IIIA: General Application Issues

Original Summary

The first application chapter contains an introduction to the others in the section followed by a discussion of general strategies that have been found helpful in parallelizing applications. We will describe an application as a general set of linked entities (a.k.a. a complex system) and initially contrast artificial systems such as financial instruments with physical simulations. In latter case, we contrast microscopic or macroscopic entities and discuss how the different states of matter (fields, classical particle or quantum mechanical) lead to different numerical challenges. We note that some characteristics, such as multiple physical scales and phase transitions are pervasive. We describe broad issues in applications and algorithms including Partial Differential Equations, Particle Dynamics, Circuits, Ordinary Differential Equations, Monte Carlo, Domain Decomposition, Pleasingly Parallel, Metaproblems, heuristic algorithms, data analysis, preconditioning, synchronous, loosely synchronous, regular and irregular. (This list is very mixed up of course -- it will be added to and organized). We discuss differences between illustrative and real applications by contrasting Laplace's equation with Navier Stokes and complex physics in climate simulations. We will try to discuss typical problem sizes and why tera- and peta-(fl)op machines are relevant. Typical issues governing performance are discussed. Maybe we can philosophize as to whether computational science is a science or an art by illustrating how much experimentation is needed to find reliable numerical methods and how different approaches are in seemingly similar Application areas. These general remarks should tie to discussion in the following chapters of section III, which will be summarized in a suitable set of tables.

-------------------------------------------------------------------------------------------------------

Introduction

In chapters I and V of this book, we have described how parallel computers and large-scale simulations have and will have profound impact on many fields. Here we assume this motivation and try to answer the following question:


I have an application -- can it be parallelized and if so, how should this be done and what are appropriate target hardware architectures; what is known about clever algorithms and what are recommended software technologies?


Most of the answers to these questions are implicitly described in other parts of this book and we attempt to aid the reader's identification of where to go by combining an exposition of general principles with several case studies. The latter consists of in depth discussions of several areas including computational fluid dynamics, energy and environmental studies, cosmology and both continuous and discrete optimization. We also have a set of 20 brief discussions of applications illustrating interesting features of their computational structure. So we now step through the thought processes involved in analyzing a given application and in this way illustrate certain general characteristics that are useful in classifying the issues involved in parallelizing general applications.

Applications as Basic Complex Systems

It is useful to think of an application as a "complex system" or a linked set of entities. Simple 2D electrostatic problems can be reduced to solving Laplace's or Poisson's equation and this is often solved numerically by finite difference methods. These could involve adaptive meshes and hierarchical multigrid but in the simplest formulation are set up as a regular grid of field values where the basic iterative update links two dimensional nearest neighbors as in fig. IIIA/1. We get very similar computational structures from other applications such as the 2D Ising Model, which is a fixed grid of spins with a nearest neighbor connection. This has many differences from Laplace's equation: the usual numerical approach uses a Monte Carlo method rather than a differential equation. Further the iterative process is not a perturbative solution to an exact Matrix problem but rather counts Monte Carlo sweeps as one accumulates integration points to decrease the statistical error, which is inversely proportional to the square root of the number of sweeps. However these differences which are so important to the underlying science do not affect very much many of the issues that come up in discussing appropriate parallelization strategies and the needed hardware and software systems. Even closer to our Poisson equation would be an application the solved a simple wave equation (or Maxwell's equations) in a two dimensional domain. Here we see an identical computational structure with the perturbative iteration in the sparse matrix solution replaced by stepping through a discretized time variable. Yet another essentially identical structure can be found in cellular automata problems.
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Fig IIIA/1: A Simplex basic complex system with a set of entities with nearest neighbor linkage to at most four others.
Such problems would usually be parallelized by dividing the two dimensional grid into rectangular sub-domains and making each node of the machine responsible for a sub-domain. On a distributed memory machine, the geometrically local structure of the linked entities, leads to a classic communication structure with the communication volume proportional to surface area (in 2D this is the sides of the rectangle) of each sub-domain while computation is proportional to volume. Further one can usually "block" the communication to transmit all the needed points in one message, although in Monte Carlo and red-black partial differential equation solvers only half the points can be sent at a time. Thus we find the basic result of parallel computing that the overhead decreases (in this case like (volume of sub-domain)1/d in d dimensions) as the problem size increases. To be precise, on a machine with a fixed number of nodes Nnode, the speedup improves as the problem size increases. However in the "scaled speedup" scenario, one maintains the same ratio of Speedup to Nnode if one scales problem size proportional to Nnode so that the sub-domain size stored in each node remains of fixed size. On a hierarchical (cache) memory machine, these problems can perform poorly as number of operations performed on each word fetched into cache is proportional to number of links per entity and this is small (4 in archetypal 2D mesh) in this problem class.

