access to network adapters or network adapter resources. It would allocate these resources to jobs that request them (or to individual processes that are part of such jobs). This was driven by shared use of the limited ports/buffers on HiPPI boards, but is likely to be an issue with any other low level (OS Bypass) access to any network interface card. This allocation may not even have to be enforced, but as long as the DRM could allocate the resources and inform the process of what resources it was granted.

P.2 RESOURCE AVAILABILITY. The RM system must have the capability to dynamically collect and maintain complete information on the status of all the resources under its control at all times, so that the current pool of unused resources is known at all times.

P.3 MULTIPLE ENVIRONMENTS. The RM system must be capable of managing the domain such that various system components that comprise the domain can simultaneously accommodate different types of run-time environments, including, but not limited to, development, production, dedicated benchmarking, a primary mix of single-node jobs, and a primary mix of multi-node parallel jobs. This capability must be flexible enough to allow a rapid transition from one run-time environment to another, by machine or by a subset of the total resource. It should be capable of configuring run-time environments on an automated basis, such as by time and day of week. It must manage this transition in a graceful manner with no loss of jobs during the transition. Note that this capability does not imply separation of users and/or files by "need-to-know" for security.

P.4 CONTROLLING INTERACTIVE USAGE. The RM system must provide a means of controlling interactive usage and assuring that given percentages of the resource allocated to users and banks are maintained. The RM system must be capable of assuring that interactive work will not interfere with parallel batch jobs when necessary, while allowing interactive work to be performed with that provision. The RM system must allow flexibility in how the interactive and batch workload is managed, including the ability to vary in real time the portion resources available to the interactive workload. The intent of this is to have the ability to provide greater interactivity during normal working hours and greater batch throughput at other times.

P.5 BATCH SYSTEM. The production control system must contain or use a batch system (such as NQS, LSF, LoadLeveler etc.) that permits the controlled delivery of resources to batch jobs. The underlying batch system must support or, at least allow, the implementation of all production control and resource allocation requirements. In particular, the batch system must not impose scheduling behavior contrary to these requirements. The batch scheduler must provide, as a minimum, the following functionality to the DRM, preferably through an API:

· Submit a job on behalf of a user

· Modify a job

· Delete a job

· Obtain the status of a job

· Begin execution of a job immediately

· Checkpoint a job (where supported by the operating system or system software)

P.6 SCHEDULING POLICY MODULE INTERFACE. There must be a scheduling policy module interface through which a site is free to develop its own scheduling policy module. The result of any policy module is a list of jobs with assigned priorities in priority order. The scheduling policy module must not actually schedule jobs.

P.7 DEFAULT SCHEDULING POLICY MODULE. There must be a default scheduling policy module for those sites that do not wish to develop their own. This default policy module must be easily disabled and replaced. The default policy module must be capable of assuring that no jobs are indefinitely blocked from being scheduled.

P.8 BATCH SCHEDULING MODULE. There must be a batch scheduling module that schedules jobs on the machine. The scheduling module maintains a load on the machine according to the prioritized list of batch jobs generated by the scheduling policy module. The scheduling module must be able to checkpoint low priority jobs when warranted by high priority job resource demands.

P.9 FAIR SHARE DELIVERY. There must be selectable means as a part of the default scheduling policy module whereby resources or shares allocated to a bank and its users can be delivered on a fair share basis. Fair share may be implemented via decay mechanism for a resource usage record.

P.10 QUOTA BASED DELIVERY. There must be a selectable means as a part of the default scheduling policy module whereby resources allocated to an bank and its users can be delivered on a quota basis. An organization must be able to deliver resources on a fair share basis simultaneously with delivering on a quota basis if it so chooses.

P.11 PERIODIC QUOTAS AND QUOTA REFRESH. A resource quota may be for specified periods including "weekly", "monthly", "quarterly", "semiannually" and "annually", or "none" meaning the quota is not time dependent. Given a quota and its period of application, there must be a base within the period at which quota refresh occurs. (For instance, if the quota period is "weekly", then the base must be a day of the week on which the quota refresh will take place.) The quota update interval should be configurable independently for each account.

P.12 USER PRIORITIZATION OF BATCH JOBS. There must be a means as a part of the default scheduling policy module whereby users may prioritize their own jobs in the workload.

