A Runtime Monitoring Framework for the TAU
Profiling System

T. Sheehan, A. Malony, and S. Shende

Computational Science Institute, Department of Computer and Information Science,
University of Oregon, Eugene OR 97403

{sheehan, malony, sameer}Ocs.uoregon.edu

Abstract. Applications executing on complex computational systems
provide a challenge for the development of runtime performance mon-
itoring software. We discuss a computational model, application mon-
itoring, data access models, and profiler functionality. We define data
consistency within and across threads as well as across contexts and
nodes. We describe the TAU runtime monitoring framework which en-
ables on-demand, low-interference data access to TAU profile data and
provides the flexibility to enforce data consistency at the thread, context
or node level. We present an example of a Java-based runtime perfor-
mance monitor utilizing the framework.

Keywords: monitor, runtime data access, performance monitoring, parallel
execution, performance tools, runtime interaction, Java, TAU, multi-threaded.

1 Introduction

The building of complex software systems is increasingly targeted to high- per-
formance computing architectures that support thread-based parallel execu-
tion within a shared memory context and process-based (component-based)
distributed execution across multiple physical nodes [4,7,10]. Object-oriented
computing is particularly suited to such architectures because it can naturally
capture thread abstractions and extend the object interaction paradigm to dis-
tributed environments [4,2,9]. While rich programming frameworks and lay-
ered middleware systems help tame the complexity of software built for next-
generation high-performance environments [16, 11], the observation of program
operation and performance is critical to understanding and improving code effi-
ciency.

Most monitoring systems built for parallel system environments are created
for a specific purpose (e.g., performance measurement [8], debugging [13], or
computational steering [3]), and with a specific computational model in mind.
As a result, the monitoring system design and implementation tends to reflect
decisions concerning the requirements for system observation, the type and level
of instrumentation, the online accessibility to monitored information, the degree
of consistency with respect to system state, and the acceptability of monitoring



costs. It is difficult to construct a monitoring framework that is flexible enough
to apply in different computational contexts and in which monitoring parameters
can be selectively controlled. It is not simply an issue of monitor portability. The
framework should support the construction of monitor software that operates
in a manner consistent with the parallel software paradigm and its execution
without excessively imposing it own constraints.

In this paper, we describe the TAU monitoring framework and its use in
observing the performance of parallel applications built for complex, high- per-
formance computing architectures. The framework instantiates a monitoring sys-
tem that augments the application and system software with monitor interaction
components and distributed monitor communication and control mechanisms.
This monitor infrastructure is intended to interface with different online instru-
mentation facilities, extending the range of monitor applications. Integrating
monitoring capabilities with complex software requires knowledge of the mon-
itor’s influence on program execution, and the monitoring framework should
support a variety of alternative methods of data access. We discuss monitor in-
teraction models and certain problems that can arise in the context of online
access to performance data provided by the TAU profile library.

2 Model of Computation

A monitoring model must be based on an underlying computational model which
must, in turn, reflect the real computing environment. The computational model
we are targeting is illustrated in figure 1. A node is a physically distinct entity
with one or more processors. A node may link to other nodes via a protocol-
based interconnect, ranging from proprietary networks, as found in traditional
MPPs, to local- or global-area networks (e.g. the Internet). A context is a distinct
virtual address space residing within a node. Multiple contexts may exist on a
single node. Multiple threads of execution, both user and system level, may exist
within a single context. Threads within a context share the same address space.

/ Nodes \

- -

Network

Context ‘
— +—— Shared Memory
ﬁ  Threads

Fig. 1. The HPC++ computational model.

This computational model is general enough to apply to many high- per-
formance architectures as well as to different parallel programming paradigms.



This enables us to consider a monitoring framework with respect to different
computational model views. In addition, the model is the basis for HPC++ [4],
a high-performance parallel and distributed object-oriented system that supports
both task- and data-parallel programming paradigms.