We can extend this very simple problem is several ways. For instance finite element problems have a similar mesh which can be quite irregular (compared to the uniform geometry of most finite difference problems) and this brings load balancing to the fore as an important issue. Particle dynamics problems with a short-range force can exhibit similar structure but with a dynamic irregular structure and a variable number of links per entity. The most obvious and critical generalization of this structure is to higher dimensions with three and even four-dimensional structures.

  So we have seen that is helpful to consider many problems as linked entities arranged in one two three or higher dimensional geometries. This linkage was "short-range" (a few links per entity) in the examples we discussed but one of course finds examples that span the gamut of possibilities. Particles interacting by a long-range gravitational force illustrate a case with many links per entity. This example (using the simple O(N2particle) algorithm has very different properties from the short-range case. In particular the performance of this problem is excellent on both distributed and hierarchical memory machines. There are many (of order Nparticle) computations for any point stored in cache and even though the communication appears heavy in a distributed memory machine, a careful analysis shows a low ratio of communication to computation. This type of long-range problem is found in a variety of fields (including areas like the determination of correlation functions) which are far from particle dynamics but still have the same computational structure.

The above example illustrates another important point. Namely a given physical problem can look quite different depending on the numerical formulation. As described in chapter IIIE, the natural O(N2particle) algorithm is often not the best approach and for large problems, one usually adopts the so called fast multipole method with O(NparticlelogNparticle) )  behavior. A simpler application illustrating the same issue is Laplace's equation, which can often be solved by either iterative local methods such as conjugate gradient, or by the FFT (Fast Fourier Transform). In both cases the obvious approach has a simpler complex system structure while the fast algorithm has a more complicated tree structure. This emphases that a computational scientist uses their skill to convert a given application into a numerical system and it is the structure of the latter that determines the key parallel computing issues.

Above we have noted the rich spatial or geometric structure of applications. Two rather distinct simulation methods, time-stepped and event-driven, correspond to different temporal structures. Most of the examples in this book correspond to the time stepped case where the entities in a complex system are evolved together and synchronized globally either by the concept of time or something essentially equivalent like an iteration or Monte Carlo sweep. This is of course very reasonable, as it is "how nature works". In the early days of parallel computing, there were concerns that the global synchronization implied by the time-stepped approach would lead to uncontrollable overheads. This is not true, for it can be seen that for instance in the simplest nearest neighbor Laplace equation, global time synchronization is implied by the local synchronization of neighboring nodes, either by exchanging messages or the equivalent shared memory mechanism. This synchronization mechanism is itself fully parallel (with no "hotspots" in proper implementations)and so introduces no serious parallel computing overheads.

The military makes substantial use of event-driven simulations in the field of Forces Modeling. Here one tends not to simulate systems in terms of their fundamental constructs (atoms, grid-points etc.) but rather in terms of macroscopic constructs such as vehicles, mines, battalions etc, in the war gaming example. These system components are naturally formulated in terms of objects interacting with events, which are queued (often in a distributed fashion) and executed either in real time (the natural case when there is "hardware in the loop") or according to a global virtual time. Here we do see serious problems with the overhead of global synchronization and very ingenious techniques (such as variants of the Time Warp system with "optimistic" simulation and rollback) have been developed. Currently one of the most powerful parallel event-driven approaches is the SPEEDES system from Metron Corporation. The event-driven approach can also be the most effective approach to circuit simulations where linked devices can be modeled in this fashion.

Temporal Structure of Applications

It has been found useful to divide the temporal structure of numerical systems into four broad areas

· Synchronous:  Here each point can be evolved in synchronous mode as is natural on a SIMD machine. The temporal synchronization is on a point by point basis. Most of the simple examples discussed above are of this type.

· Loosely Synchronous: Here the temporal synchronization is on a sub-domain basis and this is the natural form of SPMD (Single Program Multiple Data) implementations such are all HPF and most MPI programs. This is the dominant case for today's major applications as essentially any serious geometrical or other irregularity converts a problem, which is in its simplest mode synchronous to loosely synchronous form. In particular finite element problems, or finite difference codes with adaptive meshes are loosely synchronous. Domain decomposition in chapter IIID has this structure, as does the fast multipole approach to particle dynamics in chapter IIIE. The simple O(N2particle) particle dynamics algorithm is however synchronous.

· Asynchronous: Event driven simulations fall into class which include those problems which are not formulated in terms of a stepped time or iterator associated with each system entity. As discussed above, asynchronous problems can be very hard to parallelize whereas in principle loosely synchronous applications always run efficiently.