P.13 PRO-ACTIVE DELIVERY OF RESOURCES USED IN BATCH MODE. Resources must be delivered in accordance with priorities established by the policy module. The highest priority work on the system should receive most of the available resources. This includes the capability to explicitly deny service to low priority jobs in order to allow higher priority jobs to execute. This must be accomplished in response to real-time workload changes such as the introduction of interactive jobs. If a user or bank is consuming resources at a rate exceeding their share, the resources allocated to their jobs will be decreased. The ability to impact resource consumption by currently executing jobs is required and might be accomplished through some combination of suspend/resume, nice value modification, and/or scheduling priority modification. [Note: The IBM SP does not support the suspend/resume mechanism for most parallel jobs.]

P.14 SCHEDULING CONSTRAINTS. The default scheduler must be capable of taking a wide variety of parameters into account in deciding which computers(s) to allocate a job to, including but not limited to number of users already using the computer, current memory load, total memory capacity, CPU power, available disk space, available swap space, current paging rate, network bandwidth, etc. The system must be able to place threshold limits on all the pertinent parameters, such that the computer is declared saturated when thresholds have been passed.

P.15 JOB RESOURCE REQUIREMENTS. There must be a way to declare/specify the resource requirements of a job.

P.16 USER-SPECIFIED JOB PARAMETERS. Users must be able to make parameter requests when submitting a job to the scheduler, such as for a specific machine or operating system, etc. The user should be able to designate a job parameter as "mandatory" or "preferred," where a job will not execute unless the "mandatory" parameters are satisfied, and "preferred" parameters will be honored if possible, but will not prevent the job from executing.

P.17 LOAD-LEVELING. Batch jobs must be run in such a manner as to help assure the efficient delivery of available resources. Idle time and system overhead should be minimized within the scheduling constraints. The distributed resource management system must also provide the capability for load leveling interactive work. It is highly desirable that the checkpoint mechanism used be capable of relocating jobs to balance the workload across all resources.

P.18 DYNAMIC CONFIGURABILITY. It must be possible to alter production scheduling tuning parameters while the production control system is running.

P.19 MATCH REQUIREMENTS TO RESOURCES. The resource management system must be capable of collectively considering the resource needs and requests of all jobs submitted to it, and making an intelligent mapping of the job needs to the resources available, under the constraints of political and other scheduling priorities.

P.20 HISTORICAL INFORMATION. The default scheduler must be capable of integrating historical usage information into its scheduling decisions in a flexible, configurable manner. For example, a job’s resource requirements not specified by the user (see P.15) should be estimated based upon historical usage patterns.

P.21 ANTICIPATION OF RESOURCE NEEDS. The default scheduler must be designed so that it is capable, if required, of accepting estimates of job resource requirements, and anticipating the effect of scheduling the job, both on workload of the total resource, and on the balance of bank allocations. For example, if it is desired that jobs not be scheduled until it is anticipated that they can run to completion without exceeding their owner's bank target resource allocation, the RM system should be capable of attempting to do this.

P.22 ACCUMULATING NEEDED RESOURCES. The default scheduler must be capable of making an evaluation as to when it should begin to refrain from scheduling new jobs on available resources, or only schedule jobs of short duration, for the purpose of accumulating sufficient resources to run a big job (high resource requirements). It must have a mechanism for accumulating the required resources.

P.23 PRE-EMPTIVE SCHEDULING. The default scheduler must allow the preemption of currently executing jobs. The mechanism of preemption should be configurable by computer. Possible preemption mechanisms include: suspension, checkpoint, and termination.

P.RESOURCE LIMITS. The default scheduler must permit the imposition of resource limits on jobs, both by the system administrator and by the user. This provides a mechanism to limit resources consumed by rogue jobs. The response upon reaching a resources limit must be configurable. Consideration should be given to the implementation of both "hard" and "soft" time limits. Resource limits can provide an estimate of the system and/or bank impact of scheduling a job, as well as provide a means of identifying rogue jobs. User specified signals should be sent to the job upon reaching the "soft" and "hard" time limits.

P.25 MEMORY USAGE. The default scheduler must be capable of incorporating current memory usage statistics into its scheduling decisions.

P.26 QUICK TURN-AROUND. The default scheduler must have a mechanism for allowing quick turn-around jobs, such as for production debugging.

P.27 JOB DEPENDENCIES. Often, users will run a series of jobs, where the input of one job is dependent on the output of a previous job. If the first job fails for some reason, it may be undesirable to attempt to run the second job. And it is imperative that the jobs run in the correct order, as well. It is therefore important to be able to specify that jobs run in a certain order, and that the outcome of one job be able to affect the initiation, or non-initiation, of another.

P.28 JOB SUBMISSION. The system should allow flexibility in the manner of submitting a job. It should be possible to submit a job directly on the command line, or indirectly, through the script of another job.

