Tiger : Towards Object-Oriented Distributed
and Parallel Programming in Global
Environment

Youn-Hee Han, Chan Yeol Park, Chong-Sun Hwang, and Young-Sik Jeoung*

Department of Computer Science and Engineering, Korea University,
* Division of Computer and Communication Engineering, WonKwang University.

Abstract. Numerous attempts have been made at providing a Internet-
wide global computing infrastructure. Unfortunately, none of them presents
programming constructs related with object distribution, dispatching,
migration and concurrency, which provide maximum portability and high
transparency to a programmer. This paper proposes a World Wide Web
based global computing infrastructure called Tiger which supports nu-
merous participating machines and active objects. Tiger provides no-
ble object-oriented programming constructs supporting object distribu-
tion, dispatching, migration and concurrency. Tiger infrastructure and
the given programming constructs allow a programmer to easily develop
a well composing object-oriented distributed and parallel application us-
ing globally extended resources. To show the speedup achieved by Tiger,
a parallel genetic-neuro-fuzzy algorithm requiring much computational
time is experimented.

1 Introduction

Utilization of resources available to a network of workstations has well served to
gain enough computing resources in order to execute a computationally intensive
application[1-3]. In these case, however, a significant administration is required
to run the application. Programs are written in traditional languages like Fortran
or C. The download of codes is done manually by the administrator that is also
responsible to install and configure system. Therefore, the size of participating
hosts group is small and power for parallel and distributed computation may be
restricted.

Recently, the World-Wide-Web (hereinafter referred as the Web) has became
the largest virtual system. There have been substantial changes in this Internet
age, as such result of proliferation of low priced powerful hosts connected by high-
speed links. At any given moment, however, the many are idle. An appealing idea
is to utilize these hosts for running applications that require large computational
power. Such noble computing paradigm has been called Global Computingl[4, 5].

Some of the obstacles common to global computing are the heterogeneity of
the participating hosts, difficulties in administering distributed applications, and
security concerns of users. The Java language and Java applets with Java-capable

Web browsers have successfully addressed some of these problems. Platform-
independent portability is genuinely supported by the Java execution environ-
ment. The growing number of Java-capable browsers able to load applets from
remote side reduces administration difficulties. The browsers execute untrusted
applets in a trusted environment, which alleviates some of the users’ security con-
cerns. Also, Java is a simple, robust, multithreaded language and is designed to
support applications on networks. Therefore, Java and Java applets with Java-
capable Web browsers have become a good candidate for constructing global
computing platform[6, 7].

In the current state of the art, however, developing a distributed and paral-
lel application using global resources requires specialist knowledge beyond that
needed to develop an application run on a single machine[8,9]. In a global sys-
tem, many machines participate and numerous objects come in and come out.
Therefore, it must allow the incremental growth of a system without the user’s
awareness. Besides, it should achieve a consistent and predictable performance
level regardless of the change of the system structure or load distribution. In
object-oriented paradigm, therefore, it is required to dispatch an existing ob-
ject from local machine to a another machine and move the object to a different
machine from the dispatched machine. Both CORBA and JavaRMI, two good so-
lutions constructing distributed applications, do not provide any solution about
those related by global computing. Nevertheless, they put a heavy burden on
programmers since they require many modifications of existing sequential code.
Our first challenge is to deal with requisites for object-oriented global systems, -
scalability, load balancing using object dispatching and object migration - that
are not issues in a classical sequential or multithreaded application executed
within one machine.

In Java, threads are only a mechanism to express concurrency on a sin-
gle host but do not allow to express the concurrency between remote hosts.
Therefore, currently, a huge gap exists between multithreaded and distributed
application. Our second challenge is to provide the noble global distributed and
parallel programming paradigm constructs which can combine existing sequen-
tial programming constructs into several global application related constructs,
that is, distribution, dispatching, migration and concurrency. Global parallel and
distributed programming can be simplified by implementing the constructs into
the classical Java language. They provide the programmer with maximum porta-
bility and high transparency since they allow him or her to write the programs
in a shared-memory style.