· Pleasingly Parallel: The time or iteration evolution structure of a problem can impact greatly the appropriate software and hardware architecture. However there is one important special case where this is not true -- namely cases where the entities in the system are essentially disconnected. Then each entity can be evolved more or less separately and there is no significant synchronization overhead whatever the differences between the entities. One typically uses a "farm" architecture with worker nodes somehow getting given chunks of the simulation (entities) to do as they finish their previous assignment. This has very non-trivial application dependent implementation issues but such problems will always parallelize well if the problem is large enough. Good examples of this problem class come from the Internet where both large web servers and the backend of database search engines such as Inktomi are of this type. Note this problem class was more crudely termed "embarrassingly parallel" in the past.

Parallelization of Basic Complex Systems

So let us take stock of where we are. Problems are set up as computational or numerical systems and we have discussed one set of such systems, which consist of a space of linked entities. These we termed "basic complex systems" and characterized them by their possibly dynamic spatial (geometric) and temporal structure. We have noted the difference between the structure of the original problem and that of computational system derived from it. We can summarize much of the past experience in parallelizing applications by the conclusion


Synchronous and Loosely Synchronous problems perform well on large parallel machines as long as the problem is large enough. For a given machine, there is a typical sub-domain size (i.e. the grain size or size of that part of the problem stored on each node) above which one can expect to get good performance. There will be a roughly constant ratio of parallel speedup to Nnode if one scales the problem with fixed sub-domain size and total size proportional to Nnode.

Unfortunately although this assertion is probably true in most important cases, it has proven very difficult to design and implement productive programming environments that allow the user to realize this goal. That is why we need to write this book even though in principle success is guaranteed …….

Metaproblems


Several applications can be solely discussed in terms of computational systems, which fall into the basic complex system type discussed above. However this description is often incomplete although it does properly describe key computational modules that are part if not all of the complete application. More generally, one finds metaproblems, which are built up from multiple modules that each can be classified as basic complex systems. Such metaproblems are particularly interesting today, as many of them are the natural applications for computational grids. One tends to run basic complex systems on classic shared or distributed memory machines as these have the required low latency and high bandwidth communication. Separate modules in a metaproblem can often be run on geographically separated machines, as they tend to have much less stringent communication requirements that those needed in the simulation of basic complex systems. Important examples of metaproblems are:

· The 3-way linkage of data store, simulation and visualization subsystems forms one of the most generic metaproblems, which is seen in many different disciplines.

· Multidisciplinary Applications: As discussed in chapter IIIF, there is a growing trend in modern engineering to sophisticated system-wide optimization. For aircraft design, one might simultaneously optimize over fluid flow, structural, acoustic and electromagnetic properties. Each of these corresponds to a separate module in the discussion above. The new DoD initiative in SBA (Simulation Based Acquisition) would need such metaproblems and we illustrate this type of application in fig. IIIA/2.

· An early success of the CASA gigabit network was the simulation of a coupled ocean-atmosphere metaproblem and there is general understanding that such approaches are essential for reliable long-range climate forecasts.

· The forces modeling community often builds such metaproblems where each component is a separate focussed simulation. For example in one example where Syracuse University is involved, one simulation engine is used to describe mine fields and another describes squads of vehicles. You can imagine that these simulations have interesting interactions. In this field, metaproblems are called federations and the basic simulations are termed federates. They have built sophisticated software (RTI for Run Time Infrastructure and HLA for High Level (object) Architecture) to support the federation of multiple event driven simulations.
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Fig IIIA/2. The linked modules in a typical metaproblem. We show three large-scale parallel modules which can be expected to execute on massively parallel systems. The control module is logically separate and may not need high performance computing.
Note that basic complex systems often have huge potential for parallelism with a complex 3D simulation perhaps exhibiting a billion independent degrees of freedom which are candidates for data parallel systems. Metaproblems are different as one typically has but a few independent modules and further the linkage of these modules is often timed asynchronously and so naturally supported by different software concepts than the data parallel sub components. So this way one finds a metaproblem with each module using internally MPI, OpenMP, HPF or equivalent while the modules are linked together thorough channels using perhaps IIOP (CORBA) or RMI (Java). We discuss these different software models more completely in chapter IVF.
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IIIB List of Application Overviews

Original Proposal
One to three pages each on:

1. Black holes (Matzner, Fox) - Drafted

2. Astrophysics (Salmon, Zurek, Ostriker) - Maybe all in Chapter IIIE

3. Earthquakes – Rundle,Fox - Finished

4. Climate – (LANL Malone) - Suggest LANL Start
5. Comp. Chemistry – (Phillips, Kuppermann, Goddard, McKoy, PNL) - Could be several different areas

6. Monte Carlo Methods in General(Geoffrey) - Good Draft

7. QCD (Geoffrey, Rajan, Ceperley) - Suggest LANL Start

8. Accelerators (Ryne – LANL)

9. Plasma Physics (Reynders) - Suggest LANL Start
10. MDO (Geoffrey, Dennis) - Maybe all in Chapter IIIF
11. Financial modeling  (Geoffrey) - Crude Draft
12. Comp. Biology – Keck Center, Rice - 