P.29 OUTPUT. The RM system must provide a means of preserving STDOUT and STDERR. It should be possible to automatically move STDIN, STDOUT, and STDERR between the computer used for job submission and the computers used for the job's execution.

P.30 FILE ACCESS. The RM system must provide a means of assuring that jobs will have access to the files they need to run. This may be done by considering physical file location as a submission parameter, or by integrating with a distributed file system which allows the files to be globally accessible.

P.31 JOB ABORTION. The RM system must provide a means to gracefully terminate all components of a job. It is acceptable that this requires some implementation within the code of the users, such as signal trapping, linking to a library, etc. This type of termination may be used for sub-domain reconfiguration, shift changes, or preemptive scheduling.

P.32 CLEARING SYSTEM WORKLOAD. It is sometimes necessary to take a system down in such a manner that all jobs currently running on the system will be lost. It is often possible to predict when this will occur. In order to both avoid letting the system go completely idle ("dry up") and to avoid starting jobs whose predicted duration will almost certainly assure that they will not be able to complete prior to the scheduled event, it is useful if the job set can be temporarily restricted to those jobs whose predicted duration is appropriate.

P.33 USER CONTROL OF BANKS AND ACCOUNTS IN BATCH MODE. Each job must have assigned to it a bank from which resources are to be drawn and an account that is to be tallied for resources used by the batch job. If not specified by the user at job submission, the user's default bank and account are assigned to the job. If the user has no default bank or account and does not specify the bank or account, the submission must be denied. The user must have the ability to change the account tallied and/or the bank from which resources are drawn at any time while the job is not running. In systems that support checkpointing, the user must be able to hold the job, change the account and/or bank for the job, and then have the job rescheduled.

P.34 PRIORITY SERVICE LEVELS. The site must be able to configure systems within the control domain into various levels of service priority. As a minimum, four levels of service priority must be supported, including “normal”, “high”, “urgent”, and “standby.”

P.35 USER-SPECIFIED PRIORITY-WEIGHTED SERVICE LEVELS. The user must be able to specify the relative importance of each job. There must be a way to relate the relative importance to the level of service each job receives. Users may specify a desired deadline for job completion. The range of priorities should be quite wide, preferably spanning a factor of ten or more. The priority would normally be a function of nice (BSD) or UNIX priority (AT&T) value.

Resource Allocation Requirements

R.1 ALLOCATION HIERARCHY. The user allocation system should operate hierarchically, such that organizational subsets can be prioritized. It must be capable of keeping track of all user's or groups of user's rights to have access to the resources (user allocation), down to the smallest allocable unit, at any given moment of time, according to the bank hierarchy and priorities of the bank. The allocation hierarchy should be capable of providing input into the assigning of resource fractions to consumers individually or collections of consumers.

R.2 FEEDBACK OF USAGE STATISTICS. The allocation system must be capable of adjusting its estimation of a user's or a group of user's right to use the resource based on feedback of current and historical usage, both for interactive and batch jobs.

R.3 RESOURCE ALLOCATION SCHEMES. A fixed allocation quota scheme must be supported. The quotas may be refreshed manually or through a periodic mechanism. A fair share scheme that uses half-life decay of usage must also be supported. This will distribute resources as desired while preventing banks from exceeding their spending limits.

R.4 INDEPENDENT ALLOCATIONS. The resource allocation system must support the independent allocation of resources to at least 500 banks. Each bank has zero or more members and one or more managers, who may or may not be a member of the organization. It must be possible to support an environment in which more than one bank is permitted to give allocations to the same user. At least ten (10) levels must be supported within the bank hierarchy, and at each level of the bank hierarchy, several hundred (200-500) members must be supported.

R.5 RESOURCES ALLOCATED. The production staff must be free to determine which of a defined set of resources are allocated. The defined set of allocable resources (as of this writing) are: CPU time, memory integral, working set integral (virtual machines only), on-line storage integral, and remote storage integral.

R.6 PERSISTENCE OF ALLOCATIONS. Once an allocation is made, the system must leave it intact without modification until changed by a manager. In other words, resource allocation depletion must not be implemented in such a way as to cause an allocation to "disappear."

R.7 DEFAULT BANKS AND ACCOUNTS. Each user must have a specifiable default bank and a specifiable default account. If a user logs in and does not have a default account or a default bank, then either service must be denied or the user must have access only to a restricted shell which prevents substantial resource usage.

R.8 SCALED RESOURCE ALLOCATION DEPLETION/USAGE DECAY. The site must be able to scale resource depletion or usage decay on a per platform basis.

