Optimizing Java Native Compiler — Adria/Java

Kenichi Miyata, Hiroyasu Nishiyama, Yuji Chiba, Tomoya Ohta, and
Sumio Kikuchi

Systems Development Laboratory, Hitachi, Ltd.

Abstract. Java programs are usually executed by using an interpreter
or a JIT-compiler. These methods restrict application of time consum-
ing complex compiler optimizations. To cope with this, we are develop-
ing optimizing native compiler for Java that translates a Java bytecode
to a native executable of the host computer ahead of its execution. This
optimizing native compiler incorporates a translation phase of Java byte-
code to intermediate language and a Java oriented optimization phase
with existing optimizing compiler. Java oriented optimizations of this
optimizing compiler includes static binding of method calls, method in-
lining, compile-time GC, and exception check elimination in conjunction
with optimizations for ordinary procedural languages. Programs com-
piled with our prototype compiler executes up to 78.7 times faster than
our interpreter, and up to 8.6 time faster than our JIT compiler.

1 Introduction

Javal is an object—oriented programming language[6,10] that have following
features: (1) Portable execution model using bytecode, (2) Powerful securities
model by run—time exception checking, (3) Automatic memory management with
garbage collection.

But these advantages cause less performance than traditional programming
languages. Currently, JIT (Just—In—Time) compiling is a main execution method
for Java. JIT compiler translates bytecode to a native executable of the host
computer at run—time in order to reduce overheads of interpreting and executing
bytecode. Executing time of bytecode in JIT contains JIT compiling time, so
compiler can’t spend much time for time consuming complex optimizations.

We are researching a Java native compiler (Adria/Java?) that translates Java
bytecode to optimized object code. The purpose of our native compiler is efficient
execution of Java program.

Generated object files are linked with class libraries and an executable is
created, or they are executed in a Java virtual machine with JIT compiler. Since
Adria/Java can spend much time to optimize than JIT compiler, it implements
various kinds of optimizations.

! Java and Java related trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.
2 Advanced Compiler for Risc Architecture/Java



int add(int x, int y) { iload_1

return (x+y); iload_2

} i add
ireturn
(a) sanple method (b) byte-code for method ‘add’

*++SP = Local Vari abl el; return (Local Vari abl el+
*++SP = Local Vari abl e2; Local Vari abl e2) ;
tenmpl = *SP--;
tenmp2 = *SP--;
*++SP = tenpl+tenp2;

return (*SP--);

(c) sinple conversion result (d) Qur Method result
Fig.1. Example of translation

Adria/Java incorporates a translation phase, a Java oriented optimization
phase and an existing optimization phase in which apply to loop optimizations,
source—level optimizations, instruction—level optimizations, and so on.

Section 2 presents a bytecode translation phase. Section 3 introduces Java
oriented optimizations. A result of performance evaluation to our prototype sys-
tem is shown in Section 4.

2 bytecode Translation Phase

The bytecode translation phase reads Java bytecode and translates it to inter-
mediate language (IL), which is constructed from basic blocks.

2.1 Expressions

The bytecode translation phase changes stack operations on bytecode into rep-
resentations on an IL. The IL is closely related to procedural language like C or
Fortran.

The bytecode is a set of instructions upon virtual stack machine. Changing
stack operations into instructions on a normal register architecture is usually
inefficient. Figure 1 shows an example of translation. A method Figure 1(a)
would be converted to bytecode Figure 1(b). If simply translation was done,
Figure 1(c) would be obtained. This program is inefficient because a lot of stack
operations occur frequently. In order to prevent such a situation, Adria/Java
translates the bytecode instructions into expressions on the IL by emulating Java
stack. Figure 2 shows this process and Figure 1(d) indicates a result program.

Adria/Java has a evaluation stack whose element is a pointer to an expression
of IL. Firstly, when Adria/Java translates iload_1, top of stack points to an
expression which refers a local variable 1 (Figure2(a)). Similarly, for iload_2, an
expression that refer local variable 2 is pushed to evaluation stack (Figure 2(b)).
For iadd, after two expressions are popped, an adding expression is created



— > LocalVariablel — > LocalVariable2

— > LocaVariablel

Expression: - Expression: -
(a)iload_1 (b)iload_2
— > LocalVariablel+
LocalVariable2
Expression: - Expression: return(LocalVariablel+Local Variable2)
(c)iadd (d)ireturn

Fig. 2. Conversion process of an expression

and pushed. Finally, for ireturn, an expression is popped and a statement
return(LocalVariablel + LocalVariable2) is outputted to a basic block.

2.2 Method Calls

Method calls of Java can be classified into three kinds: (1) static method calls,
(2) normal method calls and (3) interface method calls.

In Adria/Java, a static method call is converted to a direct function call
corresponds to the method.

