DOCTORAL DEFENSE

OCT??, 1998 1:00PM at 2-216 CST

NEATTOOLS-A
FINE-GRAINED
 DATA FLOW NETWORK PROGRAMMING ENVIRONMENT

by

Yuh-Jye Chang

ABSTRACT OF DISSERTATION

This thesis focuses on a new way of constructing a data flow visual programming environment - NeatTools. I discuss NeatTools' modeling concept, the experiments, key issues, results and future suggestions. In order to provide an visual programming environment for human computer interface data flow network, I propose the abstract module model which simplify the interactions between modules into active and reactive actions.

A programming environment have to be implemented on a programming language before the computer science experiments could proceed. In this thesis, I discuss the cons and pros between C/C++ and Java. Later on I discuss and compare NeatTools with the Object Management Environments, Modeling Language, and some commercial visual programming tools.

�

NEATTOOLS-A
FINE-GRAINED
 DATA FLOW NETWORK PROGRAMMING ENVIRONMENT

By

YUH-JYE CHANG

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Information Science in the Graduate School of Syracuse University

Dec 1998

Approved _________________________

Professor Geoffrey Fox

Date _____________________________

�

Copyright 1998 Yuh-Jye Chang

All rights Reserved

��CONTENTS

� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc428724230 � PAGEREF _Toc428724230 �1��

2. Project Requirements	� GOTOBUTTON _Toc428724231 � PAGEREF _Toc428724231 �2��

3. C++ vs. Java	� GOTOBUTTON _Toc428724232 � PAGEREF _Toc428724232 �3��

3.1 Java Background	� GOTOBUTTON _Toc428724233 � PAGEREF _Toc428724233 �3��

3.2 Benchmark	� GOTOBUTTON _Toc428724234 � PAGEREF _Toc428724234 �4��

3.3 Benchmark Analyze	� GOTOBUTTON _Toc428724235 � PAGEREF _Toc428724235 �7��

3.4 Conclusion	� GOTOBUTTON _Toc428724236 � PAGEREF _Toc428724236 �8��

4. NeatTools Architecture Analyze	� GOTOBUTTON _Toc428724237 � PAGEREF _Toc428724237 �8��

4.1 Module Abstraction	� GOTOBUTTON _Toc428724238 � PAGEREF _Toc428724238 �9��

4.1.1 Data	� GOTOBUTTON _Toc428724239 � PAGEREF _Toc428724239 �10��

4.1.1.1 The presentation	� GOTOBUTTON _Toc428724240 � PAGEREF _Toc428724240 �11��

4.1.1.2 Access privilege	� GOTOBUTTON _Toc428724241 � PAGEREF _Toc428724241 �11��

4.1.1.3 The desktop	� GOTOBUTTON _Toc428724242 � PAGEREF _Toc428724242 �12��

4.1.2 Actions	� GOTOBUTTON _Toc428724243 � PAGEREF _Toc428724243 �12��

4.1.2.1 Active (Output) action	� GOTOBUTTON _Toc428724244 � PAGEREF _Toc428724244 �12��

4.1.2.2 Reactive (Input) action	� GOTOBUTTON _Toc428724245 � PAGEREF _Toc428724245 �13��

4.1.3 Connections	� GOTOBUTTON _Toc428724246 � PAGEREF _Toc428724246 �13��

4.2 Implementation Concept	� GOTOBUTTON _Toc428724247 � PAGEREF _Toc428724247 �14��

4.3 Benchmark Information on NeatTools	� GOTOBUTTON _Toc428724248 � PAGEREF _Toc428724248 �15��

4.4 Benchmark Analyze on NeatTools	� GOTOBUTTON _Toc428724249 � PAGEREF _Toc428724249 �16��

4.5 Conclusion	� GOTOBUTTON _Toc428724250 � PAGEREF _Toc428724250 �17��

5. NeatTools and Object Management Environments	� GOTOBUTTON _Toc428724251 � PAGEREF _Toc428724251 �17��

5.1 CORBA	� GOTOBUTTON _Toc428724252 � PAGEREF _Toc428724252 �17��

5.1.1 Object Definition	� GOTOBUTTON _Toc428724253 � PAGEREF _Toc428724253 �17��

5.1.2 CORBA provide Object Interoperability	� GOTOBUTTON _Toc428724254 � PAGEREF _Toc428724254 �18��

5.1.3 OMA provide Application-Level Integration	� GOTOBUTTON _Toc428724255 � PAGEREF _Toc428724255 �18��

5.2 COM/DCOM	� GOTOBUTTON _Toc428724256 � PAGEREF _Toc428724256 �19��

5.2.1 Objects and Interfaces	� GOTOBUTTON _Toc428724257 � PAGEREF _Toc428724257 �19��

5.2.2 Interface Description Language (IDL)	� GOTOBUTTON _Toc428724258 � PAGEREF _Toc428724258 �20��

5.2.3 Service Control Manager (SCM)	� GOTOBUTTON _Toc428724259 � PAGEREF _Toc428724259 �20��

5.3 Compare COBRA and COM/DCOM	� GOTOBUTTON _Toc428724260 � PAGEREF _Toc428724260 �20��

5.4 Benchmark Information on CORBA	� GOTOBUTTON _Toc428724261 � PAGEREF _Toc428724261 �21��

5.5 Benchmark Analyze on CORBA	� GOTOBUTTON _Toc428724262 � PAGEREF _Toc428724262 �23��

5.6 Conclusion	� GOTOBUTTON _Toc428724263 � PAGEREF _Toc428724263 �23��

6. NeatTools and Modeling Languages	� GOTOBUTTON _Toc428724264 � PAGEREF _Toc428724264 �24��

6.1 Colored Petri-Net	� GOTOBUTTON _Toc428724265 � PAGEREF _Toc428724265 �24��

6.1.1 Introduction	� GOTOBUTTON _Toc428724266 � PAGEREF _Toc428724266 �25��

6.1.2 Why use CP-nets?	� GOTOBUTTON _Toc428724267 � PAGEREF _Toc428724267 �25��

6.1.3 Analysis of CP-nets	� GOTOBUTTON _Toc428724268 � PAGEREF _Toc428724268 �26��

6.1.4 Design/CPN	� GOTOBUTTON _Toc428724269 � PAGEREF _Toc428724269 �26��

6.1.5 Conclusion	� GOTOBUTTON _Toc428724270 � PAGEREF _Toc428724270 �27��

6.2 UML (Unified Modeling Language)	� GOTOBUTTON _Toc428724271 � PAGEREF _Toc428724271 �28��

6.2.1 Introduction	� GOTOBUTTON _Toc428724272 � PAGEREF _Toc428724272 �29��

6.2.2 UML definition	� GOTOBUTTON _Toc428724273 � PAGEREF _Toc428724273 �29��

6.2.3 Development Project Artifacts	� GOTOBUTTON _Toc428724274 � PAGEREF _Toc428724274 �30��

6.2.4 Programming Languages	� GOTOBUTTON _Toc428724275 � PAGEREF _Toc428724275 �30��

6.2.5 Conclusion	� GOTOBUTTON _Toc428724276 � PAGEREF _Toc428724276 �31��

7. NeatTools and Other Visual Programming Tools	� GOTOBUTTON _Toc428724277 � PAGEREF _Toc428724277 �31��

7.1 Microsoft Visual Series on C++, Basic, J++	� GOTOBUTTON _Toc428724278 � PAGEREF _Toc428724278 �31��

7.1.1 Introduction	� GOTOBUTTON _Toc428724279 � PAGEREF _Toc428724279 �31��

7.1.2 Conclusion	� GOTOBUTTON _Toc428724280 � PAGEREF _Toc428724280 �32��

7.2 Java Bean	� GOTOBUTTON _Toc428724281 � PAGEREF _Toc428724281 �33��

7.2.1 Introduction	� GOTOBUTTON _Toc428724282 � PAGEREF _Toc428724282 �33��

7.2.2 Conclusion	� GOTOBUTTON _Toc428724283 � PAGEREF _Toc428724283 �34��

7.3 LabView	� GOTOBUTTON _Toc428724284 � PAGEREF _Toc428724284 �35��

7.3.1 Introduction	� GOTOBUTTON _Toc428724285 � PAGEREF _Toc428724285 �35��

7.3.2 Data flow Programming	� GOTOBUTTON _Toc428724286 � PAGEREF _Toc428724286 �36��

7.3.3 Graphical Compiler	� GOTOBUTTON _Toc428724287 � PAGEREF _Toc428724287 �36��

7.3.4 Multithreading	� GOTOBUTTON _Toc428724288 � PAGEREF _Toc428724288 �36��

7.3.5 Conclusion	� GOTOBUTTON _Toc428724289 � PAGEREF _Toc428724289 �37��

7.4 AVS/Express	� GOTOBUTTON _Toc428724290 � PAGEREF _Toc428724290 �38��

7.4.1 Introduction	� GOTOBUTTON _Toc428724291 � PAGEREF _Toc428724291 �38��

7.4.2 The Graphics Display Kit	� GOTOBUTTON _Toc428724292 � PAGEREF _Toc428724292 �39��

7.4.3 The Data Visualization Kit	� GOTOBUTTON _Toc428724293 � PAGEREF _Toc428724293 �39��

7.4.4 The Database Kit	� GOTOBUTTON _Toc428724294 � PAGEREF _Toc428724294 �40��

7.4.5 Visual Programming	� GOTOBUTTON _Toc428724295 � PAGEREF _Toc428724295 �40��

7.4.6 Conclusion	� GOTOBUTTON _Toc428724296 � PAGEREF _Toc428724296 �40��

8. Experiments/Applications	� GOTOBUTTON _Toc428724297 � PAGEREF _Toc428724297 �41��

8.1 Description	� GOTOBUTTON _Toc428724298 � PAGEREF _Toc428724298 �41��

8.2 Basic Issues	� GOTOBUTTON _Toc428724299 � PAGEREF _Toc428724299 �41��

8.3 Ideas and approaches	� GOTOBUTTON _Toc428724300 � PAGEREF _Toc428724300 �41��

8.4 Results	� GOTOBUTTON _Toc428724301 � PAGEREF _Toc428724301 �41��

8.5 Conclusion	� GOTOBUTTON _Toc428724302 � PAGEREF _Toc428724302 �41��

9. NeatTools' Visual Programming Features	� GOTOBUTTON _Toc428724303 � PAGEREF _Toc428724303 �41��

9.1 Introduction	� GOTOBUTTON _Toc428724304 � PAGEREF _Toc428724304 �41��

9.2 Multi-Thread Features	� GOTOBUTTON _Toc428724305 � PAGEREF _Toc428724305 �43��

9.3 Keyboard and Mouse Event Simulator/Filter	� GOTOBUTTON _Toc428724306 � PAGEREF _Toc428724306 �44��

9.4 Networking and TCP/IP	� GOTOBUTTON _Toc428724307 � PAGEREF _Toc428724307 �46��

9.5 Container Nest Structure (Complex Module)	� GOTOBUTTON _Toc428724308 � PAGEREF _Toc428724308 �47��

9.6 Transfer Focus among Text Fields	� GOTOBUTTON _Toc428724309 � PAGEREF _Toc428724309 �47��

9.7 Polymorph Data Type	� GOTOBUTTON _Toc428724310 � PAGEREF _Toc428724310 �49��

9.8 Multimedia Features	� GOTOBUTTON _Toc428724311 � PAGEREF _Toc428724311 �50��

9.9 Multimedia Database	� GOTOBUTTON _Toc428724312 � PAGEREF _Toc428724312 �51��

9.10 External Module and Dynamic Link Library	� GOTOBUTTON _Toc428724313 � PAGEREF _Toc428724313 �53��

9.11 State Machine	� GOTOBUTTON _Toc428724314 � PAGEREF _Toc428724314 �54��

10. Future Development	� GOTOBUTTON _Toc428724315 � PAGEREF _Toc428724315 �55��

10.1 Aggregate DataType.	� GOTOBUTTON _Toc428724316 � PAGEREF _Toc428724316 �55��

10.2 Connection Visibility	� GOTOBUTTON _Toc428724317 � PAGEREF _Toc428724317 �56��

10.3 Undo/Redo Features	� GOTOBUTTON _Toc428724318 � PAGEREF _Toc428724318 �56��

10.4 Artistic Modules	� GOTOBUTTON _Toc428724319 � PAGEREF _Toc428724319 �57��

11. Conclusion	� GOTOBUTTON _Toc428724320 � PAGEREF _Toc428724320 �57��

12. Appendix	� GOTOBUTTON _Toc428724321 � PAGEREF _Toc428724321 �57��

12.1 NeatTools Reference Manual	� GOTOBUTTON _Toc428724322 � PAGEREF _Toc428724322 �57��

12.1.1 NeatTools Module Specification:	� GOTOBUTTON _Toc428724323 � PAGEREF _Toc428724323 �57��

12.1.2 NeatTools Class Hierarchy:	� GOTOBUTTON _Toc428724324 � PAGEREF _Toc428724324 �88��

12.2 NeatTools Architecture	� GOTOBUTTON _Toc428724325 � PAGEREF _Toc428724325 �96��

12.2.1 Three-Layer Architecture	� GOTOBUTTON _Toc428724326 � PAGEREF _Toc428724326 �97��

12.2.2 Package structure	� GOTOBUTTON _Toc428724327 � PAGEREF _Toc428724327 �99��

12.2.3 OS and C++ runtime Package	� GOTOBUTTON _Toc428724328 � PAGEREF _Toc428724328 �100��

12.2.4 Java-like API package	� GOTOBUTTON _Toc428724329 � PAGEREF _Toc428724329 �101��

12.2.4.1 LANG package	� GOTOBUTTON _Toc428724330 � PAGEREF _Toc428724330 �103��

12.2.4.2 UTIL package	� GOTOBUTTON _Toc428724331 � PAGEREF _Toc428724331 �104��

12.2.4.3 IO package	� GOTOBUTTON _Toc428724332 � PAGEREF _Toc428724332 �105��

12.2.4.4 NET package	� GOTOBUTTON _Toc428724333 � PAGEREF _Toc428724333 �106��

12.2.4.5 AWT package	� GOTOBUTTON _Toc428724334 � PAGEREF _Toc428724334 �106��

12.2.5 NeatTools application package	� GOTOBUTTON _Toc428724335 � PAGEREF _Toc428724335 �108��

12.2.5.1 NEAT package	� GOTOBUTTON _Toc428724336 � PAGEREF _Toc428724336 �110��

12.2.5.2 Modules package	� GOTOBUTTON _Toc428724337 � PAGEREF _Toc428724337 �113��

12.2.5.3 External modules package	� GOTOBUTTON _Toc428724338 � PAGEREF _Toc428724338 �113��

12.2.5.4 DESKTOP package	� GOTOBUTTON _Toc428724339 � PAGEREF _Toc428724339 �114��

12.3 Module Programming Introduction	� GOTOBUTTON _Toc428724340 � PAGEREF _Toc428724340 �114��

12.3.1 Module Event Broadcast Model	� GOTOBUTTON _Toc428724341 � PAGEREF _Toc428724341 �114��

12.3.2 Basic Methods in Module	� GOTOBUTTON _Toc428724342 � PAGEREF _Toc428724342 �118��

12.3.3 Information Methods in Module	� GOTOBUTTON _Toc428724343 � PAGEREF _Toc428724343 �119��

12.3.3.1 JString inputTag(int n), JString outputTag(int n)	� GOTOBUTTON _Toc428724344 � PAGEREF _Toc428724344 �120��

12.3.3.2 int inputType(int n), int outputType(int n)	� GOTOBUTTON _Toc428724345 � PAGEREF _Toc428724345 �120��

12.3.3.3 boolean inputAllowed(int n), boolean outputAllowed(int n)	� GOTOBUTTON _Toc428724346 � PAGEREF _Toc428724346 �121��

12.3.3.4 int inputFace(int n), int outputFace(int n)	� GOTOBUTTON _Toc428724347 � PAGEREF _Toc428724347 �121��

12.3.3.5 JFRect inputArea(int n), JFRect outputArea(int n)	� GOTOBUTTON _Toc428724348 � PAGEREF _Toc428724348 �122��

12.3.3.6 JFPoint inputPoint(int n, class JLinkObj& link), JFPoint outputPoint(int n, class JLinkObj& link)	� GOTOBUTTON _Toc428724349 � PAGEREF _Toc428724349 �123��

12.3.4 Display Related Methods in Module	� GOTOBUTTON _Toc428724350 � PAGEREF _Toc428724350 �124��

12.3.5 Module persistency related Methods	� GOTOBUTTON _Toc428724351 � PAGEREF _Toc428724351 �127��

12.3.6 Property Related Methods in Module	� GOTOBUTTON _Toc428724352 � PAGEREF _Toc428724352 �129��

12.3.7 About Polymorph Data Type	� GOTOBUTTON _Toc428724353 � PAGEREF _Toc428724353 �131��

12.3.8 Use Thread in Module	� GOTOBUTTON _Toc428724354 � PAGEREF _Toc428724354 �131��

12.3.9 Concurrency Issues when Design Module	� GOTOBUTTON _Toc428724355 � PAGEREF _Toc428724355 �133��

13. Bibliography	� GOTOBUTTON _Toc428724356 � PAGEREF _Toc428724356 �135��

��

FIGURES

� TOC \t "Figure Index,1" \c "Figure" �Figure 1: Top-level packages	� GOTOBUTTON _Toc420867270 � PAGEREF _Toc420867270 �70��

Figure 2: OS and C++ runtime layer	� GOTOBUTTON _Toc420867271 � PAGEREF _Toc420867271 �71��

Figure 3: Java like cross-platform API layer	� GOTOBUTTON _Toc420867272 � PAGEREF _Toc420867272 �72��

Figure 4: Exceptions class diagram in Java like API layer	� GOTOBUTTON _Toc420867273 � PAGEREF _Toc420867273 �73��

Figure 5: NeatTools application layer	� GOTOBUTTON _Toc420867274 � PAGEREF _Toc420867274 �79��

Figure 5: Property in NEAT package	� GOTOBUTTON _Toc420867275 � PAGEREF _Toc420867275 �80��

Figure 7: NEAT package (continue)	� GOTOBUTTON _Toc420867276 � PAGEREF _Toc420867276 �81��

�

TABLES

� TOC \t "Table Index,1" \c "Table" �Table 1: Summary of layers	� GOTOBUTTON _Toc420867285 � PAGEREF _Toc420867285 �68��

Table 2: Classes of LANG package	� GOTOBUTTON _Toc420867286 � PAGEREF _Toc420867286 �74��

Table 3: Classes of UTIL package	� GOTOBUTTON _Toc420867287 � PAGEREF _Toc420867287 �75��

Table 4: Classes of IO package	� GOTOBUTTON _Toc420867288 � PAGEREF _Toc420867288 �76��

Table 5: Classes of NET package	� GOTOBUTTON _Toc420867289 � PAGEREF _Toc420867289 �76��

Table 6: Classes of AWT package	� GOTOBUTTON _Toc420867290 � PAGEREF _Toc420867290 �78��

Table 7: Classes of NEAT package	� GOTOBUTTON _Toc420867291 � PAGEREF _Toc420867291 �83��

�

�

Introduction

NeatTools is a visual programming software package with which a user can create module linkage networks for data collection, gesture recognition, control of external devices, virtual world control, remote collaboration, and perceptual modulation. Some of NeatTools' functionality is ported from Neat Software developed for Dr. Dave Warner at the Institute for Interventional Informatics from 1993 to 1996.

In NeatTools, different modules are selected, placed in a work area, and then connected by lines. These connections indicate a data flow from one module to another. The data flow may be comprised of various data types (e.g., integer, real number, string, MIDI event, wave stream, video stream, etc.). NeatTools provides multi-threaded, real time support in module design which is not supported by most commercial visual programming tools. These features bring a NeatTools user full power to access the resources inside the computer.

The software is written in C++ and built on top of a Java-like Cross Platform C++ API (application programming interface). We decided against using Java at this time because we need the software to be capable of handling real time computationally intensive tasks like audio, video, compression, decompression, VR, etc. We designed the graphical user interface (GUI) API after the Java API standard as all features implemented in a Java API are intrinsic to standard windows systems like Microsoft Windows and X Windows. By hiding all platform-dependent code inside the API, we achieve our goal of a cross platform application by maintaining only one code package. Currently, NeatTools can compile and run on Win95, WinNT, LINUX, Sun, and SGI. On Win95, or WinNT we use Microsoft Visual C++ 5.0. On UNIX we use GNU GCC 2.7.2.

The NeatTools environment is extensible. New modules can be added by invoking dynamic linkage libraries which specify an implementation of the module. Later, a user can use it just like any predefined module and create new module linkage networks.

Project Requirements

General Human Interface Tool. Can adapt to any external industry or in-house devices.

Able to handle complex, real-time, and calculate intensive task.

Support full multimedia function. Enable user to control, manipulate and transform different multimedia data and information.

A visual programming environment. Enable user to design and implementation complete application without the need to write any textual code.

Scalability and cross platform.

The most important constrain is money, we understand most disable people could not afford to have expensive software and hardware equipment. We want this software package free downloadable from the Web or with moderate license fee in special cases.

C++ vs. Java

NeatTools is an experimental computer science project. Before we can make any experiment, we have to have a tool or environment. On top of it, we than can build and test our design concept and proceed the experiment itself. So, the first step was to implement such a visual programming tool. The question was which language to use to implement the tool so it will meet all the requirements and has the potential for the future development. Here, C/C++ is the industry standard and Java is a rapid develop and well adopted new language. I dedicated the following sections to discuss the cons and pros of this two popular languages.

Java Background

Java is an object-oriented programming language developed by Sun Microsystems, a company best known for its high-end Unix workstations. Modeled after C++, the Java language was designed to small, simple, and portable across platforms and operating systems, both at the source and at the binary level.

Platform independence is one of the significant advantages that Java has over other programming languages. At the source level, Java's primitive data types have consistent sizes across all development platforms. Java's foundation class libraries make it easy to write code that can be moved from platform to platform without the need to rewrite it to work with that platform. Java binary files are also platform-independent and can run on multiple platforms without the need to recompile the source. How this work? Java binary files are actually in a form called bytecodes. Unlike most other programming language, Java development environment has two parts: a Java compiler and a Java interpreter. The Java compiler takes Java program and instead of generating machine code from source files, it generates bytecodes. To run a Java program, user run a program called a bytecode interpreter, which in turn executes Java program. User can either run the interpreter by itself, or for applets there is a bytecode interpreter built into Java-capable or enabled browser like Netscape or Microsoft Internet Explorer that runs the applet.

The disadvantage of using bytecodes is in execution speed. Because system-specific programs run directly on the hardware for which they are compiled, they run significantly faster than Java bytecodes which must be processed by the Java interpreter. In order to increase the performance of Java bytes, some companies are dedicate on accelerating the bytecode. JIT (just in time) interpreter is one of the technology that are widely adapted into the commercial Web browser. JIT interpreter usually load the Java bytecodes preprocess it into system-specific code in a dynamically fashion and then execute the system-specific code directly.

Benchmark

I wrote a simple Java benchmark program:

import java.applet.Applet;

public class benchmark extends Applet {

 public int dummy(int i) { return i;}

 public void start() {

 int i, x;

 x = 0;

 System.out.println("Benchmark Start");

 long b1 = System.currentTimeMillis(), b2;

 for (i=0; i<100000000; i++) {

 }

 b2 = System.currentTimeMillis();

 System.out.println("Empty For Loop "+(b2-b1));

 b1 = b2;

 for (i=0; i<100000000; i++) {

 x += i;

 }

 b2 = System.currentTimeMillis();

 System.out.println("For Loop with + and assign "+(b2-b1));

 b1 = b2;

 for (i=0; i<100000000; i++) {

 x *= i;

 }

 b2 = System.currentTimeMillis();

 System.out.println("For Loop with * and assign "+(b2-b1));

 b1 = b2;

 for (i=0; i<100000000; i++) {

 x += dummy(i);

 }

 b2 = System.currentTimeMillis();

 System.out.println("For Loop with function call and assign "+(b2-b1));

 }

}

Translate the Java program into C++ would be:

#include <stdio.h>

#include <sys/timeb.h>

long currentTimeMillis() {

 struct _timeb tstruct;

 _ftime(&tstruct);

 return tstruct.time*1000+tstruct.millitm;

}

class benchmark {

 public:

 int dummy(int i) { return i;}

 void start() {

 int i, x;

 x = 0;

 printf("Benchmark Start\n");

 long b1 = currentTimeMillis(), b2;

 for (i=0; i<100000000; i++) {

 }

 b2 = currentTimeMillis();

 printf("Empty For Loop %d\n", b2-b1);

 b1 = b2 = currentTimeMillis();

 for (i=0; i<100000000; i++) {

 x += i;

 }

 b2 = currentTimeMillis();

 printf("For Loop with + and assign %d\n", b2-b1);

 b1 = b2 = currentTimeMillis();

 for (i=0; i<100000000; i++) {

 x *= i;

 }

 b2 = currentTimeMillis();

 printf("For Loop with * and assign %d\n", b2-b1);

 b1 = b2 = currentTimeMillis();

 for (i=0; i<100000000; i++) {

 x += dummy(i);

 }

 b2 = currentTimeMillis();

 printf("For Loop with function call and assign %d\n",

 b2-b1);

 }

};

void main() {

 benchmark bm;

 bm.start();

}

The test data are following (Test on PC with AMD-233MHZ CPU, Win95) :

Units (ms)�for loop 108�x += i �x *= i�x += dummy(i) ��C++, VC++�0 *�880�1810�880��JDK 1.1�29000�50420�51300�110730��JDK 1.0�43830�82340�83210�170210��IE 4.0�42400�63330�63820�175550��IE 4.0 (JIT)�0*�930�2250�9010��Netscape 4.05�940�1810�2690�8510��* Optimized and eliminated by compiler or interpreter.

Units (us/loop)�for loop�x += i �x *= i�x += dummy(i) ��C++, VC++�0 *�0.0088�0.0181�0.0088��JDK 1.1�0.29�0.5042�0.513�1.1073��JDK 1.0�0.4383�0.8234�0.8321�1.7021��IE 4.0�0.424�0.6333�0.6382�1.7555��IE 4.0 (JIT)�0*�0.0093�0.0225�0.0901��Netscape 4.05�0.0094�0.0181�0.0269�0.0851��* Optimized and eliminated by compiler or interpreter.