13. Astronomy – T. Prince

14. Scheduling (Bixby) - Maybe all in Chapter IIIG

15. Materials (Holian, Lomdahl, Goddard)

16. Combustion (Butler, LANL – Colella)

17. Weather (Kelvin Droegemeier CAPS Center Oklahoma)

18. Structural, solid mechanics – (DOD, Ortiz)

19. Forces modeling – (GCF, CACR)

20. CFD (Dan, Herb) - Maybe all in Chapter IIIC
21. Energy and environment (Mary Wheeler) – Maybe all in Chapter IIID
22. Computational Electromagnetics (DoD Modernization)

23. Signal Processing (DoD Modernization, Stan Ahalt OSU)

24. Electrical Transmission Lines (Geoffrey) -- Maybe I can't do

25. Transportation Modelling (Transims Darrell Morgeson, LANL) - Suggest LANL Start
26. Seismic Processing (Ingram retired from Schlumberger) - see SPE article, "Geophysical Applications of Parallel Computing" in 1993;  this is somewhat dated, but it is some of the original, influential work done on CM-2, -200, and -5.

Note some of those areas are quite broad and could generate several distinct summaries. For instance, Chemistry could generate separate overviews corresponding to applications typified by Charmm, Gaussian and Mopack

Template for each application overview but NOT used precisely in current exemplars

1. Application overview and summary – field discussion

2. Focused case study – what was parallelized, technology discussion and results

3. References and resources

4. Computational issues including algorithms, software and comments on performance needs and hardware dependencies

5. What has been done and what needs to be done

------------------------------------------------------------------------------------------------------

IIIB-1 Numerical (General) Relativity

Overview
This field solves numerically the deceptively innocent equation proposed by Einstein in 19XX.

G(( = 8(G T((
 This expresses gravitation geometrically and relates the curvature of space-time (Einstein Tensor G(() to the mass distribution (stress-energy tensor T(() and the indices ( and ( run over 4 index values corresponding to time and three spatial directions. The value of the gravitational constant G is extremely small and this equation reduces to Newtonian dynamics except in regions of extreme gravitational fields. This general theory has been tested in a few well-known cases (such as the bending of light in a stellar gravity field) but has few direct verifiable consequences. Numerical study is motivated by both intellectual curiosity (surely we must try to solve the fundamental macroscopic equations of science) and phenomenological value to new tests of the theory. Recently both Europe and U.S.A. have mounted major experiments to detect the gravity waves predicted by Einstein's equations. One expects that an important source of such waves will be formed by binary black holes which are expected to be the last hurrah of many double stars as the insistently attractive force of gravity pulls their matter into an oblivion from which no information can escape. Einstein's equations can be solved for single black holes in equilibrium but currently only numerical methods can address two interacting black holes. Although there are important variants of this problem such as coupled neutron stars, this field represents the case, common in fundamental science, where the challenge is essentially one very hard problem rather than a complexity stemming from a coupling of many sub-problems into a large system.

The equations treat space and time symmetrically and have a rather different structure from those coming from other fields simulating physical phenomena. One does get coupled partial differential equations as in most fields studying the physical world but they have many special features, which both distinguish this field and put it outside most of the forefront research in the algorithm and applied mathematics community. Note that as the existence of wave solutions suggests, one can view Einstein's equations as "just" a complicated nonlinear version of Maxwell's equations. Correspondingly electromagnetic systems are a useful test environment for some solution techniques. The following characteristics are particularly interesting:

1) There is total freedom in choosing the coordinate system and the equations can change their nature dramatically if one uses this so called gauge freedom. Some coordinate systems can lead to non dynamical singularities and "physical intuition" and a deep understanding of this field is needed to distinguish "science", "numerical problems" and "coordinate system artifacts"

2) One typically sets up the equations as a classic time evolutions with 16 equations with at most first order time derivatives. These equations are nonlinear and cannot be characterized into hyperbolic, parabolic or elliptic form. There is a subset of 4 equations describing the initial conditions and these represent a feasible elliptic subset of the full problem, which have been successfully addressed numerically.

3) At large distances from the strong gravitational fields, one finds wave like solutions, which can be solved, by expansion around the linear limit with a natural light cone coordinate choice. These waves are the experimental measurements and this form represents the "boundary condition at infinity" needed by a solution in the interior region where the strong fields probably require a different coordinate choices.

4) Most distinctive is the interior boundary condition, which is optimally posed in terms of the remarkable physics of a black hole from no information can escape. Translating this into numerically stable boundary conditions is not trivial. Physics implies no information specified inside the black hole can propagate outside. Unfortunately one does not know the so called event horizon, which represents this information barrier. One must however excise the singular region inside the black hole and this is usually done by imposing conditions on the so called apparent horizon which always lies inside the true black hole surface -- the event horizon.