A normal (instance) method call is converted to an indirect function call
using a method dispatch table like C++4. The method dispatch table 1s included
in class object. For example, a method call obj.foo() would be converted to
following statements.

clazz = obj.getClass();
func = clazz.dispatch_table[ID number of method ‘foo()’];
func();

The ID number is a unique in a class hierarchy, which same number is as-
signed to methods if they have same signatures.

For interface method calls, the possible objects doesn’t have any inheritance
relations among them, so we can’t use the dispatch table. Then an address of the
interface method is searched from a method table which has method information
declared in its class, traversing the class hierarchy with a key for the method
signature. After that, the address is cached in a global table. In next interface
method call, its address is searched from the global table. If the address wasn’t
found, the above searching process is started. Still, the searching key is not a
string but an address of a global variable generated from a method signature.



[
‘ Splitting ‘

i

‘ Statically Method Binding ‘

‘ Inline Expansion ‘
LT l

‘ Compile-Time GC ‘

‘ Exception Cheks Eliminaion ‘

Fig. 3. Phase organization of Java oriented optimizations

3 Java Oriented Optimizations

Adria/Java implements many kinds of optimizations indicated in Figure 3. They
will be described in following sections.

3.1 Static Binding of Method Calls

As described above section, Adria/Java translates normal method calls and inter-
face method calls into statements to calculate function addresses and to perform
indirect function calls. This process is inefficient because of calculating func-
tion addresses at run—time. And generally, indirect function calls often cause a
pipeline stall in microprocessor. If possible, Adria/Java apply an optimization
that binds a method call with a unique function call statically.

In Java, a class of an object determines a called method at run—time. If only
one class could be decided for the object, a callee method can be decided at
compile—time. A set of classes for possible objects refered by reference variables
is calculated from object generating expressions, method arguments and return
values from method calls. This set is propagated along control flow and merge
them at merging points of control flow. This is called class flow analysis[5,12].

As a result of class hierarchy analysis, at some call site, if only one class or
only one method ould be decided, the method call is bound statically.

Even if callee method couldn’t be decided uniquely, the method is bound
statically using one of following sequences of conditional statements.

1. to compare a class of a object with possible classes for the object
2. to compare an address of a method with addresses for possible methods

Since statically bound methods could become targets to inline expansion, if
frequently called methods would be bound statically, the execution performance
would improve.

For example, suppose some classes or some methods were possible at some
call site obj.foo(). Taking the approach (1), Adria/Java generates code to
check possible classes for the object obj and to call function directly matching



with each classes. If the number of possible classes exceeds a certain number,
after trying to compare such number times, Adria/Java generates code using
method dispatch table. Taking the approach (2), Adria/Java generates method
comparing code instead of the class comparing code.

Adria/Java selects a low—cost way considering with the number of classes and
methods. Adria/Java can take a profile of objects at method call at run—time.
If the profile information was available at compile—time, Adria/Java uses classes
distribution at the call site and generates methods comparing code in order of
high expectation values.

3.2 Splitting

As described in previous section, unless only one method could be found at
the call site where several classes reach there, Adria/Java generates classes or
methods comparing code. This code 1s inefficient because they need comparing
operations.

One of the reasons why there are several possible classes at a call site is that
several object creations are readched at merge points of control flow through
paths from object creation points. Splitting optimization makes a class of an
object unique by replicating a instructions from object creating points to method
to call sites.

3.3 Inline Expansion

In object oriented programming language, it tends to define a lot of small meth-
ods. Therefor overheads of method calls appear remarkably compared with pro-
cedural programming language like C even if method calls were bound statically
by class hierarchy analysis.

Adria/Java does an method inline expansion to reduce overheads of method
calls that are bound statically. As a result of method inline expansion, since there
would be more chances to analyze classes at a call site in detail, as showing figure
3, splitting and statically method binding are applied repeatedly.

3.4 Compile—time GC

In C++, users can explicitly control allocation of objectsa to stack and heap
and are responsible for freeing heap objects. On the other hand, in Java, all
objects are allocated on heap and disused objects are withdrawn from heap
by Garbage Collector (GC). Java prescribe all objects are referenced through
reference variables. So if many objects were created, overheads of GC couldn’t
be ignorable.

From evaluations for Java program, it is known that lifetime of objects are
synchronized with periods of method execution, which method generates ob-
jects[4]. For example, in a following code, an object generated in statement (a)
couldn’t be refered after statement (b), so lifetime of object is synchronized with
the method.



int foo() {
ClassX obj = new ClassX(); // (@)
return(obj.foo()); // (b)
}

In such a situation, allocating objects on stack makes possible automatic
withdrawing disused objects at returning from a method call and reduce fre-
quency of GC. Adria/Java implements this optimization called compile—time
GC.