3 Monitoring Systems

Monitors can be used for a wide variety of functions including data visualiza-
tion, performance analysis, computational steering, and debugging. All of these
activities utilize at least one of two basic operations on a executing application:
the observation of the program’s data and interaction with the executing code.
Implicit in this description is a computational entity that provides access to the
program’s context(s) and mechanisms to involve itself with the executing code.
We term such an entity a monitor agent. Also implicit is a monitor client which
directs the observation and interaction.

3.1 Monitor Agent

In the HPC++ model of computation, the monitor agent must reside within
the executing application’s context(s) in order to access its memory. This agent
may be a direct (active) agent or an indirect (passive) agent. A direct agent is
invoked from code instrumentation to provide data access to the monitor client.
An indirect agent, on the other hand, runs in a separate thread of execution, with
full access to the context memory. Additional software resources are not needed
to use a direct agent, but execution of the computation is directly impacted. An
indirect agent can observe passively with less interference on the application’s
thread(s) of execution.

3.2 Monitor Client

The monitor client communicates with the monitor agent, directing the agent’s
actions and interpreting the monitored information. A client may reside within
the same context as the agent or in a separate context. Normally, to avoid com-
peting for the application’s computational resources, the client resides outside of
the context of the monitor agent and communicates with it in the same manner
that other threads communicate across contexts.

4 Profiler Structure

A profiler keeps summary statistics of application execution based on the oc-
curence of events[12]. Profiling systems generally track two different types of
entities: user defined events and performance of blocks of code such as a rou-
tine or a group of related statements. For purposes of this paper we term such
code blocks functions. The profiler maintains a database of user defined event



counters. Whenever a user defined event is triggered, its counter is incremented.
Count and execution time values are profiled for functions. Time is measured by
elapsed wallclock time, or can be substituted by hardware performance coun-
ters to measure low-level CPU activity such as secondary data cache misses, or
instructions issued. The profiler maintains a database of function information
and an image of the callstack. The database includes the time consumed by
each profiled function. The callstack image includes the starting time of each
profiled function called. When a function completes and its entry is popped
from the top of the callstack image, its starting time is subtracted from the cur-
rent system time and this is added to the cumulative time for that function’s
database entry. At the end of a run, when the callstack image is emptied and the
database has been updated, the data is written to a file where it can be accessed
for post mortem processing and visualization. The profiler data structures are
maintained on a per thread basis, and executing threads update their profiling
data completely independent of one another.

5 System Snapshot

The post mortem profile analyses are derived from the data monitored during
execution. A runtime monitor should provide similar views of the system while
the application is executing. Such a view can be derived from the callstack
image and count and time databases maintained by the profiler. We term this a
snapshot, meaning a view of the state of the system at a given point in time.

5.1 A Counsistent Snapshot

The concept of consistency is important in the representation of the state of the
system. In post mortem analysis, the state of the system is simply the static state
at program termination. At runtime, however, the system state is constantly
evolving and its consistency must be taken into consideration when obtaining
profile data.

If the monitor attempts to read the profile database or callstack while it is
being updated by a thread, the information may not be consistent and the snap-
shot of the system may be erroneous. Thus, for a thread, a consistent snapshot
requires that the acquisition of all the profile data be an atomic operation. This
is accomplished by locking all of a thread’s profile data before reading it.

The definition of a consistent snapshot can easily be extended to a context.
Within a context a consistent snapshot is a set of images, one per thread, which
represent the state of all the threads in the context at the same point in time.
Acquiring a consistent snapshot within a context requires that the profile data
for each thread be simultaneously locked and that a lock only be released once its
thread’s data is read. Likewise, a consistent snapshot of a multi-context system
requires the simultaneous locking of data for all threads in all contexts, and the
releasing of any lock only after its data is read.



5.2 Practical Considerations

As mentioned above, a truly consistent snapshot of multiple threads requires
simulataneously locking the access of all threads to profiling data until the data
is read. This could have a profound effect on application performance. While this
doesn’t stop the execution of the application, subsequent function entry and exit
operation and event counter operation is blocked until the monitor agent has
obtained the performance data. The possible impact on performance is serious,
especially when one of the goals of the monitoring system is to minimize the
extent of intrusion.