Benchmark Analyze

Base on the nature of the object oriented programming, the function call is a must. The class interface are actually functions associated with objects. From the table above we learn that the most advanced commercial browser's Java interpreter are above 10 times slower than compiled C++ code when a function call is involved in the loop. And when the Java interpreter doesn't equip with JIT, the ratio become unacceptable slow (around 200 times slower). And this is only a very simple benchmark program. When it comes to large application, the JIT will tends to have worse performance because it has limited buffer for compiled code. If the whole application is too large to be compiled before it execute, the JIT interpreter will have to compile section by section on the fly and slow down the execution speed. I estimate the JIT could run about 20 times slower than compiled C++ code when application is relatively large. But, Java are changing and evolving rapidly compare to C/C++, JDK itself have go through several changes and enhancements include JDK 1.1, JDK 1.2, JDBC, Java 3D, JIT, and the long awaiting Java compiler HotSpot will be available in 1999. A lot of experts in this field believe that It could happen that Java could pick up the speed, performance, and eventually exceed what C/C++ does in the future. Which mean that the benchmark result today may not be true in the future. But it could state the facts from the past till now.

Conclusion

Eighteen months ago, when I start to design the forth generation of NeatTools project, I insist to use C++ instead of Java. The top reason for that is speed and Java's uncertainty in the future. At that time, the JIT technology is not mature yet. Even today the JIT Java interpreter is still not fast enough for mission critical and calculate intensive real-time task like compress/decompress of voice and video data. But, like I discuss before, the benchmark result could only reflect Java as an immature technology at this time. It would not be always true in the future. Today, there are some other solutions such as link native code into Java program or using tools to convert Java bytecode into native code. But these alternatives are still not very efficient and stable. With the urgent need to help disabled people and solve other problems in NeatTools project, my choice to use C++ was right. Because, we could focus on the unique features and strategy for the specific applications and experiments in NeatTools, not the language issue itself. In the future, when Java do become spurious than C/C++, we may choose to rewrite NeatTools and convert all the experience we have learnt and implement them into Java.

NeatTools Architecture Analyze

In NeatTools, the most important concept are the module abstraction. The module abstraction simplify and model all the interactions between modules into active actions and reactive actions. Later in this section, I discuss the implementation concept and present some benchmark information and analyze it.

Module Abstraction

In NeatTools, module abstraction is offered as a set of class methods that provides inter-module communication functionality. Functional components (implemented as class objects) of a concurrent system are written as encapsulated modules that act upon local data structures, or objects inside object classes, some of which may be broadcast for external use. Relationships among modules are specified by logical connections among their broadcast data structures. Whenever a module updates data and wishes to broadcast the change, and make it visible to other connected modules, it should implicitly call an output service function which will broadcast the target data structure according to the configuration of logical connections. Upon receiving the message event, the connected modules execute its action engine according to the remote data structure. Thus, output is essentially a byproduct of computation, and input is handled passively, treated as an instigator of computation.

This approach simplifies module programming by cleanly separating computation from communication. Software modules written using module abstraction do not establish or effect communication, but instead are concerned only with the details of the local computation. Communication is declared separately as logical relationships among the state components of different modules.

This programming model has its roots in the formal Input / Output automaton model of Lynch and Tuttle [1]. An I/O automaton is a state machine with a signature consisting of a set of input actions and a set of locally controlled actions. The locally controlled actions could divide into output actions and internal actions. Locally controlled actions are under the control of the automaton, while input actions may occur at any time. Automata may be composed such that when an output action of one automaton occurs, all automata having a same-named action as an input action make a state transition simultaneously. A behavior of an I/O automaton is a sequence of input and output actions that may occur in an execution of that automaton. The module abstraction programming model is designed to benefit from the useful characteristics of the I/O automaton model that are helpful in reasoning formally about distributed systems.

Module abstraction is based on three fundamental concepts: data, actions, and connections. It is difficult to discuss these concepts in detail without reference to particular mechanisms for supporting them. Therefore, we present them in the context of NeatTools, a software package, run-time system and visual programming environment we have designed to support the development of data flow network applications using module abstraction.

Data

Data (the components of a module's state, could be data structures or objects) may be kept private or they may be broadcast when needed so that other modules may access the data. NeatTools provides a base abstract class object that declares the basic data structure and service procedures (or methods). Every module object should inherit from this class object and override some of the predefined procedures to serve the different computational and presentational needs of each module. NeatTools provides a library of data types for declaring data that may be broadcast. These include integer, real, string, block, byte array, midi event, voice stream, and video stream. The module programmer may define others.

The presentation

Each NeatTools module has a presentation that presents itself to the user as the visual feedback. It could be graphics images, shapes, or text. The presentation may change dynamically according the current state. Associated with each data item are a public name, property, access privileges, and data type. This information helps a user understand its presentation. The data type and access privileges also permit type check and privilege match of logical connections.

Access privilege

Access privileges include input, output, insert, and connect. Output access allows connected modules to observe the value of the data when broadcast event message. Input access allows a module to change the state of the target module. Insert access allows a new connection to be inserted into an aggregate item of a module. Connect access allows a module to relate the data item to a data item of some other module. All those access privileges are controlled by a set of class methods (already defined in the base abstract class). By overriding those methods, modules could change the behavior or dynamically control access behavior according the current state of module.

The desktop

A NeatTools module interacts with a desktop and a collection of other modules that may be unknown to this module but that read and modify the data item in its presentation when permitted by the access privileges. The desktop also works as a graphical user interface front end that provides a user with a set of layout service functions, including move, resize, copy, delete, group, ungroup, connection management, object persistency management and file input/output.

Actions

The action portion of a module defines how its state changes over time and responds to an environment. Insulated from the structure of its environment, a NeatTools module interacts entirely through the broadcast service procedure and reactive execution engine procedure. A module may autonomously modify its local state, and it may react to the incoming events and change its local state. This suggests a natural division of the actions into two parts: active action and reactive action.

Active (Output) action

The active action carries out the ongoing computation of the module. For example, in a discrete event simulation, the active action would be iterative computation that simulates each event. External updates of simulation parameters could affect the course of future iterations, but would not require any special activity at the time of each change. Modules with only active action can be quite elegant since input simply steers the active computation without requiring a direct response. Active action is analogous to the locally controlled actions of an I/O automaton.

Reactive (Input) action

The reactive action carries out activities in response to input from the environment. A module with primarily reactive action simply reacts to input from the environment, updating its local state and presentation as dictated by the input change. For example, a data visualization module could be constructed so that each time some data element changes, the visualization is updated to reflect the change. In the above discrete event simulation, one might add reactive action to check the consistency of simulation parameters that are modified by the environment. Reactive action is analogous to the input actions of an I/O automaton.

Connections

Relationships between data items of different modules are declared with logical connections between those data items. These connections define the communication pattern of the system. Connections are established by a special NeatTools module, called a desktop, that enforces type compatibility across connections and guards against access protection violations by establishing only authorized connections.

Connections are declared separately from modules so that one can design each module with a local orientation and later connect them together in various ways. Connections are designed to accommodate all kinds of data types varying from integer, real to audio and video. The run-time system could handle the communication requirements automatically according to the module abstraction of the module.

If we liken the data items of a NeatTools module to the actions in the signature of an I/O automaton, then just as like-named actions in automaton signatures define the sharing of actions, connections define the sharing of state change information. Currently, a simple synchronous data transmission algorithm is used by the broadcast service procedure. The reactive action engine of a connected module will be invoked and executed automatically. However, if asynchronous data transmission is needed, user could construct a data queue inside the module and react to the data queue later. This way, we can keep the general communication structure simple and efficient.

Implementation Concept

NeatTools' design concept is base on a special aspect of application design which provide visual programming capacity. In traditional textual programming design, lines of code are the rough measure of program size. In visual programming design like NeatTools data flow network, number of connections and modules become the major indications. So how NeatTools provide an efficient way to broadcast and process message events between modules become the most important issue. In NeatTools, every modules are already class objects. The only object interoperability are simplified into active and reactive actions, or connections. In order to increase the application throughput, the connections in NeatTools are just logical reference. The message broadcast are actually perform by direct function call to ensure the performance of NeatTools' data flow network. For those remote message passing between NeatTools and remote computer running NeatTools, they performed by Socket and ServerSocket modules (just like regular modules, but they perform different task) to handle all the remote data communication tasks (usually on top of TCP/IP which is slow compare to direct function call). Connections between Socket and other modules are still the same efficient function call. So, instead of network connection oriented design (like CORBA), NeatTools use direct function call oriented design and eliminate all possible overhead and layers.

Benchmark Information on NeatTools

I wrote a special benchmark module in NeatTools. Which has two inputs and one output. The one on top can enabled and start the benchmark. The one on left can receive message event from other benchmark module but do nothing. When the module is enabled, it will start the benchmark by broadcast events through its output port in a 106 loop and then display the time interval in the debug dialog box. The benchmark here is focus on the overhead of message broadcasting in NeatTools.

The engine method of the benchmark module was implemented as following:

void JBenchmarkObj::engine(int n, JLinkObj& link) {

 if (!n) {

// link.access(JIntegerData(v[0]));

 } else {

 int oldv = v[1];

 link.access(JIntegerData(v[1]));

 v[1] = (v[1] != 0);

 if ((v[1] != oldv) && !v[1]) {

 int time = JSystem::currentTimeMillis();

 for (int i=0; i<1000000; i++)

 broadcast(0);

 time = JSystem::currentTimeMillis()-time;

 JComponent::debug(JInteger::toJString(time)+" ms");

 }

 }

}

The NeatTools benchmark data flow network are arranged as following:

�

The five test modules are instances of benchmark module. One of them connects its enabled input from button and its output connects to the rest of the test modules.