The problem becomes a set of (16) field values defined on a three dimensional spatial grid which has two holes excised -- one for each of the black holes cut off at the apparent horizon. At large distances, outgoing wave solutions are required. As the black holes move, this geometric structure changes. One is required to solve the equations in this geometry for given initial conditions and then to extract the gravitational wave structure as the black holes rotate around each other and eventually spiral into cosmic union. The unusual inner boundary conditions, nonlinear equations and well-known difficulties involving numerical propagation of waves without dissipation all contribute to the numerical challenge.

Current Situation

As with computational electromagnetics, one can in principal look at several solution approaches -- finite difference, finite element and spectral methods. Currently the finite difference method has gathered the most attention although this is not the most convenient at the inner boundary conditions. Remember that in the computational electromagnetism domain, spectral methods (the method of moments) produced the first reliable results. A large Grand Challenge "Binary Black Hole (BBH)" project recently finished and although much important progress was made, it did not produce a fully functional three dimensionally numerically stable code for the binary black hole problem. This project did use several parallel computing technologies described in other sections of the book. In fact the DAGH distributed data structure programming environment was developed as part of this Black Hole Grand Challenge. We also looked at High Performance Fortran, which seems quite attractive because the equations are naturally expressed as tensors for which Fortran 90 is an attractive language. However the compilers were not mature enough when choices had to be made and DAGH was successfully adopted by the collaboration. Still Fortran90 continued to be used and a Perl interface used to map this automatically into DAGH. (Explain why unsuccessful due to special cases). Adaptive meshes are important so as to be able to combine fine resolution near the holes with solutions that extrapolate with the wave solutions at long distances. This was recognized even when the proposal was initially written but adaptive meshes were not used in production during the five-year Grand Challenge project. It was hard to take the existing applied mathematics literature and correctly apply to these complex equations running in parallel. This illustrates the importance of producing more broadly useable software infrastructure to support parallel programming.


We have stressed the freedom available to choose coordinate systems and the BBH collaboration studied two very distinct choices -- the more traditional ADM formulation and a newer "hyperbolic" method developed by York from North Carolina. It is not clear what mix of Physics intuition and computer science infrastructure is most needed. Maybe a brilliant new coordinate system and ingenious physics insight to the inner boundary conditions is all that is needed. Alternatively or more likely in addition, this field needs a powerful problem solving environment supporting tensor notation, parallel adaptive meshes, reliable interpolation technology between regular meshes and irregular dynamic hole boundaries. In either circumstance, one can estimate that at least teraflop class performance will be necessary for the major computations.
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IIIB-3 Simulations of Earthquakes  

Motivation
The importance of simulating earthquakes is intuitively obvious. For instance, the recent January 16, 1995 Kobe, Japan earthquake was only a magnitude 6.9 event and yet produced an estimated $200 billion loss.  Despite an active earthquake prediction program in Japan, this event was a complete surprise. Similar and more drastic scenarios are possible and indeed eventually likely in Los Angeles, San Francisco, Seattle, and other urban centers around the Pacific plate boundary.

There are currently no approaches to earthquake forecasting, which are uniformly reliable. The field uses phenomenological approaches, which attempt to forecast individual events or more reliably statistical analyses giving probabilistic predictions. The development of these methods has been complicated by the fact that large events responsible for the greatest damage repeat at irregular intervals of hundreds to thousands of years, and so the limited historical record that has frustrated phenomenological studies.  Up to now direct numerical simulation has not been extensively pursued due to the complexity of the problem and the (presumed) sensitivity of the occurrence of large events to detailed understanding of both earth constituent make up and the relevant micro-scale physics which determines the underlying friction laws. However recently good progress has been made with a variety of numerical simulations and further both earth and satellite sensors are providing an increasing volume of data, which can be used to constrain and test the numerical simulations. This field is different from most other applications in this book as it so far has made little use of parallel computing and only now is starting its own "Grand Challenges". It is thus not known how important large-scale simulations will be in Earthquake science. Maybe they will never be able to predict the "big one" on the San Andreas fault but nevertheless it is essentially certain that they can provide a numerical laboratory of "semi-realistic" earthquakes with which other more phenomenological methods based on pattern recognition, can be developed and tested. As one can use data assimilation techniques to integrate real-time measurements into the simulations, simulations provide a powerful way of integrating data into statistical and other such forecasting methods.

This field has some individually very hard simulations but it has only just started to use high performance computers. Thus the most promising computations at this stage involve either scaling up existing simulations to large system sizes with modern algorithms or to integrate several component computations with assimilated data to provide early full fault system simulations. The latter has important real-world applications in the area of responding to and planning for crises as one can carry the computations through from initial sensing of stress build up through the structural simulation of building and civil infrastructure responding to propagating waves.