A less costly alternative to an absolutely consistent snapshot is to obtain
an approximately consistent snapshot. This can be done by effectively looping
over each thread, locking its profile data, reading its profile data, then releasing
the lock. What is produced is analogous to a radial sweep radar image. The
only portion of the display that is absolutely current is where the sweep is right
now. The whole image, however, is approximately current. The advantage of this
method is that it only has the potential to affect the execution of one process at
a given time, and the maximum effect on a process is the time it takes to read
that process’s callstack and database images.

6 Runtime Data Access

Accessing data at runtime involves trade-offs between how current the data is,
the timing of access, and the impact of the access on the application. We consider
three passive agent models for runtime monitoring of application profile state:
push, push-pull, and pull.

6.1 Push Model

Figure 2(A) shows the push model of data access to profile data [5,6]. During
execution, the callstack and profile database are updated. Periodically, the ap-
plication pushes current profile data into a block of memory accessible to the
monitor agent, a separately executing thread. The application signals the moni-
tor agent that the data is available. Synchronous access by the monitor requires
the application thread signalling the monitor to block until the monitor agent
signals that data access is complete. If access to the data is asynchronous, the
application thread continues while the monitor operates, later blocking until
data access is finished. The application controls where and when state can be
observed.

The advantage of the push model is that instrumentation in the profiler con-
trols where and how profile data can be accessed, and when it is made available
to the monitor agent. It is possible to maintain better consistency in this case,
but can be intrusive on execution.



—p Data ——3= Data
—w ACCESS (A) (B)
Mech. Buffer e
Application Application

Threads Y Reques Threads + Reques
P Monitor : o Monitor .
Application Agent Client Application Agent Client
Data Data

——3 Data

-] (©)

Application
Threads ; Reques|

. . Monitor .
Application Agent Client

Data

Fig. 2. Models of data access: (A) push model; (B) push-pull model; (C) pull model.

6.2 Push-Pull Model

The push-pull model is shown in figure 2(B) [15]. In this model, profile data is
periodically pushed into a profile data buffer. The monitor agent has constant
access to the the buffer and can pull data from it any time the application is
not writing to the buffer. This solves two of the problems with the simple push
model. First, the application thread does not have to block while the monitor
agent accesses data. Second, the monitor agent can access the data in the buffer
any time the application is not writing to the buffer. However, the data in the
buffer does not reflect changes in the data as the program runs.

6.3 Pull Model

The final model is the pull model as shown in figure 2(C). In this model both
the application thread and the monitor agent have access to the profile data
at all times. When the application thread writes, or the monitor agent reads,
a lock is used, insuring that the data does not change during the read. The
disadvantage of this method is that while the monitor agent has the lock during
a read, the application may block on a write to the database, impacting program
performance.

7 TAU Runtime Monitoring Framework

We have have designed and implemented the TAU runtime monitoring frame-
work that interfaces with the TAU profiling package [14,1]. The goals of this



framework are threefold: provide a consistent snapshot of performance data
within an executing application; allow access to performance data at any point
during execution; and to impose the smallest possible penalty on application
performance.

7.1 Architecture

This system is an implementation of that depicted in figure 2(C). Each monitor
agent in an application context provides access to a monitor client running in
another context. For applications running across multiple contexts, an agent is
present in each context. Hence, a monitoring program can create and manage
multiple monitor clients as a means to interact with agents in multiple contexts.
Each client object can access its agent’s data on demand.

HPC++ [4] is used for both the monitor agent and client; monitoring clients
are implemented as objects. It provides remote function invocation (RMFI) as
well as data transport through global pointers across contexts. RMFT allows the
client to remotely lock and unlock the application’s data and direct the monitor
agent to gather data while global pointers provide the client with remote data
access.

7.2 Functionality

The HPC++ monitor agent is not limited to communication with only one client
object. This allows for multiple client applications in multiple contexts to access
the data from a single application. This allows for collaborative monitoring in
which users on several different systems can use the framework to simultaneously
observe the performance behavior of an application executing on a separate
system.