Benchmark Analyze on NeatTools

The benchmark data for this particular data flow network running on my PC (AMD-233MHZ CPU, Win95) is 2200 ms. Because the output has four connections and the broadcast process are repeated for 106 times. So 2200 ms / 4 / 106 become 0.55 us per connection broadcast which is just 6.25 times slower compare to the direct function call with only one statement. In other word, NeatTools is capable of dispatch around 1,800,000 messages in one second. At this speed, I believe NeatTools could handle most real-time or calculate intensive task on the data flow network level.

Conclusion

The contribution of this section is focus on how I proposed an abstract module model. Base on this model, I proposed a simplified and high performance way to implement the module connections and how we map the connections into directly function call without much overhead and layers. This model proved to be successfully implement in the NeatTools project. Currently, we have a lot of NeatTools data flow networks on data collection, gesture recognition, control of external devices, virtual world control, remote collaboration, and perceptual modulation. With the scalable design of NeatTools project, I believe NeatTools could be widely adapted to most real world problems and provide complete and fast solutions.

NeatTools and Object Management Environments

CORBA

Object Managements Group [20] (OMG)'s Object Management Architecture (OMA): the multi-vendor standard for object-oriented distributed computing. This includes CORBA -- the Common Object Request Broker Architecture -- which most people associated with OMG; the CORBAservices and CORBAfacilities.

Object Definition

Objects are discrete software components -- they contain data, and can manipulate it. Usually, they model real-world objects, although sometimes it's useful to create objects specifically for things we want to compute. Other software components send messages to objects with requests; the objects send other messages back with their responses.

CORBA provide Object Interoperability

In order for objects to plug and play together in a useful way, clients have to know exactly what they can expect from every object they might call upon for a service. In CORBA, the services that an object provides are expressed in a contract that serves as the interface between it and the rest of our system. The interfaces are expressed in OMG Interface Definition Language -- OMG IDL -- making them accessible to objects written in virtually any programming language, and the cross-platform communications architecture is the Common Object Request Broker Architecture -- CORBA.

OMA provide Application-Level Integration

Base on CORBA architecture, the OMA specifies a set of standard interfaces and functions for each component. Different vendors' implementations of the interfaces and their functionality then plug-and-play on customers' networks, allowing integration of additional functionality from purchased modules or in-house development.

The OMA is divided into two major components: lower-level CORBAservices and intermediate-level CORBAfacilities. The CORBAservices provide basic functionality that almost any object might need: object lifecycle services such as move and copy, naming and directory services, and other basics. The CORBAfacilities architecture has two major components: one, horizontal, including facilities such as compound document services which can be used by virtually every business; and the other, vertical, standardizing management of information specialized to particular industry groups.

COM/DCOM

COM (Component Object Model) is a software architecture that enables program to be built from smaller binary components. It is a binary standard for component interoperability and is independent of programming language.

COM supports a client/server model between the user of some object's services and the implementers of that object and its services. COM's role is to establish the connection between the client and the server, which offers the desired object. Once the connection has been made, COM is out of the picture and all communication goes directly from server to client and vice versa.

Objects and Interfaces

In COM an object is an instance of a class which as in standard OO terminology is a set of data and related functionality. Unlike most other OO models, COM provides no direct access to object data. Instead user have to access member functions of an associated interface.

An interface is a set of functions that can be invoked on a given object. Interfaces do not contain any implementation what so ever, but merely defines the expected behavior of an object. When an object implements an interface, it provides implementations for every function in the interface, and provides pointers to those functions to COM.

Interface Description Language (IDL)

COM's Interface Description Language (IDL) is base on the Open Software Foundation (OSF) Distributed Computing Environment (DCE) specification for describing interfaces, operations, and attributes to define remote procedure calls.

A designer can define a new custom interface by writing an interface definition file. The interface definition file use the IDL to describe data types and member functions of an interface. The interface definition file contains the information that defines the actual contract between the client application and server object.

Service Control Manager (SCM)

The SCM is a COM component that is able to locate a given server and launch it. The SCM contains a database of class information. When a client requests the COM library to create an object, the SCM is launched, the server located and run. Here SCM provide the object interoperability.

Compare COBRA and COM/DCOM

From the communication point of view, COM is a little bit different from CORBA. In CORBA, ORB is always the gateway between its object client and server. The client and server in CORBA never communicate each other directly. In COM, SCM locate and lunch the object server for application client and then the client communicate directly with the server. Also COM has different mechanisms for in-process, cross-process, and remote object server. In in-process case, the SCM will locate and load the object server as a DLL. So in this situation, the object server will be executed in the client's process space which is much faster than COBRA's mechanism. In cross-process case, the SCM will locate and load the object server as an executable. The object server will be executed in a separate process space. So it is slower than the DLL but still faster then the COBRA's mechanism. Even in remote object server case, the SCM will contact the remote SCM and later on build a remote proxy server which can forward requests directly to the remote SCM via the RPC connection. So, in general, COM/DCOM have better performance over COBRA. But COBRA have better sense base on system and structure concern. For example, a COBRA's object server will only deal with its local ORB. But a DCOM's object will have to deal with local SCM directly, or in-process client, cross-process client, and remote client through a interface wrapper.

From the application point of view, COM is lack of application integration packages. COBRA's CORBAservices and CORBAfacilities components provide the application-level integration which provide lower-level and intermediate-level services for industry and business applications.

Benchmark Information on CORBA

The most important advantage that Object Management Environments like CORBA, and COM/DCOM is the object interoperability. The object interoperability make objects to plug and play together in a useful way become possible. But the advantage comes with the price -- speed. For example, in CORBA, when an object client issue a function call to a remote server object, it has to go through the IDL Stub (created by IDL), Object Request Broker (ORB), remote ORB, IDL Skeleton, and finally reach the remote server object implementation. And in most case it go through the network communication layer like TCP/IP at least twice (forward the request and send back the result message) to complete a function call.

I visited one of the ORB vender site which has a web page dedicate to the performance information. URL for this page is http://www.orl.co.uk/omniORB/omniORBPerformance.html. On this page, one of the table are following:

Performance of omniORB2 on various platforms.

Platform�Transport�Protocol�us/call��Linux Pentium Pro 200 MHz�IP/intra-machine�IIOP�340���IP/ethernet (ISA)�IIOP�1000���IP/ATM�IIOP�440���AAL5/ATM�IIOP�350��Windows NT Pentium Pro 200 MHz�IP/intra-machine�IIOP�360���IP/ethernet (ISA)�IIOP�1000��Digital Unix 3.2 Alpha DEC 3000�IP/intra-machine�IIOP�750���IP/ethernet�IIOP�1050��Windows '95 Pentium 166 MHz�IP/intr-machine�IIOP�1000���IP/ethernet (PCI)�IIOP�1250��Solaris 2.51 Ultra 1 167 MHz�IP/intra-machine�IIOP�540���IP/ethernet�IIOP�710��Benchmark Analyze on CORBA

From the table above, to make a function call, even the function call is made within the machine (the IP/intr-machine), it make about 360 us on a Pentium Pro 200MHz machine. If we compare the benchmark information with the previous section, make a direct function call in compiled C++ code only take 0.0088 us which is about 41,000 times faster than make a function calls on this particular ORB. For those call that are made remotely by direct network card connection (the IP/ethernet), it take 1,000 us to make a function calls. In that case it is about 114,000 times slower than the compiled C++ code.

Conclusion

CORBA and COM/DCOM provide the object interoperability which is a great feature for object plug and play and object reusability. Especially in CORBA, it try very hard to separate the object server from object client to ensure the encapsulation and increase the object interoperability by using ORBs. But this approach comes with a big draw back -- decrease the performance in a huge fashion especially in CORBA. In COM/DCOM, the performance problem is lesser. Because COM/DCOM provide direct access to object server when object server is loaded as in-process DLL. But, Even COM/DCOM is independent of programming language, some of the higher level control mechanism involve registry operations in Microsoft Windows like Win95 or NT which we try to avoid in NeatTools for cross platform concern.

It is possible that NeatTools project build upon CORBA architecture. NeatTools module designer will be able to put the modules on line and let user access it remotely. But, NeatTools will have to limit data flow design with modules which does not require a lot of message event passing. For those
fine-grained
 modules such as digital logic, number, and real number operation module, decrease the message passing speed will hurt the performance a lot. In this case, we won't be able to build data flow network in NeatTools complex enough to meet the requirements as a general human interface tool. Other than the performance concern, every component in CORBA or COM/DCOM need to dedicate some efforts and space on the interfacing. Cause the interfacing is where object interoperability comes from. NeatTools has simplified broadcast model, the interface is actually fixed and derived from the JModuleObj class. That means, we have to dedicate identical interface by using IDL for each module. Which is actually a redundant layer and could be eliminated. So, base on the space and speed constrains, I would suggest not using CORBA or COM/DCOM to develop NeatTools.