Earthquake science embodies a richness present in many physical sciences as there are effects present spread over ten orders of magnitude in spatial and temporal scales. (See optional figure below).
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Figure: Spatial and Temporal Scales in Earthquake Science

 Success requires linking numerical expertise with the physical insight needed to coarse grain or average the science at a fine scale to be used phenomenologically in simulations at a given resolution of relevance to the questions to be addressed. Again the nonlinear fault systems exhibit a wealth of emergent, dynamical phenomena over a large range of spatial and temporal scales, including space-time clustering of events, self-organization and scaling.  An earthquake is itself a clustering of slipped fault segments as seen in studies of critical phenomena. As in the latter field, one finds (empirically) scaling laws that include the well-known Gutenberg-Richter magnitude-frequency relation, and the Omori law for aftershocks (and foreshocks). Some of the spatial scales for physical fault geometries include:


The microscopic scale (~ 10-6 m to 10-1 m) associated with static and dynamic friction (the primary nonlinearities associated with the earthquake process).


The fault-zone scale (~ 10-1 m to 102 m) that features complex structures containing multiple fractures and crushed rock.


The fault-system scale (102 m to 104 m), in which faults are seen to be neither straight nor simply connected, but in which bends, offsetting jogs and sub-parallel strands are common and known to have important mechanical consequences during fault slip.


The regional fault-network scale (104 m to 105 m), where seismicity on an individual fault cannot be understood in isolation from the seismicity on the entire regional network of surrounding faults. Here concepts such as "correlation length" and "critical state" borrowed from statistical physics have led to new approaches to understanding regional seismicity.


The tectonic plate-boundary scale (105 m to 107 m), at which Planetary Scale boundaries between plates can be approximated as thin shear zones and the motion is uniform at long time scales.

Typical Computational Problems

This field shows many different types of codes which eventually could be linked together to support either real time response to a crisis or fundamental scientific studies. The process of coordinating the field in this area is happening as a national activity in Japan where major computational resources are being deployed. There is also an International effort among several Asia-Pacific nations including USA (the so-called APEC initiative) and an American activity known as GEM for its goal to produce a "General Earthquake Model". We give three distinct computational problems below.

1) Data Assimilation

The initial simulations aimed at helping a crisis response team, would be triggered by the detection of an earthquake event by the many sensors now deployed -- especially in California. Add more information here on types of sensors and future expectations. These sensors give of course incomplete information and they must be assimilated into model simulations to allow the model computations in 2) and 3) below to attempt forecasting of possible aftershock activity and the consequent damage to civil infrastructure. JPL has developed one such code (to process data from the large NASA-NSF-USGS SINE Sensor array). It uses finite elements and complex meshing techniques to represent the complexity of the 3 dimensional earth crust.

2) Earthquake Fault System Simulations -- Virtual California
 With reasonable approximation, you can model the long-term evolution of stresses and strains on interacting fault segments with a Green's function approach. As in other fields this method leads to a boundary (the faults) value formulation, which looks numerically, like the long-range force problem. The faults are paneled with segments (with area of some 100 m2 in definitive computations) which interact as though they were dipoles. The original calculations of this model used the basic O(N2) algorithm but a new set of codes will be using the "fast multipole" method described in chapter YY for astrophysical problems. There are interesting differences between the earthquake and gravitational applications. In gravity we get wide ranges in density and dynamical effects from the natural clustering of the gravitating particles. Earthquake "particles" are essentially fixed on complex fault geometries and their interactions fall off faster than those in the astrophysical problem.

Several variants of this model have been explored including approximations, which only keep interactions between nearby fault segments. These "cellular automata" or "slider-block" models look very like statistical physics with an earthquake corresponding to clusters of particles slipping together when the correlation length gets long near a critical point. The full Green's function approach should parallelize straightforwardly in either O(N2) or multipole formulation. However cellular automata models will be harder as we know from experience with the corresponding statistical physics case where clustering models have been extensively studied.

An interesting aspect of these simulations is that they give the "numerical laboratory" for the study of space-time patterns in seismicity information. This type of analysis was used successfully in climate field to aid the prediction of "El Nino" phenomena. These pattern analyses may or may not need large computational resources although they can involve determination of eigensolutions of large matrices which is potentially time consuming.

3) Earthquake Engineering

The most mature computations in the field are perhaps those used to calculate the response of buildings to seismic waves. In fact Clayton in the Caltech Geophysics department performed one of the very first Caltech Cosmic Cube computations to simulate the motion of earthquake waves in the Los Angeles Basin. This wave motion can in principle be generated from the earthquake "events" calculated in the Virtual California simulations described in 2) above. The wave motion can be used as a forcing function for structural dynamics computations of buildings, roads and other civil infrastructure. These are large scale finite element problems with complex grids and a recent NSF Grand Challenge was very successful in this area.

