

Bill Joy

Founder and Chief Scientist Sun Microsystems, Inc.

Java™+Jini™ Technology: Driving the Business of Innovation

Four Key Technologies

- Objects everywhere
- Spontaneous networks
- System on Chip
- Immersive Media

Goal From Java Language Spec Preface

• [The] Java ... language [is] specifically designed to have <u>as few implementation</u> <u>dependencies as possible</u>. Java language allows application developers to write a program once and then be able to run it everywhere on the Internet.

Goal From Java Language Spec Preface

• We intend that ... all implementations of Java technology will accept the same programs. **Except for timing dependencies or other** non-determinisms and given sufficient time and sufficient memory space, a Java technology-based program should compute the same result on all machines and in all implementations.

Java Technology: Key Technical Ideas

- A Better Language
 - Simplicity and C/C++ Compatibility
 Promote Fluency
 - GC and Threads Allow Software Components
 - Platform Independence Saves Time
 - Strong Typing Catches Errors Up Front
 - Declared Exceptions Forces
 Coverage in Code

Java Technology: Key Technical Ideas

- Scalable Applications
 - Threads for Parallel Speedup; Patterns "in the Large"
 - Dynamic Linking Allows Simple Apps to Grow
 - Range of Implementations from Java Card™ technology to Java HotSpot™ performance engine

Java Technology: Some Futures

- Soon: Volume Deployment in Non-PC Clients
 - Handhelds: Everybody's Personal Network Device
 - Screenphones: Net Access without Pain
 - Settops: Immersive Entertainment and Shopping
 - Can write @ 2x C++ w/ less bugs;
 Goal: 10x by 2005

Java Technology: Some Futures

- Enhancements for Specific Markets
 - Real-time Extensions for Embedded Systems
 - Parameterized Types in Language Catch Errors Early

Java Technology: Some Futures

- Numerical Programming Extensions Being Considered
 - Fused multiply-add, directed rounding and interval arithmetic
 - Support for new user-defined numeric types
 - Numerical exception handling

Jini Technology Vision: Simply Connect

- Moore's Law Driving To System-on-a-Chip
 - Embedded Devices: e.g. 100's in Cars
 - Personal Devices: e.g. Handsets
- Wired / Wireless Networks Will Be Ubiquitous

Jini Technology Vision: Simply Connect

- Allow Communities of Devices to Work Together
- Use Principles of Distributed Systems
- Design a Simple "BIOS" for Age of Devices

Jini Technology: Key Technical Ideas

- Each Device / Service Represented by an Agent
 - Defined as Java Type
 - Much Simpler than Specifying as a Network Protocol

Jini Technology Futures

- Continue Defining Standard Services
- Working on "Service Sets"
- Additional Layers / Class Libraries for
 - Agent Mobility
 - Rule-Based Context Triggers (Space / Time Aware)
 - Common Sense Reasoning about Context

Pico Vision: Deep Embedded

- Systems on a single chip
- Want Java/Jini technology for reliability/connectivity
- Want lowest area, cost, power
- Solution: Bytecode machine, Java technology support

Pico: Key Technical Ideas

- For systems on a chip, fraction of die
- Great for limited media systems
 - Device without media rich input/output
 - Embedded devices with local control, network only

Pico Today

- Evaluation boards available
- IP on the web
 - Under community source
 - Anyone can download
 - Universities can use for research
 - Several companies developing sys-on-chip

Java to a TeraOp: Immersive Media

- Moore's Law continues about 1000x more
 - Qualitative, not quantitative

'Any sufficiently advanced technology is indistinguishable from magic'

Arthur C. Clarke

Java to a TeraOp: Immersive Media

- Inexpensive media-intensive systems possible
- Conventional system architectures
 - Expensive (per chip compared to, say, DRAM)
 - Limited performance on immersive applications

Java to a TeraOp: Key Technical Ideas

- Simple Architectural Step-Repeat
 - Multiple identical functional units
 - Multiple processors on a chip
- Inexpensive
 - Keep CPUs small so can have many per chip

Java to a TeraOp: Key Technical Ideas

- Design for immersive applications / alogrithms
- Support rich set of media datatypes and operations
- Very simple design for very high clock rate

Java to a TeraOp: Applications

- Graphics accelerators
- Media-rich thin clients
- Interactive entertainment
 - Game machine, settops, arcade, theme park
- Real-time stream media processing

Enablers: New Business Practices

- Java Community Process
 - Stakeholders Define Platform, Audited Formal Process
 - See http://java.sun.com/about Java/ communityprocess/

Enablers: New Business Practices

- Sun Community Source License
 - Best of Proprietary and Open Source Models
 - Additional Right: Innovators can Profit, Responsibility: Compatibility
 - Source Code Easily Available, Fees for Commercial Use / Branding
 - See http://java.sun.com/products/ jini/licensing

Enablers: New Business Practices

- Jini Community (Competition)
 - Modeled after VISA (\$ Exchange):
 Object Exchange
 - See http://www.jini.org

Java Ones

Sun's 1999 Worldwide Java Developer Conference"