This paper is organized as follows: a description of our system and object
model are given in section 2. This is followed by a detailed discussion about
distributed and parallel programming using global resources in section 3. Exper-
imental results are presented in section 4. Finally, conclusions are presented in
section 5.

2

2.1

User User User
Machine 1 Machine 2 Machine n

System
Manager

Region m

Distributed or Parallel
Gateway Application

Hosting Applet for .
|:| supporting participant (in Browser) O Broker for supporting user
Fig. 1. Tiger System Architecture

Tiger System and Object Models

System Architecture

We propose a design of a object-oriented global computing infrastructure called
Tiger. Our system model consists of six kinds of major components: users, bro-
kers, hosting applets, gateways, regions, a manager(Fig. 1).

for

Users wish to use extra computing power in order to run large distributed
and parallel application.

Brokers manage user application in the same node and coordinate all com-
munication between the applications and Tiger. It is necessary for a user to
execute a broker before executing his or her application.

Hosting applets allow their CPU resources to be used by other users. The
general form of them is an Java applet in a Java-enabled web browser.
Gateways manage parts of available hosting applets and coordinate all com-
munication between them and other components in Tiger system. We assume
that every gateway serves exactly one

Regions consist of a gateway and hosting applets managed by the gateway.
Regions are generated by grouping hosting applets which show similar round-
trip time of communication for a gateway managing them.

A manager registers and manages participating brokers and gateways.

Also, it is responsible for following main activities: location management
all the dispatched and mobile objects in Tiger, load distribution among all

participating gateways. Whereas, the primary function of gateways consists of
followings: location management for objects visiting its associated region, load
distribution among hosting applets managed in the region,

There are two important reasons why our model must provide gateways. The
first reason is generated in order to distribute the manager’s massive load. Be-
cause of the heavy network traffic generated by the many brokers and hosts, the
manager may become a bottleneck. To reduce the traffic to the manager, one
natural solution is to distribute the manager functions in several other things.
The second reason comes from severe limitations on the capabilities of Java
applets, since the applets are used to execute untrusted programs from the In-
ternet. Applets cannot create server socket to accept any incoming connection
and Java-capable browsers disallow applets from establishing a network connec-
tion except to the machine where they were loaded from. Using gateways as
the intermediate message-exchange nodes, we allow an applet to communicate
with any applets in the same region(Fig. 2(a)) or in different regions(Fig. 2(b)).
Gateways use these communication route mainly for object migration in order
to balance loads among hosting applets.

Both a broker and a gateway intermediate message exchanges between a user
application and a hosting applet(Fig. 2(c)). Two different user applications can
communicate through each associated broker(Fig. 2(d)). These communication
route is mainly used for remote method call.

User

Connection
App.

Gateway Network

Broker

Host

@) (b) © (d)

Fig. 2. The Communication Model

2.2 Triple-Object Model

Tiger is designed as an object-oriented global system which expresses compu-
tation as a set of autonomous communicating entities, objects. An object is a
compound entity consisting of four components: an identifier, a class(or type)
describing member fields and methods, properties, and a location address. The
components are separated into the variant part and the invariant part. The vari-
ant part of a object includes properties and a location address. Properties are
stored in an encapsulated object and may be updated after executing a defined
method. Location address is, by default, allocated as the address of machine
where the object is created, and updated whenever the object moves between

hosts. Also, There are an identifier and a class in invariant part. The identifier
is globally unique and is used to make references to the object. The class con-
tains Java byte-code defining the object’s member fields and methods. It can
be maintained discretely and stored in files or archives on a local system or on
a network server. A object’s identifier and class components remain invariant
across all possible modifications of the object’s properties and location address.

We use a triple-object model in Tiger. There are normal(local) objects, dis-
tributed objects and remote mobile objects. Normal objects are the same those
as standard Java objects. Distributed objects are placed to other user machines
rather than the one which local objects are placed in. Like a distributed object
in CORBA or JavaRMI, they are accessible remotely and locations of them are
fixed to the user machine where they are created. Mobile objects are similar
to distributed objects except that they can change its current location from a
user machine/ hosting applet to other hosting applets. Distributed objects and
Mobile object are the basic units for distribution and concurrency. Users have
to specify explicitly which objects are distributed or migrated.