Computational Resource Requirements

Current evidence suggests that forecasting earthquakes of magnitude ~6 and greater will depend upon understanding the space-time patterns displayed by smaller events; i.e., the magnitude 3's, 4's and 5's.  With at least 40,000 km2 of fault area in southern California, as many as 108 grid sites will be needed to accommodate events down to magnitude 3.  Extrapolations based upon existing calculations indicate that using time steps of ~100 sec implies that ~108 time steps will be required to simulate several earthquake cycles.  This leads to the need for teraflop class computers in this as in many physical simulations. At this stage, we cannot guess how far this class of computer will take us and the systems needed to support research, crisis managers or insurance companies assessing possible earthquake risk, may require much higher performance.
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IIIB-6: Monte Carlo Methods

Monte Carlo Methods are central to the numerical approaches to many fields (especially in physics and chemistry) and by their nature can take substantial computing resources. Note that the error in the computation only decreases like the square root of computer time used compared to the power convergence of most differential equation and particle dynamics based methods. One finds Monte Carlo methods when problems are posed as integral equations and the often-high dimension integrals are solved by Monte Carlo methods using a randomly distributed set of integration points. Quantum Chromodynamics (QCD) simulations are a classic example of large-scale Monte Carlo simulations which perform excellently on most parallel machines.  As described in Chapter 4 of PCW, this application is straightforward to parallelize and very suitable for HPF as the basic data structure is an array.  The array represents a regular structure in space-time as seen in the simplest finite different problems.  The Monte Carlo occurs at each grid point and is typically local (nearest neighbor) so that the overall problem architecture is just like that of a partial differential equation (PDE).  This specific computation is from an academic field, but is typical in structure of some practical material science problems.  Further, just as many PDE's have irregular data structures, the same is true of many Monte Carlos. QCD is typical of simulations of crystalline substances with a regular array of atoms.  However, many substances---in particular gases and liquids---have irregular particle distributions and exhibit many of issues discussed briefly in chapter IIIA for finite element methods.  As described in Chapter 14 of PCW, there is a subtle point that distinguishes Monte Carlo and PDE algorithms, as one cannot simultaneously update in Monte Carlo, sites with overlapping neighbors.  This complicates the loosely synchronous structure and can make problem architecture look like that of asynchronous event driven simulations---here events are individual Monte Carlo updates. ``Detailed balance'' requires that such events be sequentially (if arbitrarily) ordered.  In the example of (Johnson:86a) described in PCW, a clever implementation gave good parallel performance in spite of the asynchronous structure.

Many special purpose machines have been built for Monte Carlo based problems -- especially the regular QCD like cases which have special features that make "conventional parallel machines overkill". The intense computational load of QCD implies that a different trade-off between computational power and memory and communication bandwidth is appropriate. Often the codes are quite modest (say 10,000 lines of code or less) and so a rich software environment is not necessary and one can optimize the inner loops in either hardware or software. Recent specialized machines of note include those in Japan and from Norman Christ's group at Columbia University in the USA. [QCDJapan, QCDChrist]

One important aspect of parallel Monte Carlo methods is the generation of random numbers which need to be independent and unbiased. As described in the National High Performance Software Exchange review article [Coddington:96a] this can be achieved by modifying the basic generators of the many different sequential generators. We emphasize that numerical generation of unbiased (pseudo) random numbers is highly non trivial and all applications requiring this should evaluate and check their generators.

As in most computational domains, considerable application expertise is needed to generate realistic codes -- computer scientists cannot "just" implement the basic physics equations. In many sparse matrix approaches to PDE's one uses preconditioners to improve the convergence of iterative methods such as conjugate gradient. Preconditioners can be thought of as reducing the modulus of the largest eigenvalue of the iteration matrix. In the case of Monte Carlo methods one uses "importance sampling" to improve the convergence. This is essentially equivalent to changing variables in the numerical integrals to reduce the standard deviation ( of the integrand where we remember that the error is proportional to (/√N, for a simulation of N steps. The fundamental Metropolis algorithm illustrates importance sampling as it transforms away a term exp(- Energy term proportional to System size) which otherwise would give a standard deviation that was prohibitively large. This basic step is coupled with subtle application specific choices in most realistic simulations.