Also, because the client is an object, any number of them can be created
by a single application, so a single monitoring application can spawn a client
object for each context in an executing application and simultaneously display
data from all contexts as illustrated in figure 3.

7.3 Consistent Snapshots

This framework has the ability to lock the databases and callstack images in
a context simultaneously and independently of when it reads the data. This
provides the user with the ability to enforce consistency within a thread or
among threads. In addition, all threads in all contexts can be locked at the same
time within the limit of how long the system takes to issue one lock command for
each context. Data can be read from each context before its thread is released,
or from all contexts before any thread is released. The user can choose the
tradeoff between the level of consistency of performance data and the potential
performance penalty imposed on the executing application.



—> Profile —> Profile —> Profile
Data Data Data
Application Application Application
Threads Threads Threads
Application | Monitor Application | Monitor Application | Monitor
Context Agent Context Agent Context Agent
Client Client Client
Object Object Object
Data Display
Client Application | —
(Monitor)

Fig. 3. Multiple clients accessing data from multiple application contexts.

Java Run-time Monitor
— Profile 3
ava
Data
INI Application

‘ {
Application
Threads \ Data Display
—/
Application | Monitor ‘ Client —
Context Agent ‘ Object

Fig. 4. Architecture of Java-based runtime monitor

8 Example Monitor Application

We have implemented a runtime TAU profile monitor based on the TAU mon-
itoring framework. Shown in figure 4, the monitor uses a Java-based front end
that interfaces with C++ through the Java Native Interface (JNI). This allows
it to create a client object and attach to an executing application instrumented
with TAU. At user-defined time intervals, the runtime monitor accesses appli-
cation profile data through the monitor agent and displays profile data to the
user.

Three different data displays are available. The Ezclusive Time display (figure
5) provides a per thread overview of the exclusive time spent in each routine. A
bar with contrasting colors graphically depicts the data, while a scrollable color
key shows routines, exclusive times, and percentages. In the Function Detail
display (figure 5), the functions from the database are shown for the selected



Thesad re ciagilay:

o
T~ P04 B P -8
TR iR
FioTarpt M7 ek |
T i T o i )
Vgl R - s ol el
rioTanpd Solana|

P Templl V80 | 1 ESER) e T rgd Taalig b
Ternptiuan: TampiClmoni) [B0us §LI23%) T mpiC iR ey
TerepiOiaes: TernpiC el [§Dus i £.335%) T i e e |
MaTerpd Seeliarag] @S0 18] ITanpi s SeiCor |
Pt T e Wb 10 (i 1 T s ™ (et |

-

Fig. 5. TAU Runtime Monitor Exclusive Time and Function Detail displays.

thread. The function data is shown for the selected function. Also available is a
callstack image.

9 Conclusions

Of the three monitoring models discussed, the TAU runtime monitoring frame-
work is designed for the less-constraining, but more difficult to implement, pull
model. Based on the general computation model in HPC++ and the portabil-
ity of the TAU profiling system, a runtime monitor built from the framework
can target complex monitoring needs for a diversity of parallel and distributed
computing platforms.

Important features of the monitoring framework are its ability to support
multiple levels of monitoring to capture consistent snapshots (single thread,
multi-thread, or multi-context) and multiple monitor client interactions. This
gives monitor developers the flexibility to build runtime monitor solutions spe-
cific to the observational and platform constraints. Additionally, the framework
allows the developer to augment the monitor’s functionality, such as to choose
where monitored data analysis takes place, in the monitor agent or monitor
client.

Our implementation of a Java-based runtime monitor based on this frame-
work demonstrates its use for online access to TAU profiling data. We are
presently pursuing the integration of this monitor in large-scale ASCI appli-
cations.

10 Acknowledgments

This work was supported by the Department of Energy DOE 2000 program
(#DEFC0398ER259986) . We would like to thank the Los Alamos National
Laboratory for their support. Matthew Sottile, and Chad Busche at the Univ.
of Oregon, contributed to the implementation of the system.