A requested method call on a remote object is either executed or queued
depending upon an object’s state at the time of arrival. An object can be one of
three state: dormant, active, and waiting. The object in dormant is not currently
executing any method, and there are no one in message queue. The object in
active state is currently executing a method. The object in waiting state is
waiting for a specific response to a method call issued while in the active state.
When an acceptable response arrives, the object will return to the active state.

3 Distributed and Parallel Programming

When designing an object-oriented application, programmers start with high-
level abstractions and turn them into objects and classes. Programmers are usu-
ally eager in modeling and algorithmic issues about the application. Deciding
how to distribute or move some objects into several machines is definitely a
lower-level issue. Our programming model concentrates on a clear separation
between high-level design and lower-level implementation issues such as object
distribution, object migration, and controlling concurrent activities. When deal-
ing with globally distributed objects, the power of Tiger lies in that any client
processes or threads in local machine can directly interact with a server object
that live on a globally distributed machine, a user machine or hosting applet
through remote method call although the server object migrates among them.

3.1 TigerObject Interfaces

A server object must declare its service via an interface. It does this by extending
TigerObject interface. Each remote method is declared in the interface. Like
JavaRMI, client stub and server skeletons are generated from this interface and
the implementation of client and server object is done using this interface.

method
call !

_______ Y (" Distributed)

Server Object

objs obj2

———— e~

[

:

|

|

| method
| upcall ! ———
|
| Broker
I 2
|

:

l

Gateway migrate !

|
|
|
|
|
|
Skel |
|
|
|
|
|
|

Globally
Extended
Resource

plet

Hosting Apj
Connection Network

@ (b)
Fig. 3. The Object Distributing Mechanisms

3.2 Objects-distributing Mechanisms

Tiger provides us with the two application programming interfaces(hereinafter
referred as the APIs) related with distributing server objects.

— turnDistributed0bj(TigerObject obj, String name)

This converts a existing local object obj into a distributed object at any time
after its creation. The distributed object becomes accessible remotely and its
location is fixed to the server machine indicated by name. The stub object
is registered to naming subsystem together with a given name. The stub
acts as a handle for client to reference the remote server object. The client
can call methods on the stub, which are routed by the client broker to the
server broker, where the skeleton executes the method upcall on the actual
server object(Fig. 3(a)). This mechanism is similar to that in the CORBA
and JavaRMI.

— turnMobile0Obj(TigerObject obj, String name)

— turnMobileObj(TigerObject obj, String name, Region destRegion)
Unlike CORBA and JavaRMI, on the other hand, Tiger allows the local
or distributed server object, obj to migrate from the server machine to a
hosting applet in globally extended resource. It is noted that a client pro-
cess or thread do not know a detailed location of migrated hosting applet.
They do not present any such a information or present only region informa-
tion, destRegion. That is, Tiger provides users with migration transparency.
Also, the location of migrated server object is not fixed to the first hosting
applet and the server object can re-migrate to another hosting applet with-
out awareness of a user. Through such migration mechanism, we can reduce
the burden on server machine and gain the performance benefits(Fig. 3(b)).

———

Globally
Extended
Resource

Connection Network Skel Skel Skel

migrate ! migrate !

(@) (b)

Fig. 4. The Parallel Object Dispatch

3.3 Parallel Objects-dispatching Mechanisms

Object-oriented parallel programs are largely divided into two parts: one be-
ing the main control program, which provides a whole body for solving a given
problem; the other being TigerObject, which describes tasks to be executed in
parallel. The main control program must dispatch a number of TigerObjects
into the globally extended resource and call remote methods on the dispatched
objects. Besides, it can watch loads imposed on each region, can balance those
using object migration and can retract the dispatched objects from the globally
extended resource to local host.

Tiger provides us with the one API related with dispatching parallel Tiger-
Objects.