Monte Carlo methods can be implemented quite differently---above we decomposed the underlying physical data.  One can also use ``data parallelism'' on the random number set used in the simulation.  This is not possible for QCD for two reasons.  Firstly, the physical dataset is so large it would not fit in the memory of a single node---we need to decompose the physical dataset just to get enough total memory.  More importantly, one can run QCD with several different starting points.  However, all Monte Carlos---using importance sampling of the Metropolis [Metropolis:53a] type employed by QCD---have a ``thermalization stage'' where one must get ``into equilibrium'' before the sampling is useful.  Thermalization is very time consuming for QCD and makes multiple starting points of limited value.  However, there are many cases where this is not true, and as shown in Chapter 7 of PCW, one can get a pleasingly parallel architecture for Monte Carlo problems.  Each instance of the problem has the full physical dataset, but can be run independently with different random number streams.  Like many such pleasingly parallel cases, the different instances do need to accumulate their data---in this case, Monte Carlo averages.  One important examples of this class of application is Quantum Monte Carlo used in many ab initio chemistry problems (Kalos:85a). One class of Monte Carlo applications that can usually employ the pleasingly parallel approach are those aimed at simulated accelerators, large experimental apparati etc. Here one often has a model for a proposed contraption and one must test it in many different scenarios. For the physics use of this method, testing involves generation of sample particles and tracking them through the proposed hardware and perhaps also the full software analysis system. Each particle can be tracked independently and there are essentially no difficulties analogous to thermalization discussed for the theoretical Monte Carlo simulations. Thermalization only occurs when one must generate a whole set of Monte Carlo points, which properly represent a system described by Metropolis or other sophisticated importance sampling. Thermalization implies generating unbiased points in the "important regions" while in the experimental Monte Carlos each generated point is typically quite simple. The complexity comes in tracking it through the system to be tested.

Yet, a different set of issues comes with a class of Monte Carlo problems, which are termed ``clustered.''  In most physical system Monte Carlos, one updates a single ``entity'' (grid point or particle) at a time.  This is very ineffective when there is substantial correlation between neighboring points.  A simple example comes from ferromagnetic materials where domains form where spins are locked in the same direction over large regions.  Clustering algorithms are quite hard to find for sequential systems, and their parallelization is extremely challenging and very different from the earlier examples. As discussed in Section 12.6 of PCW, the algorithm is similar to that used in region finding in image processing (Copty:95a).  Parallelism requires consideration (as in domain decomposition for PDEs) of inter and intra-region issues.

As described in a separate case study, Monte Carlo methods are the most powerful approach to many economic modeling problems although some of the more interesting derivative options need sophisticated extensions to the basic technique.  This field shows a generalization to metaproblems when pricing a full portfolio consisting of many separate financial instruments.
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IIIB-11:Computational Finance

Overview
This field has grown rapidly and many physics and applied mathematics techniques have proven to be very useful in it. The ability to calculate the value of complex financial packages allows one to make accurate buy-sell decisions quickly and this gives a competitive advantage to the organization with the most sophisticated simulations. This is particularly true for derivative financial instruments, which are often complex functions of the basic variables such as stock prices and interest rates. Further a portfolio contains many different instruments -- often combined in clever ways to hedge one's investment so that it will keep its value in a variety of different future scenarios. Thus computational finance needs both large-scale simulation and efficient optimization techniques. Further powerful modeling systems are needed so as to be able to conveniently support many different estimation modules (corresponding to the diversity of instruments) within a given simulation framework. This encourages the use object oriented approaches using C++ or Java. The financial value of this application implies that much of the best work in the field is viewed as proprietary and not available in the open literature.

Simulation Framework

One needs to calculate one or more functions at some future time by integrating over the possible future values of the underlying variables. These future values are given by models based on the past behavior of the stock. This can be captured in some cases by the volatility or standard deviation of the stock. The simplest model is perhaps the Black-Scholes equation, which can be derived from a Gaussian stock distribution, combined with an underlying "no-arbitrage" assumption. This asserts that the stock market is always in equilibrium instantaneously and there is no opportunity to make money by exploiting mismatches between buy and sell prices. In a physics language, the different players in the stock market form a heat bath, which keeps the market in adiabatic equilibrium.

The are two major approaches to choosing the future paths for more complex cases where analytic methods are insufficient. In the binomial method, one chooses two possible next steps at each point and further arrange these so that neighboring points overlap -- as one steps from t to t+(t, one goes from N to N+1  (and not 2N) points in one dimension. This method is not particularly computationally intense and straightforward to parallelize. It gives reliable results in many basic computations. The most complex simulations will use a variant of Monte Carlo methods, which give maximal flexibility and power at the cost of enormous increase in needed simulation time. This can predict arbitrary functions and makes no assumptions. It can easily be parallelized, as each path to the future is independent. There is one important type of computation, which is particularly difficult for the Monte Carlo methods. These involve "American" options and similar derivative instruments where the holder of this security can choose to exercise it at any time. Unfortunately this implies that at every Monte Carlo step one should in principle perform a new simulation to decide if the option will be exercised. One must circumvent this difficulty either by approximations or by using hybrids of binomial and Monte Carlo formulations where there are enough additional points nearby  to each point where this exercise decision must be made, to be able to perform a point by point ":no-arbitrage" computation. This inevitably correlates the choice of paths and correspondingly gives more complex simulations which are harder to parallelize