NeatTools and Modeling Languages

Colored Petri-Net

The following material regarding Petri-Net is extract from web page at http://www.daimi.aau.dk/PetriNets/.

Introduction

Colored Petri-Net (CP-nets or CPN) is a graphical oriented language for design, specification, simulation and verification of systems. It is in particular well-suited for systems witch communication, synchronization and resource sharing are important. Typical examples of application areas are communication protocols, distributed systems, imbedded systems, automated production systems, work flow analysis and VLSI chips.

Why use CP-nets?

CP-nets are used for three different - but closely related - purposes. First of all, a CP-net model is a description of the modeled system, and it can be used as a specification (of a system to be built) or as a presentation (of a system to be explained to other people, or ourselves). By creating a model we can investigate a new system before we construct it. This is an obvious advantage, in particular for systems where design errors may jeopardize security or be expensive to correct. Secondly, the behavior of a CPN model can be analyzed, either by means of simulation (which is equivalent to program execution and program debugging) or by means of more formal analysis methods (which are equivalent to program verification). Finally, it should be understood that the process of creating the description and performing the analysis usually gives the modeler a dramatically improved understanding of the modeled system - and it is often the case that this is more valid than the description and the analysis results themselves.

Analysis of CP-nets

CP-nets can be analyzed in three different ways.

The first analysis method is simulation. It is very similar to debugging and program execution. This means that we can execute a CP-net model, e.g., to get statistics about the behavior of the modeled system. It is possible to set breakpoints and to display the simulation results by means of different kinds of business graphics.

The second analysis method is occurrence graphs (also called state spaces or reachability graphs). The basic idea behind occurrence graphs is to construct a directed graph which has a node for each reachable system state and an arc for each possible state change. Obviously, such a graph may become very large, even for small CP-nets. However, it can be constructed and analyzed totally automatically, and there exist techniques which makes it possible to work with condensed occurrence graphs without losing analytic power. These techniques build upon equivalence classes.

The third analysis method is place invariants. This method is very similar to the use of invariants in ordinary program verification. The user constructs a set of equations which is proved to be satisfied for all reachable system states. The equations are used to prove properties of the modeled system, e.g., absence of deadlock.

Design/CPN

Design/CPN is a tool package supporting the use of CP-nets. The Design/CPN tool is now distributed free of charge to all kinds of users (including commercial companies). Version 3.0 was released May 1996. It has three integrated parts:

The CPN Editor supports construction, modification and syntax check of CPN models.

The CPN Simulator supports interactive and automatic simulation of CPN models.

The Occurrence Graph Tool supports construction and analysis of occurrence graphs for CPN models (also known as state spaces or reachability graphs/trees).

Design/CPN supports CPN models with complex data types (color sets) and complex data manipulations (arc expressions and guards) - both specified in the functional programming language Standard ML. The package also supports hierarchical CP-nets, i.e., net models that consist of a set of separate modules with well-defined interfaces.

Conclusion

From what I observed, CP-nets is a good tool to simulate and verify software or hardware project. But according one of the Design/CPN introduction article on the Web mention that Design/CPN could do around 1,000 message broadcast per second. Which compare to NeatTools' 1,800,000 message per second is around 1,800 times slower. As a simulation tool, it is OK to have the speed at this level. For real-time application, Design/CPN may not be the proper choice. The key difference is on the broadcast model itself not on implementation. CP-nets use asynchronous message broadcast between modules as the default. It could avoid the cyclic deadlock problem and much like the real world condition. But in the mean time, it decrease the performance a lot. NeatTools use synchronous message broadcast and simplify the broadcast into the direct function call. Also, it use a simple mechanism to avoid the cyclic deadlock problem without a lot of overhead.

In "An Introduction to the practical Use of Colored Petri Nets" by Kurt Jensen [19], He has the following description following:

CP-nets have an explicit description of both states and actions. This is in contrast to most system description languages which describe either the states or the actions -- but not both. Using CP-nets, the reader may easily change the point of focus from states to actions, or vice versa.

In my opinion, actions and states could all be expressed and manipulated by message events. Cause message events could stand for expressions of current state or action. Actually, in NeatTools, I did implement the state as a module into NeatTools. User could layout state machine visually and use it for complex state analyze. CP-nets' choice of separate the modules into states and actions may have some advantage on theory analysis. But it could make the model itself become more complex and hard to understand for those users who have no formal theory analysis training.

UML (Unified Modeling Language)

The following material regarding UML is extract from Rational's [21] web page at http://www.rational.com/ and OMG's [20] web page at http://www.omg.org/.

Introduction

The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing, and documenting the artifacts of software systems, as well as for business modeling and other non-software systems. The UML represents a collection of best engineering practices that have proven successful in the modeling of large and complex systems.

UML definition

The UML definition consists of the following documents:

UML Semantics : defines the rich semantics and expressive syntax of the Unified Modeling Language. The UML is layered architecturally and organized by package. Within each package, the model elements are defined in terms of their abstract syntax (using the UML class diagram notation), well-formedness rules (using text and Object Constraint Language expressions), and semantics (using precise text). Two appendices are included: UML Glossary and Standard Elements.

UML Notation Guide : defines notion and provides supporting examples. The UML notation represents the graphic syntax for expressing the semantics described by the UML metamodel.

UML Extension for the Objectory Process for Software Engineering and UML Extension for Business Modeling : These UML extensions includes process-specific and domain-specific extensions to the UML, in terms of its extension mechanisms and process-specific diagram icons.

The UML uses OCL, defined separately in the Object Constraint Language Specification document.

Development Project Artifacts

The choice of what models and diagrams one creates has a profound influence upon how a problem is attacked and how a corresponding solution is shaped. Abstraction, the focus on relevant details while ignoring others, is a key to learning and communicating. Because of this :

Every complex system is best approached through a small set of nearly independent views of a model; No single view is sufficient.

Every model may be expressed a different levels of fidelity.

The best models are connected to reality.

In terms of the views of a model, the UML defines the following graphical diagrams: use case diagram, class diagram, behavior diagrams, and implementation diagrams. These diagrams provide multiple perspectives of the system under analysis or development. The underlying model integrates these perspectives so that a self-consistent system can be analyzed and built.

Programming Languages

The UML, a visual modeling language, is not intended to be a visual programming language, in the sense of having all the necessary visual and semantic support to replace programming languages. The UML is a language for visualizing, specifying, constructing, and documenting the artifacts of a software-intensive system, but it does draw the line as you move toward code. Some things, like complex branches and joins, are better expressed in a textual programming language. The UML does have a tight mapping to a family of OO languages, so that user can get the best of both worlds.

Conclusion

Since UML is not intended to be a visual programming language, it is very clear that it has no conflict with the NeatTools application and its design concepts as a visual programming environment. On the contrary, we can use UML to help specifying, constructing, and documenting the artifacts of the development of NeatTools system or module design. The Rational Rose, a visual modeling tool that allows developers to define and communicate a software architecture, could be use to speed up the development of future modules design for NeatTools. In this sense, UML could be very useful to NeatTools development.

NeatTools and Other Visual Programming Tools

Microsoft Visual Series on C++, Basic, J++

The following material regarding Microsoft [8] Visual Series is extract from Microsoft's web page at http://msdn.microsoft.com/visualj/, http://msdn.microsoft.com/visualc/, and http://msdn.microsoft.com/vbasic/.

Introduction

Microsoft Visual Series uses the same Developer Studio environment that comes with Microsoft's Visual C++. Microsoft has done a good job incorporating its existing tools into VJ++ and Visual Basic. For example, to create dialog boxes, developers use the same dialog box editor found in VC++'s Developer Studio.

Windows developers will like the COM integration in VC++, VB, and VJ++. COM, Microsoft's component object model, is the core of ActiveX. developers can incorporate existing ActiveX controls and COM-based technologies into their VC++, VB and VJ++ applications.

Developers can also build their ActiveX controls for use with Visual Basic, VC++, and Delphi. This is a fairly complex process, but the final release of VJ++ is expected to include an ActiveX Wizard that will make it easier to convert applets into ActiveX controls.

Developers could use application (or applet in VJ++) Wizard to create a small application. After they respond to the Wizard's few simple questions, it creates a commented source-code skeleton (and an HTML file in VJ++) to host application (or applet).

Conclusion

Basically, I would consider Microsoft's visual series as a textual programming environment with some visual tools (like dialog box editor), ActiveX Wizart, and application Wizart to help programmer to integrate their application with resources, ActiveX components, or create skeleton source-code, etc. Conceptually, it is not relevant to the visual programming environment that NeatTools provides.

Java Bean

The following material regarding Java Bean is extract from JavaSoft's [24] web page at http://www.javasoft.com/beans/index.html

Introduction

The goal of the JavaBeans is to define a software component model for Java, so that third party ISVs can create and ship Java components that can be composed together into application by end users.

What is a Bean? "A Java Bean is a reusable software component that can be manipulated visually in a builder tool." The builder tools may include web page builder, visual application builders, GUI layout builders, or event server application builders. Or it may simply be a document editor that is including some beans as part of a compound document.