R.9 PRIORITY WEIGHTED RESOURCE ALLOCATION DEPLETION/USAGE DECAY. Each bank must be able to increase or decrease in real time the relative availability of resources to its individual members. (Note that no bank manager can alter the relative availability

R.10 DYNAMIC CONFIGURABILITY. It must be possible to alter the types of resources allocated and controlled and their relative weights without the loss of existing resource usage records. It must be possible to establish or eliminate users, organizations and projects or to grant, alter or remove allocations while the resource allocation system is running. It must be possible to disable a user's access to resources without removing all information about that user from the system.

R.11 QUOTA UPDATE. A manager for a bank must be able to portion out the organization's quota at a rate and extent desired by the manager.

R.12 ORGANIZATIONAL CONTROL OF ALLOCATED RESOURCES. The managers must be able to control a bank's allocated resources. This control includes the re-allocation of resources to an arbitrary structure of sub-organizations, projects, and individual members. Allocation to a sub-organization or project is done via the creation of a bank subordinate to the manager's top level bank. The system must support the ability of an organization to permit any user to consume his portion of the allocation within this arbitrary structure. An organization may, without requesting any services or assistance of the center, 1) target any portion of its allocated resources exclusively to any sub-bank or member and 2) allow any remaining portion of its allocated resources to be competed for by any of its sub banks or members at the organization's sole discretion. Within the organization's sub-banks and user allocations, the manager must be able to set priority weighted resource depletions and the percentage of unused resource carry-over.

R.13 USER CONTROL OF BANKS AND ACCOUNTS. Each user must be able to set his default bank and default account to any bank or account to which he has access. A user must be able to change the currently active bank and account at any time during the execution of an interactive job. Changing the bank or account of one interactive job must have no effect on any other job owned by the user.

R.14 GRACEFUL DENIAL OF SERVICE. There must be mechanisms by which users or organizations who have temporarily depleted their access to resources shall be denied service in a graceful fashion. Denial of service must not be mandatory. Means of denying service may include, but are not necessarily restricted to:

· Increasing the nice value of processes thereby reducing their service level

· Increasing the scheduling priority of processes thereby reducing their service level

· Suspending processes and/or jobs

· Checkpointing and halting processes and/or jobs

· Continue computer use in a restricted shell permitting limited access

R.15 USER-CONFIGURABLE SCHEDULING PRIORITY. Users must be allowed the option of voluntarily changing their priority to other than that which the political allocation would justify. The system should allow a user to be able to be nice to the other members of his organizational unit, without losing the advantage to other organizations on the system.

R.16 INTERFACE TO USAGE STATISTICS SUBSYSTEM. The interface to the usage statistic collecting subsystem must be generalized so that alternative statistic collecting mechanisms can be substituted. If the native operating system has the capability to collect adequate statistics (as in UNICOS), the RM system must be capable of using this information, and must not mandate a redundant statistic collection mechanism. In any case, it must be available as an option to turn off statistic collection, and continue to use the user allocation subsystem with the standard UNIX accounting usage statistics. It is understood that the granularity in this case will not be greater than the interval between accounting runs, and the general accuracy and functionality of the system will be reduced. The generalization of the interface between the resource allocation subsystem and the usage collection subsystem must also allow for the substitution of an alternative resource allocation subsystem if desired.

R.17 OVERSERVICE/UNDERSERVICE. The user allocation mechanism must be capable of measuring the concepts of a user being "overserviced" and "underserviced." The RM system must be able to maintain a long-term balance between the amount of resource due to a user and the amount he receives, while allowing short term adjustment to fluctuating workloads by allowing a user to be temporarily overserviced or underserviced.

R.18 MAINTAINING BALANCE OF ALLOCATIONS. The RM system must be configurable in the method and level of granularity used in maintaining the balance of user allocations in distributing the resources. The response when a user is ahead of his allocation must be configurable. The system must be capable of withholding the distribution of resources to a user until it is anticipated that his job can be run to completion. In other words, the system must be capable of accommodating a policy of letting jobs run to completion with a minimum of interruptions, once they are scheduled, and still be able to manage allocations. Furthermore, the RM system must be configurable so that if so desired, a policy of allowing users to exceed their allocations can be accommodated, for example, when the resources are underutilized by other organizations.

R.19 COMMON DENOMINATOR TERMS. The RM system must provide a method to convert resource usage to common denominator terms - (money, System Resource Unit, priority service, etc.)

R.20 BANK MANAGERS. Each bank can have one or more managers. These managers are able to alter share allocations for the bank or descendents of that bank. These managers are able to add, remove, or relocate descendents of these bank.

