
SWC: A Small Framework for WebComputing

Kevin Ying, David Arnow, and Gerald Weiss
Brooklyn College, CUNY
Brooklyn, NY 11210, USA

{kevin,arnow,weiss}@sci.brooklyn.cuny.edu

PAPER TYPE: Extensive

SECTION: (3) System Software & Hardware Architectures

The advent of the Java programming language, with its support for web-deliverable

applets, has created a new, promising though peculiar parallel computing platform that some call

WebComputing. The essential idea is that a master server, or collection thereof, in league with a

collection of web servers coordinates the execution of tasks by applets running in parallel on an

ever-changing set of unreliable, heterogeneous client machines. The promise of WebComputing is

the potential for achieving an unheard-of degree of parallelism — in principle, a computation

could harness every computer that is connected to the Internet. There have been a number of

ambitious projects, including Charlotte [BKKW,96], Javelin [CCINSW,97], and Bayanihan

[Sarmenta,98], that have explored this platform.

SWC is a small framework, originally developed as a tool for students, that simplifies

developing and deploying WebComputing applications.

The framework supports a form of “worker” parallelism, suitable for WebComputing. A

master process defines an initial set of tasks and integrates the results of those tasks, possibly

defining new tasks along the way. The tasks comprising the computation are defined by

lightweight data objects, carried out by workers (applets), and generated dynamically by both the

master and the workers themselves. The master can also broadcast control information to all

workers. Workers do not communicate directly with each other - they simply return results of

tasks and request new ones to carry out.

To use the framework, an application programmer must extend a framework-defined set of

abstract classes. These classes define the task computation, the master’s actions, the data needed

to define a particular task or result, a mechanism for recognizing task equivalence, and a

mechanism for recognizing task completion. Using these classes, the framework itself oversees

the entire computation and handles all communication.

Two implementations of SWC are provided. One is thread-based and runs on an SMP

platform; it serves as development environment when a web-based one is not available or is

inconvenient. The other implementation is our main purpose. It actually uses WebComputing. It

consists of a multithreaded, servlet-enhanced HTTP server that provides an application control

page, creates the master process, downloads the applets and handles all communication. It also

provides the classes that define, for both the master process and the applets, their computational

structure and their communication tools.

An SWC computation is initiated using a form in a web page provided by the server. A

servlet responds by creating the necessary objects within the HTTP server along with an external

master process. The master process and the server communicate using TCP and need not reside on

the same machine. The master process, using programmer-provided classes creates an initial set of

task definitions, which are sent off to the server. The server maintains a collection of task

definitions, and uses eager scheduling, as is commonly done in WebComputing, to assign them to

applets that have been downloaded into volunteering web clients. Because of the unreliable nature

of the applets themselves, the fact that the most obvious candidates for WebComputing will not

require large quantities of data to define tasks, and the desire to eliminate system-imposed limits

on the number of connections on the server as a potential bottleneck, server-applet communication

uses UDP. Because the server does not consider a task complete until the results are actually

received, lost packets do not compromise the integrity of the application. To avoid failure to

utilize an applet as a result of communication failure, applets use a timeout mechanism to

repeatedly send the server their most recent response until the server provides additional work or

instructs them to terminate.

As the server receives responses from applets it determines whether these are additional

task definitions, in which case they are added to its collection of task definitions, or results from

completed tasks in which case they are passed to the master. The latter may, in response, generate

new task definitions or control information for the server to distribute to the applets. Control

information is immediately broadcast to applets and made available to all future ones.

The SWC system provides a small framework for WebComputing. It has a

simple programming interface that WebComputing application programmers may simply

implement a number of predefined, application specific modules of the framework and

run their application.

[AISS,97] A.D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman, SuperWeb:
Research Issues in Java-Based Global Computing, Concurrency: Practice
and Experience, June 1997.

[BKKW,96] Baratloo, M. Karaul, Z. Kedem and P. Wyckoff. Charlotte: Metacomputing
on the Web, in Proceeding Of the 9th International Conference on Parallel
and Distributed Computing System, 1996.

[CCINSW,97] P. Cappello, B. Christiansen, M.F. Ionescu, M.O. Neary, K.E. Schauser and
D. Wu, Javelin: Internet-based parallel computing using Java, the Sixth
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 1997.

 [Sarmenta,98] Luis F. G. Sarmenta. Bayanihan: Web-Based Volunteer Computing Using
Java. 2nd International Conference on World-Wide Computing and its
Applications (WWCA'98), Tsukuba, Japan, March 3-4, 1998.