Some Java Beans may be simple GUI elements such as buttons and sliders. Other Java Beans may be sophisticated visual software components such as database viewers, or data feeds. Some Java Beans may have no GUI appearance of their own, but may still be composed together visually using an application builder.

Individual Java Beans will vary in the functionality they support, but the typical unifying features that distinguish a Java Bean area:

Support for "introspection" so that a builder tool can analyze how a bean works.

Support for "customization" so that when using an application builder a user can customize the appearance and behavior of a bean.

Support for "events" as a simple communication metaphor than can be used to connect up beans.

Support for "properties", both for customization and for programmatic use.

Support for persistence, so that a bean can be customized in an application builder and then have its customized state saved away and reloaded later.

While beans are primarily targeted at builder tools they are also entirely usable by human programmer. All the key APIs such as events, properties, and persistence, have been designed to work well both for human programmers and for builder tools.

Conclusion

The most important different between NeatTools' module model and Java Bean's component model are the initial design goal. NeatTools' goal is dedicated only to high performance visual programming environment. Java Bean's design is for general programming component model for both visual and textual programming. Other than introspection, customization, events, properties, and persistency support, NeatTools module always has to support display features. And there are a lot of efforts put in to de-couple modules from desktop's central control. For example, modules has reference to its logical connections and could direct send events (by direct function call) to connected modules without interact with desktop. Also, NeatTools has simplify the event broadcast model into only three methods (please reference appendix: Module Programming Introduction). In theory, a Java Bean could follow the NeatTools' module interface and become NeatTools compatible module. But the problem here is not just Java Bean or NeatTools module, it is about an environment that could provide user the usability and functionality to build applications with easy and provide a way to implement unique features and strategy for the specific applications in NeatTools project. In this case, it is almost impossible for us to use the commercial Java Bean Building Tools. Because those tools could not always fit in the special need to the specific programs we face in NeatTools project. My conclusion would be: Java Bean is a good way to build components, but if we ever decide to use Java Bean for NeatTools project, we have to implement the Java Bean Builder as well to ensure the specific need and requirements in this project.

LabView

The following material regarding LabView software package is extract from National Instruments' [23] home page at http://www.natinst.com/.

Introduction

LabView is a graphical programming development environment based on the G programming language for data acquisition and control, data analysis, and data presentation. LabView gives user the flexibility of a powerful programming language without the associated difficult and complexity because its graphical programming methodology is inherently intuitive to scientists and engineers.

With LabView, user build VI (virtual instrument) instead of writing programs. Users could create front panel user interfaces, giving user the interactive control of the software system. To specify the functionality, user assemble block diagrams - a design notation for engineers and scientist.

Data flow Programming

LabView uses a patented data flow programming model, called G, that frees user from the linear architecture of text-based languages. Because the execution order in LabView is determined by the flow of data between blocks, and not by sequential lines of text, users can create diagrams that have simultaneous operations. LabView is a multitasking and multithreaded system, running multiple execution threads and multiple VIs.

Graphical Compiler

In many applications, execution speed is critical. LabView provide the compiler that generates optimized code with execution speeds comparable to compiled C programs. With the build-in Profiler, user can analyze and optimize time-critical sections of code.

Multithreading

In new version of LabView, the multithreading is built into VI, or LabView program, so it is not necessary for user to learn new programming techniques. In fact, the user can benefit from multithreading without even knowing what it is. However, for expert users who want to have specific control over threads, such as changing thread priorities, the flexibility is available in a straightforward dialog box option.

Conclusion

NeatTools and LabView are visual programming environment. NeatTools is base on the abstract module model and LabView is base on G programming language. The abstract module model try to generalize and simplify the module and event broadcast model from pure visual programming aspect. G programming language try to have the graphical representation of traditional textual programming. For example, you could see the "while loop" and "for loop" structure in G programming language. In NeatTools, we do not define "while loop" or "for loop" structure in module specification, every module are logically equal and they all derived from the same module base class. In stead, NeatTools user could use Timer or ClockDivider module to provide the same functionality. Timer and ClockDivider are just regular modules. Basically, NeatTools user could design and use anything he like to accomplish the desire tasks.

LabView's graphical compiler provide the optimized code with execution speeds comparable to compiled C programs. This indicate that the simulated version in LabView is slower and much bigger than the compiled version. In NeatTools, as I discuss in previous section regarding NeatTools' performance, its data flow network already comparable to compiled C/C++ programs. Also, NeatTools executable only include the core modules, user could just add the functionality by including external module DLLs needed to meet the space constrain. So the compiler is actually not needed in NeatTools.

In the multithreading section, the new LabView version start to support multithread recently. The thread itself associated directly in the VI. User could change the thread's priority through a dialog box. I don't think this kind of add-on thread could provide user all the power and flexibility of thread. In NeatTools, every module could start their own thread (or multi-thread) depend on the tasks it need to perform. By using connections, several module could share threads together or module could use internal threads for calculation intensive tasks, etc.

LabView have a profound users and historical background for over ten years. NeatTools is just born for around 2 years. Till now, NeatTools' core functionality become more and more completed. NeatTools has some technology advantage over LabView because of its fairly new structure and design. And most of all, NeatTools is free and downloadable from the Web. I don't think LabView could beat that price.

AVS/Express

The following information regarding AVS/Express is extract from Advanced Visual System Inc.'s [22] home page at http://www.avs.com/.

Introduction

AVS/Express is a tool for developing data visualization application. It enables users to explore datasets of any dimension or complexity, using visualization capabilities.

AVS/Express offers the same benefits as other advanced client/server development tools. It provides a multi-platform, multi-OS development environment that allows broad-based application building. It enables developers to spend their time adding value to applications instead of trying to solve non-productive, costly system-level issues.

The Graphics Display Kit

The AVS/Express Graphics Display Kit is a set of objects that contain the data structure and function to develop data-intensive, interactive graphcis applications. I provides the following graphics-component technology essential for rendering and manipulating text, 2D images, and 2D and 3D geometric objects. These components can be reconfigured, customized and replaced easily to provide custom views for end-user applications.

The Data Visualization Kit

The Data Visualization Kit contains objects, data structures and libraries needed to visualize and analyze datasets. The data model within this kit defines how data is represented, how functions access it, and how it is communicated between functions and processes. The AVS/Express data model could handle the data frequently found in data and graphics intensive applications, including image, volume, finite element, scattered and geometric data. The visualization components in this kit contain compute methods that are key to turning abstract datasets into graphics.

The Database Kit

The Database Kit provides interfaces to the most popular SQL-based relational database management systems (RDBMS), including Oracle, Sybase and Informix. In addition, the data kit contain an Open Database Connectivity (ODBC) interface. A library of configurable visual objects provides connections to one or more relational databases, and enables display of database tables and assembly of SQL expressions.

Visual Programming

In AVS/Express, user construct applications as a connected, hierarchical network of objects, create and modify data structure with "drag-and-drop", ease manipulate widgets directly to create GUI layouts, set up GUI callbacks through visual connections between widgets and application methods, examine application state and data with integrated debugging tools, and integrate external functions with encapsulated C, C++ and FORTRAN routines.

Conclusion

NeatTools is mean to be a generic visual programming tool for human computer interface. NeatTools' focus is on how we could increase the information flow throughput between human and computer. So the key issues are on how we provide more information path from human to computer through sensors, device, and broaden all kind of feedback from computer to human through graphics, audio, video, touchware, etc. Data visualization and acquisition is just one of the aspects that human could acquire feedback from computer. It is possible that we could write AVS/Express modules to provide the functionality specific to NeatTools project. But, we never could change AVS/Express itself to meet some special constrains and solve the problems specific to NeatTools project. Also, NeatTools is mean to be an affordable solution for all disable people. If we have to bundle AVS to solve their problems, the price would become a major gap between users and their solution.

Experiments/Applications

Case Descriptions

Eyal Sherman

When he was a boy of 5 years, Eyal Sherman suffered from a stroke. After surgery, Eyal was a quadriplegic, with severely limited movement. Communication was restricted to yes and no questions or lip-reading. It had been 10 years since this tragedy, and life has settled into a kind of norm for Shermans. Eyal attends public schools, where he is enrolled in New York State Regents classes, a program for advanced students.

Brooke Kendrick

Brooke is a delightful 7 year old who is diagnosed with spastic quadriplegia due to cerebral palsy. She functions at an pedal gross motor level. She uses a power wheelchair with a joystick control which she is presently practicing. Brooke is non-verbal but does make her desires known by smiling, laughing, crying and saying yes and no. She is a social little girl who appears well aware of what is going on around her. She continues to demonstrate a strong startle reflex when loud or unexpected noise is heard. Brooke attends and integrated First Grade program at Lakeland Elementary School. This is a full day program which integrates her educational and therapeutic activities. She has a one-on-one teaching assistant.