R.21 RESOURCE CONTROL PARTITION USE. Independent resource allocations, resource quotas, and parent banks shall be supported for each resource control partition. This may be accomplished with independent RM servers provided support to synchronize creation of banks, users, bank managers, etc.

Accounting, Tracking, and Usage Statistics

A.1 POSITIVE IDENTIFICATION OF RESOURCES USED. For each quantum of resource managed by the RM system used, it must be possible to identify the user who used or reserved it, the system(s) on which it was used, the raw amount of each resource used, the priority at which it was used, the period of time in which the resources were used, the account tallied, and the bank from which resources are drawn. This information must be tracked in near-real time. It is not sufficient to record resource utilization on process completion. It must be possible to generate reports of resource usage within minutes (for reports restricted by user or bank) or hours (for complete system-wide reports). Upon process termination the following information should be recorded: process ID, computer ID, global job ID, and process name, as well as the utilization information above.

A.2 ACCOUNTING SUPPORT. There must be mechanisms by which accounts may be defined and organizations and/or users granted permission to tally accounts for resources used. There must be means by which an organization that will be charged for an account may allow any of its users to tally against the account. In addition, an organization must have the ability to allow users who are not in the organization to tally the account as well. (This requirement is a stipulation that tallies for resource usage must be independent from the allocation and delivery of resources.) The resource management system must support specifiable limits for each supported resource type, but must also support the concept of unlimited accounts, either for individual resources or for the total tally. In addition, each resource type must have a configurable weighting factor. This weighting factor is multiplied against each raw tally to the account for the appropriate resource type.

A.3 ACCOUNTING REPORTS. The system must report resource usage by account, bank and user. Each accounting record must contain the types of resources used or reserved during specifiable quanta of resource usage. That is, a site may stipulate that a record be written for each 60 seconds of CPU usage and 500 Megabyte-seconds of memory usage by a job. This would cause the system to generate an account usage record for each job on the system each time that job had accumulated either 60 seconds of unreported CPU usage or 500 Megabyte-seconds of unreported memory usage, which ever came first. It must be possible to examine resource usage during any time period.

A.4 ACCOUNTING AND USAGE REPORTS MUST RECONCILE. Resource usage as reported by the resource control facilities must reconcile with account tallies generated by the accounting facilities.

A.5 REPORTING OF ALL REPORTABLE MACHINE USE. All resources consumed must be attributed in near-real time. This includes resources consumed by the kernel, root processes, daemons and all other processes including the idle processes. Resources consumed that can not be affirmatively attributed to some user must be reported as consumed by "unknown." Such unaccounted for resource usage must be minimized.

A.6 SAMPLING RATE. The sampling rate for accounting and usage statistic collecting must be configurable.

A.7 JOB STATUS. The RM system must be capable of identifying a job from user submission, through the execution of the job on multiple resources, to explicit deletion from the system (which may be automated according to site policy). The system must be capable of attributing all resource usage to the owner of that job entity, regardless of the distribution of the resources used. The system must be capable of displaying complete information about the job and its current state in the system to the user at any time during its progress from submission to deletion. If the job is waiting for execution, the reason(s) it can not currently execute on any of the possible compute servers must be available to the user. The RM system must retain historical records of jobs handled through the scheduler, and be capable of generating reports in site-defined formats.

A.8 QUEUE OR POOL STATUS. The RM system must provide a mechanism for the user to view complete information on the status of whatever mechanism is being used to hold pending jobs (queues, wait pools, etc.).

A.9 MACHINE STATUS. The RM system must provide a mechanism for users and system administrators to view complete information on the status of any resource in the system. It must also be capable of retaining historical records of status and generating reports when needed.

A.10 USER STATUS. The RM system must provide a mechanism for viewing user status within the system, including permissions, banks available for use, shares, usage, and any other user information that is pertinent to resource management.

A.11 SYSTEM STATUS. The RM system must be capable of displaying complete, current information on the total resource, including all information relevant to production and resource management.

A.12 END-OF-JOB REPORT. The RM system should be capable of returning a report to the user upon completion of the job, if desired, including a statement on the amount of resources actually consumed.

�PAGE \# "'Page: '#'�'" �Page: 3���Just to express my worries: the global system, using local schedules in some cases will run a serious risk of deadlocks. There may also be the possibility of feedback loops, etc. that will result in complex behavior leading to severe instabilities.

�PAGE \# "'Page: '#'�'" ��Mo Jette would prefer to strike this out…..

�PAGE \# "'Page: '#'�'" ��What is this? I couldn’t find it on the sgi page, do you mean IRIX?