— turnMobileObj(TigerObject obj)

— turnMobileObj (TigerObject obj, Region destRegion)
This overloaded method dispatches a existing local object obj into a host-
ing applet in the globally extended resource. The dispatched object becomes
accessible remotely from the dispatching user machine(Fig. 4). It is not re-
quired to provide the name of object since the object is only used by the main
control program. Tiger itself, inside interior, allocates the globally unique
identifier to the object. It is noted that its location is not fixed to the dis-
patched hosting applet and the dispatched object can re-migrate to another
hosting applet.

3.4 Remote Method Call and Concurrency

Concurrency can be used to perform given applications in parallel on several ma-
chine or on one machine controlling different threads, only simulating parallelism.
Although method calls of Java are only synchronous, there are three constructs
provided to call a remote method in Tiger: synchronous, asynchronous, one-way.

A synchronous remote method call is typically used in order to distribute local
objects so that users can concurrently access them that reside on different nodes.
The calling object, however, must blocked until the result is returned. By default,
Tiger executes calls to remote objects in a synchronous fashion.

Asynchronous remote method call has a future interaction style, in which
the caller may proceed until the result is needed. At the time, the caller is
blocked until the result becomes available. If the result has been supplied, the
caller resumes and continues. For supporting a asynchronous fashion, we provide
AsyncReply and AsyncReplySet classes and asyncMethodCall(TigerObject
obj, String methodName, Object[] args) APIL By using these classes, it is
possible to issue an asynchronous call to a remote object that is executed in
parallel.

The third construct, one-way remote method call, is also asynchronous. The
caller, however, will not retain any thing related by this method call, and the
callee will never have to reply to it. It has fire-and-forget style.

To distinguish among these three constructs, each remote method, which
is declared in a user-defined interface extending TigerObject interface, must
throw one among SyncMethodCallException, AsyncMethodCallException, and
onewayMethodCallEzception. These three exceptions specify what the method’s
behavior style is.

4 Experimental Results

We conducted experiments to show the speedup achieved by Tiger. The target
application for experiments is a parallel genetic-neuro-fuzzy algorithm. Genetic-
neuro-fuzzy algorithms are a hybrid method for neuro-fuzzy systems based on
genetic algorithms, in order to find the global solution for the parameters of
neuro-fuzzy system. They always begin by generating an initial population ran-
domly, after they encode the parameter into chromosomes. Then, they run it-
eratively repeating the following processes until they arrive at a predetermined
ending conditions: extracting fuzzy rules, self-tuning, fitness evaluation, repro-
duction, performing genetic operators(crossover and mutation). It requires much
computational time to construct a fuzzy system from a chromosome. The com-
munication time, however, does not affect the total processing time. So, Tiger is
suitable to execute genetic-neuro-fuzzy algortithms
A major characteristic of our genetic-neuro-fuzzy algorithm is that the capability-

based adaptive load balancing is supported to reduce total working time for
obtaining optimal fuzzy system. Let 7T; be the time that is taken to execute
the operations of chromosmes allocated to Region ¢ and N F; be the sum of the
number of fuzzy rules processed in each chromosome allocated to the Region i.
Then, the number of chromosomes which will be allocated to Region ¢ at next
generation, N;, is defined by

N; = N, - _G , where C; = NF;

Sl G T;

(1)

10 25000

ONOLB
B ECALB
8 20000 —

15000 ——

10000 ——

Working Time (seconds)

@
3
8
3

o
o

0 2 4 6 8 10 8 10
The Number of Hosting Applets The Number of Hosting Applets

Fig. 5. Speedup for the number of Fig. 6. The efficiency of load bal-
hosting applets ancing

In equation (1), N, is the total number of chromosomes given in the system,
Ny is the number of Regions participated in the system currently, and C; is the
capability of Regions i based the number of fuzzy rules processed in unit time.