The compile-time GC detects objects satisfying following conditions in a
method and generates code to allocate objects on stack: (1) Finalyzers hasn’t
been defined. (2) Generated objects are not assigned to not—private fields. (3)
Generated objects don’t call methods doing (2).

Objects, which 1s allocated on stack, are automatically removed when exe-
cution process returns to call site.

3.5 Exception Checks Elimination

Java prescribes the execution environment has to check exceptions when it refers
objects or subscripts of arrays. The exception handling code causes less per-
formance and disturb another optimizations. Therefor Adria/Java reduces its
overheads by eliminating unnecessary exception checks.

Exception Elimination Based on Redundancy of Control Flow If same
exception checks were executed through all paths reaching there, the checks can
be removed. That is, for two exception check expressions eq, e5: (1) e; and ey
are common expressions. (2) There are no definitions of operands in e in all
paths from e; to es. (3) e; dominates es.

Exception Elimination Based on Redundancy of Data Flow Some ex-
ceptions are detected based on operand values of bytecode. For example, a refer-
ence of objects is checked whether the value is null or not. About value—based
checks, Adria/Java calculates reaching definitions of variables from data flow,
make sure that all the reaching definitions don’t satisfy the exception conditions
and eliminate that.

Eliminating Constant Subscript Checks When a subscript expressions and
an array length is a compile—time constant, its checks are eliminated or converted
to unconditional exception invoking. Although it needs to get the array length,
it can’t be found from declaration because arrays are generated dynamically in
Java. Therefor Adria/Java try to find the array length detecting array generating
expressions from reaching definitinos.



Eliminating Subscript Checks Based on Implication Relations Even
when an array length is unknown, if a set of subscript checks reaching at subscript
checks v covers a range of v, v can be eliminated.

Our method is based on Kolte’s method[8]. But while Kolte’s method targets
FORTRAN, our method targets Java. So checks are eliminated conservatively.

Eliminating Subscript Checks by Loop Length Now think about an array
reference Afa * ¢ + b], which has a linear subscript for loop control variable 7.
This reference is required to satisfy with a condition 0 < a*xi+4+b < A.length so
that it doesn’t occur any exceptions. Normalizing it with ¢, a range of ¢ becomes
—b/a < i< (Alength —b)/a. If this condition is satisfied, the subscript checks
in loops can be eliminated.

Eliminating Subscript Checks by Loop Multiplexing If a subscript is
a linear expression for loop control variable, Adria/Java try to move subscript
checks out of the loop by multiplexing innermost loop.

If a linear subscript reference Afax i+ b] exists in loops, a condition 0<axi+
b< A.length must be satisfied to eliminate subscript checks for it. Let low and
high lower and upper limits for ¢ respectively, —b/a<low and high<(A.length—
b—1)/a are both needed to be true. If there are more than one array references
in a loop, Adria/Java generate two kinds of codes; one for that all subscript
references don’t occur exceptions and another for that some subscript references
might occur exceptions. Adria/Java generates code that select these two cases at
run—time 3. That is, if array references Ag[ag*i+bo], Ay[ay*i+b1], ..., Ay[an*i+
b,] exists in a loop, and when —bg/ag<low A —by/ay<low A ... A—b,/a,<low A
high < (Aglength — by — 1)/ag A high < (Ay.length — by — 1)/ay A ... Ahigh <
(A, length—b, —1)/a, is true, Adria/Java generates code that it doesn’t check
for array references Aglag * i + bo], A1[ar * 74+ b1], ..., Apfan x i + b,].

Eliminating Loop Invariant Checks Applying loop peeling could move loop
invariant exception checks outside of the loop[2].

Adria/Java make sure whether operands of each exception check in a loop
are loop invariant or not. If there are loop invariant checks, it peels off first time
of loop iteration. As a result, the peeled check dominates exception checks in
loop, so exception checks in a loop is eliminated by redundancy of control flow.

4 Performance Evaluation

Figure 4 shows a result of performance of Adria/Java. The evaluation is mea-
sured on the HI-UX/WE2 operating system. JIT compiler, Java interpreter and

3 Tt would be fast to detect possibility of exception occurrence for each array references.
But it isn’t realistic because of code explosion.



£

E 50.00 Ointerpreter
S . mJIT

0 40.00 0 Adria/Java
kS
(]
o

o SRS

SIS S G N O T
o o o & & ) & © &
¥ QQ? & X o & Aé@
Q hd &
Benchmarks

Fig. 4. Performance Evaluation

Adria/Java are implemented on it. Target benchmarks are selected from Syman-
tec Benchmarks?*.

Figure 4 shows relative performance between JIT compiler and Adria/Java
compared with performance of interpreter. In this result, Adria/Java achieves
perfomance between 14.5 times and 78.7 times than interpreter, and between 3.0
times and 8.6 times than JIT compiler.

5 Related Work

Currently, JIT compiler is a general execution environment. But its optimizations
are limited locally[1, 9].