References

1. Advanced Computing Laboratory (LANL): TAU Portable Profiling
URL:http://www.acl.lanl.gov/tau. (1998)

2. Chandy, K., Kesselman, C.: CC++: A Declarative Concurrent Object Oriented Pro-
gramming Notation, In Agha, G., Wegner, P., and Yonesawa (Eds.), Research Di-
rections in Concurrent Object Oriented Programming, Cambridge, MA, MIT Press
(1993) pp. 218-313.

3. Cuny, J., Dunn, R., Hackstadt, S., Harrop, C., Hersey, H., Malony, A., Toomey, D.:
Building Domain-Specific Environments for Computational Science: A Case Study
in Seismic Tomography, Intl. Jour. of Supercomputing Applications and High Per-
formance Computing. Vol. 11 (3). (1997).

4. Gannon, D., Beckman, P., Johnson, E., Green, T., Levine, M.: HPC++ and the
HPC++LIB Toolkit, Technical Report Department of Computer Science, Indiana
University (1998).

5. Hackstadt, S., Harrop, C., Malony, A.: A Framework for Interacting with Distributed
Programs and Data, In: Proc. of the Seventh Int’l Symp. on High Performance
Distributed Computing 1998 (HPDC-7). IEEE, July (1998).

6. Hackstadt, S., Malony, A.: DAQV: Distributed Array Query and Visualization
Framework, Journal of Theoretical Computer Science, special issue on Parallel Com-
puting Vol. 196, No. 1-2, April (1998) pp. 289-317.

7. Laure, E., Mehrotra, P., Zima, H.: Opus: Heterogeneous Computing With Data
Parallel Tasks, Technical Report TR 99-04, Institute for Software Technology and
Parallel Systems, University of Vienna URL:http://www.par.univie.ac.at. (1999).

8. Miller, B., Callaghan, M., Cargille, J., Hollingsworth, J., Irvin, R., Karavanic, K.,
Kunchithapadam, K., Newhall, T.: The Paradyne Parallel Performance Measure-
ment Tools, IEEE Computer. Vol. 28(11). Nov (1995).

9. OMG: CORBA/IIOP 2.2 Specification, URL:http://www.omg.org (1998).

10. OpenMP: OpenMP Fortran Interpretations Versions 1.0,
URL:http://www.openmp.org (1999).

11. Reynders, J. et. al.: Pooma: A Framework for Scientific Simulation on Parallel
Architectures, In: Wilson, G., Lu, P. (Eds.): Parallel Programming using C++,
M.L.T. Press (1996) pp. 553-594.

12. Shende, S.: Profiling and Tracing in Linux, In (to appear) Proc. Second Extreme
Linux Workshop, USENIX ’99. (1999)

13. Shende, S., Cuny, J., Hansen, L., Kundu, J., McLaughry, S., Wolf, O.: Event and
State Based Debugging in TAU: A Prototype, Proc. of ACM SIGMETRICS Symp.
on Parallel and Distributed Tools. May (1996) pp. 21-30.

14. Shende, S., Malony, A. D., Cuny, J., Lindlan, K., Beckman, P., Karmesin, S.:
Portable Profiling and Tracing for Parallel, Scientific Applications using C++, Proc.
of ACM SIGMETRICS Symp. on Parallel and Distributed Tools. Aug (1998) pp.
134-145.

15. Shende, S., Malony, A. D., Hackstadt, S.: Dynamic Performance Callstack Sam-
pling: Merging TAU and DAQV. In Kagstrom, B. and Dongarra, J. and Elmroth, E.
and Wasniewski, J. (editors). Applied Parallel Computing, 4th International Work-
shop, PARA’98, Lecture Notes in Computer Science, No. 1541, Springer-Verlag,
Berlin, pp. 515-520, June (1998).

16. The Staff, Advanced Computing Laboratory, Los Alamos National Laboratory:
Taming Complexity in High-Performance Computing. White Paper. Accessible from
URL:http://www.acl.lanl.gov/software. Nov (1998)