Using equation (1), we can decide the number of chromosomes which are
allocated to each Region at next generation and can move some chromosomes
to other Regions using Tiger’s APIs. The goal of our algorithm is to make fuzzy
system which can approximate the three input nonlinear fuction defined by

output = (1 + 25 4 y=1 4 27152 @)

A total of 216 training data are sampled uniformly from input ranges [1.6] x
[1.6] x [1.6]. The parameters for the genetic-neuro-fuzzy algorithms used in the
experiment summarized in Table 1.

population size |50 ||lnumber of generation| 50 ||chromosome size |48
prob. of crossover|0.3|| prob. of mutation [0.15(|learning iteration|50
Table 1. The parameters for the genetic-neuro-fuzzy algorithms

The system manager runs on Pentium 333Mhz and three gateways run on
Pentium 200, 233, 266Mhz using Java virtual machine in JDK 1.2.1. Ten hosting
applets run in the Netscape Communicator 4.5 or Internet Explorer 4.0 on het-
erogeneous machines connected 10Mb/s Ethernet. Figure 5 presents the speedup
curve according to the change of the number of hosting applets. In the figure,
as the number of hosting applets increases, the speedup is more enhanced and
speedup curve become more remote from linear line.

Figure 6 shows the efficiency of capability-based adaptive load balancing
scheme. In the figure, NOLB represents scheme that does not use a load bal-
ancing and CALB represents that use a capability-based load balancing. We
conducted the experiment on eight hosting applets and ten hosting applets, re-
spectively. When the number of hosting applets is eight CALB shows 1.89 times
as performance as NOLB shows. Similarly, when the number of hosting applets
is ten CALB shows 1.80 times as performance as NOLB shows.

5 Conclusions

We have designed and implemented Tiger, a global computing infrastructure
able to use the computing resources of numerous machine connected in Web.
Tiger provides noble object-oriented programming constructs supporting object
distribution, dispatching, migration and concurrency. These constructs, together
with Tiger infrastructure, allow a programmer to develop easily a well compos-
ing object-oriented distributed and parallel application using globally extended
resources.

We are currently working on an extended version of Tiger which supports a
mechanism with fault tolerance, global load sharing and stealing, result verifica-
tion and user privacy. We believe that the future version of Tiger will become a
robust and high-performance global computing infrastructure.

References

1. T.E. Anderson, D.E. Culler, and D.A. Paterson, A case for NOW (Network of
Workstations)., IEEE Micro, vol.15 no.1, pp.54-64, February 1995.

2. N.J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J.N. Seizovic,
and W.S. Myrinet, A gigabit-per-second local area network, IEEE Micro, vol.15
no.l, pp.29-36, February 1995.

3. T.M. Warschko, J.M. Blum, and W.F. Tichy, The ParaStation project: using work-
stations as building blocks for parallel computing, Proc. Intl. Conf. on PDPTA’96,
Sunnyvale, CA, pp.375-386, August 1996.

4. J.E. Baldeshwieler, R.D. Blumofe, and E.A. Brewer, ATLAS : An infrastructure
for global computing, Proc. of the 7th ACM SIGOPS european workshop on system
support for world wide applications, 1996.

5. T. Brecht, H. Sandhu, M. Shan, and J. Talbot, ParaWeb: Towards world-wide
supercomputing, Proc. of the 7th ACM SIGOPS European Workshop, on system
support for world wide applications, pp. 181-188, September 1996.

6. K.M. Chandy, B. Dimitrov, H. Le, J. Mandleson, M. Richardson, A. Rifkin, P.A.G.
Sivilotti, W. Tanaka, and L. Weisman, A world-wide distributed system using
Java and the Internet, Proc. of the 5th IEEE Intl. symposium on high performance
distributed computing, Syracuse, NY, August 1996.

7. A. Baratloo, M. Karaul, H. Karl, and Z.M. Kedem, An infrastructure for network
computing with Java applets, ACM Workshop on Java for High-Performance Net-
work Computing, Palo Alto, California, February, 1998

8. D. Caromel, W. Klauser, J. Vayssiere, Towards seamless computing and meta-
computing in Java, Proc. of concurrency practice and experience, pp. 1043-1061,
September 1998.

9. M. Boger, F. Wienberg, W. Lamersdorf, Dejay: Unifying concurrency and distri-
bution to achieve a distributed Java, TOOLS99, Nancy, France, June, 1999.