There are two kind of native comiplers, one is translators from Java to C,
the other is compilers generating native code directly.

Caffeine compiler[7] and Toba[13] translate bytecode into IL as Adria/Java
does. These allocate virtual registers to stack elements, and change stack opera-
tions into corresponding operations on virtual registers. This kind of translator is
required to apply some optimizations such as copy propagation, dead code elim-
ination, and so on because of many copy statements are generated. On the other
hand, our method, which simulates stack, isn’t needed unnessesary temporary
register, and can reconstruct expressions.

* The selected items are Array: array initializing with random number, BDBSort:
bidirectional bubble sort, BSort: bubble sort, Fib: Fibonacchi number calculation,
Hanoi: the tower of Hanoi, QSort: quick sort, Sieve: sieve calculation, Tree: tree
creation, Linpack and Dhrystone.



Vortex[5] and Harissa[12] bind methods statically by class hierarchy analy-
sis. In Vortex, a splitting optimization[3] is implemented to increase chances of
statically binding. In Adria/Java, it implements method rearrangement by pro-
file feedback and dynamic method selection by method comparing codes. The
method comparing codes is effective to reduce a number of dynamic checking
when there are many classes and methods are shared among the classes.

Abount optimizations which run GC statically at compile—time, some re-
searches which target functional programming language have been done[11].

Optimizations which eliminate exception checks exist for FORTRAN][8]. And
for Java, some optimizations have been reported that eliminate subscript checks
by applying loop restructuring for nested loops[14]. Our apploach make a lot of
run—time exception checks possible to eliminate by doing flow analysis and loop
nesting.

6 Conclusion

This paper shows an overview and a result of performance about Java native
compiler we are developing. This native compiler implements various optimiza-
tions for Java, and it gets higher performance than ordinary execution methods.

References

1. Adl-Tabatabai, A.-R., M.Cierniak, G-Y.Lueh, V.M.Parikh and J.M.Stichnoth:
Fast, Effective Code Generation in a Just—In—Time Java Compiler. Proceedings
of the ACM SIGPLAN’98 COnference on Programming Languages Design and
Implementation (1998) 280-290

2. Budimlic, A. and Kennedy, K.: Optimizing Java — Theory and Practice. Proceed-
ings of the ACM 1997 Workshop on Java for Science and Engineering Computation
(1997)

3. C.Chambers and D.Ungar: Iterative Type Analysis and Extended Message Split-
ting: Optimizing Dynamically-Typed Object Oriented Programs. Proceedings of
the ACM SIGPLAN’90 Conference on Programming Languages Design and Im-
plementation (1987) 150-164

4. C.E.McDowell: Reducing garbage in Java. ACM SIGPLAN Notices Vol. 33, No.9.
(1998) 84-86

5. Dean, J., Defouw, G., Grove, D., Litvinov, V. and Chambers, C.: Vortex: An Op-
timizing Compiler for Object—Oriented Languages. OOPSLA’96 Conference Pro-
ceedings (1996) 83-100

6. Gosling, J., Joy, B. and Steele, G.: The Java Language Specification. Addison—
Wesley (1996)

7. Hsieh, C.-H., Gyllehaal, J. and Hwu, W.: JAVA Bytecode to Native Code Trans-
lation: The Caffeine Prototype and Preliminary Results. Proceedings of the 29th
Annual International Symposium on Microarchitecture (1996) 90-99

8. Kolte, P. and WOIfe, M.: Elimination of redundant array subscript range checks.
Proceedings of the ACM SIGPLAN’95 Conference on Programming Languages
Design and Implementation (1995) 270-278



10.

11.

12.

13.

14.

Krall, A. and Grafl, R.: CACAO — A 64 bit Java VM Just-in—Time Compiler.
Proceedings of the ACM 1997 Workshop on Java for Science and Engineering
Computation (1997)

Linkholm, T. and Yellin, F.: The Java Virtual Machine Specification. Addison—
Wesley (1997)

M.Mohnen: Efficient Compile—Time Garbage Collection for Arbitrary Data Struc-
tures. Technical report, Aachen University of Technology (1995)

Muller, G., Moura, B., Bellard, F. and Consel, C.: Harissa: a Flexible and Efficient
Java Environment Mixing Bytecode and Compiled Code. Proceedings of the 3rd
Conference on Object—Oriented Technologies and Systems (1997)

Proebsting, T., Townsend, G., Bridges, P., Hartman, J., Newsham, T. and Wat-
terson, S.: Toba: Java For Applications a Way Ahead of Time(WAT) Compiler.
Proceedings of the 3rd Conference on Object—Oriented Technologies and Systems
(1997)

S.P.Midkiff, J.E.Moreira and M.snir: Optimizing array reference checking in Java
programs. IBM Systems Journal, Vol.37, No.3 (1998) 409-453