Approach

The NeatTools project team have been working with Eyal Sherman closely since 96'. The approach was divided into hardware and software portions. The hardware team developed the EMG (electromyograph) detector known as TNG and make experiment on all kind of headsets and mounting system for Eyal. They also try a lot of sensor technology include photocells, displacement potentiometers, Hall Effect transducers (magnetic sensors), pressure transducers, bend sensors, etc. The software was mainly develop by Jo Johnson who constructed the Neat DOS, and later on briefly experiment on Windows version and Java version. TNG device pick up the signal from the sensors on the headset and transmit it into computer. The Neat software keep receiving the signal, process it, and later on mapping the signal into actions or external devices.

Limitations on Early Software

The old design, especial the DOS version, is a great tool to receive the signal from external device, change configuration dynamically by making connections, and do logic operations on buttons. The major draw back was, the modules has some what limited layout. The format is fixed and could not re-layout as user wish. For example, user could add new buttons. After button creation, user will see a new button appear at the end of the button area. User could add connections to button, but could not move button or resize button itself. Also DOS does not support multi-process, multi-thread, TCP/IP, and multi-media. there are a lot of limitations coherent in DOS operating system.

The Java version has improve its layout mechanism. Users could create new module and put it anywhere in the desktop. This version use Native method to implement the COM port related function and run under Java enabled browsers. But, as the JDK changed, the security check in the new browsers prevent Native method from low level COM port access. Without COM port access, the Neat software could not read the signals from the TNG device and sit in the dark. Other than the COM access problem, there is no simple way of communication with other existing applications. For example, to enable user use TNG signal to control a Java Tetris game, the software team member has to find out the source code, download it and rewrite the code. So Neat software could create and control the game directly. But when it comes to commercial software applications like Netscape and Words, there is no way we could acquire the source code and try to modify a huge application and combine it into Neat software is not feasible at all.

Ideas and improvements

At this point, they try to find a Java programmer to solve the problems. In one evening, when Eyal had a session with NeatTools project team, I came to visit them and try to understand the nature of the project and the problems they are facing.

The mouse driver prototype

The first thing I notice is that try to modify source code of applications in order to control them is not possible at all. There are hundreds and thousands applications out there. How could we modify them all? Also, most commercial applications will not release their source code, then how we provide a way for disable people like Eyal to use them? Second, Java is changing so fast and its future is still not certain yet. Right now, the new browser prohibit us from the COM access in the native method, and JDK itself do not provide the functionality to access the COM ports. (and will not in the future, cause it is mean to be a cross platform language.) Why should we limit ourselves by using Java? I happen to have the knowledge about how to simulate mouse events and how to install the mouse event filter in Windows environment. So I decide to give it a try.

Three days later, I came out with a very small C windows program (around 60k). It has some simple controls and property setting on its front panel. After it connect to the COM port, the signal from TNG will comes in and display in its client area. By changing the signal, it could generate mouse event, change mouse position, and simulate mouse click. So, when we put this small program into background and bring other application to foreground, we now could use the signal from TNG to control any application without rewrite them.

This prototype program solve some of the major problems. But it is still not good enough to adapt to a changing situation. For example, I hard code the mapping between user gesture signal and the mouse events. But, if a patient could not do some of the predefined gesture actions and need to change it into other gesture actions, then I have to expand the program to make the random gesture actions/mouse events mapping possible. Also, TNG is just one of the input device, there are a lot of different devices out there, how I provide a generic way for user to configure all of them easily?

Next Generation Neat Software - NeatTools

To make it adapt to a changing situation, the data flow network with a visual programming environment is the way to go. This time, I want to make it generic and powerful. I dedicate the next section to discuss the key issues to build a better Neat software.

Key Issues to Build a Better Neat Software

Java Like Cross Platform API in C++

The Java Like Cross Platform API in C++ is actually a very thin layer which is provided as an interface to operating system, C++ runtime library, and windows system. This API hiding the platform dependent implementation and unhook the application's dependency from the operating system and windows system.

Other than following the JDK standard, the challenge actually on how we map the windows handle, related operations and window messages into the object that represent the window object. Not only provide the efficient way to associate the window events into object's methods, but also how we provide a unify way to map the same object into window objects of different windows system like Microsoft Win95/NT and UNIX X Windows.

Usually, users on the Microsoft Windows will use the MFC to ease the complex process of register windows class, setup parameters, create windows, and finally display it and start to process window events. By using MFC on UNIX which mean we have to provide a layer simulate Win32 API on top of X Lib (and MOTIF sometimes). The Win/U product by Bristol Technology was one of products that provide the cross platform solutions on UNIX. But this solution has a bias on UNIX platform, because application will have two layers between itself and X Lib which needless to say will decrease the application's performance on UNIX platform. So, to be fair on both major windows operating system and in the mean time provide the unify thin layer that interface between applications and lowest level of windows API like Win32 and X Lib. Java Like Cross Platform API in C++ is the key for NeatTools to become cross platform and high performance application.

Module Coordinate System

In most visual programming environments, they use integers to represent the current position and dimension. They could not scale the desktop or scale only in limited settings. Eventually, when data flow network become complex, user could use up all the space and have to overlap the modules and connections. I proposed to use the floating point instead. This change enabled desktop to have arbitrary scale. User could have a layers design, each layer has different visibility and could handle the complexity locally. Module will know its current screen dimension and position in integer pixel unit only when its repaint or update method got invoked. In NeatTools, it not only support a scaling system that could scale a design to arbitrary scale, it also provide rulers and scroll bars to help users locate or reposition a design without limit by the screen resolution.

Module Event Broadcast Model

As I discuss in section 4.2 about NeatTools' implement concept, the most important key to a high performance find grain visual programming environment is how we increase the event broadcast performance.

In NeatTools, the module abstraction ensure there is almost no dependency of one module on another, except for the data objects that flow in and out of a module, software modularity and reusability is enforced and highly preserved in the system. The same idea was presented in most visual programming environments. But different implementation architecture could lead to dramatic performance difference base on the same idea. For example, in AVS, the AVS kernel provided the centralized control over the inter-modular communication. Restricted by the AVS kernel and its IPC data-flow protocol, any communication between two parallel modules has to go through the sequential host-node channel and the module-module pipeline on the control processor. In this sense, the current AVS kernel serialized parallel channels. This could become the performance bottleneck. Not the say the IPC data-flow protocol's RPC call is much slower then the direct function call. AVS kernel design has its reason on distributed nature of AVS modules. But this design limited AVS as a coarse grain visual programming tool. All the
fine-grained
 operations and functionality has to implement inside the module and could not be utilized by user directly through the visual programming environment.

In contrary to AVS kernel's centralized broadcast control model, NeatTools has a centralized storage for all logical connections but every NeatTools module has a local reference to its logical connections (include input and output connections). When broadcast events, NeatTools module could make direct access to logical connection information and invoke the destination module's engine method directly. Different modules could issue parallel events under different threads. This is the distribute broadcast model in NeatTools and how it could meet the high performance requirements as a find grain visual programming environment.

Increase Usability

In most visual programming system include LabView and AVS/Express, when in edit mode, user could put in new modules, make connections, copy, or delete modules, etc. When editing is finish, user will have to press a button or select an option to tell the system to enter the execution mode, observe the execution and later stop it and resume edit mode for next develop cycle. When program is in execution mode, user could not change the layout, connections, or modules. From programmer's point of view, it is always technically easier to separate the operations into edit and execution mode exclusively. So the implementation could concentrate on single scenario without worry about the interactions between different modes . But from user's point of view, somehow this kind of distinction increase the time of development. It is quite often that user make some changes in edit mode and start the execution mode. Then he observes the problem or bugs and could not modify the network right away. He has to stop the execution and start the edit mode again. Just like the traditional textual programming, user have to use editor to modify the source code. Then compile it, run it, and eventually get back to editor to modify again. I personal think that a good visual programming environment should not make edit and execution mode exclusively. Instead, the designer should use user's prospect and try to make it truly user friendly when time and space constrains are allowed.

NeatTools provide the non-stop execute mode and user could turn on and off edit mode as he wish. This is actually a difficult task even for an experienced programmer. Because, each module could start its thread and the following concurrent situations could happen. User try to delete a connection but the source module is broadcasting message through this connection. Or, user try to delete a module, but this module is still updating itself through graphics context. It is usually very hard to find out bugs inside a multi-threads system. Cause the bug will not always happen. There are always a possibility to occur, but you never know exactly when. This make the debugging in multi-threads system sometimes become almost impossible. So, how we implement the functionality and make it thread-safe is the most important topic. In NeatTools, the technique I use is: First, identify the critical sections inside operation implementation sections. Critical sections are usually operations involve those resources shared by more than one thread. Second, carefully analyze the critical sections and add exclusive mutex only when it is necessary. Theoretically, this process looks simple. But identify critical section and comes out a thread-safe design and still provide high performance need knowledge and experience on the multi-threads system and concurrency issues.

Identify the Modules

How we identify the module as a functional and reusable object unit is the most important and complex task. If we liken NeatTools system as the human body, then the modules are the different organs that work together.

For example, in the previous section, the mouse driver prototype was a small program that perform the data acquisition, process, and action mapping. In NeatTools, the desktop provide the visual programming environment where user could create, manipulate modules, and make connections. We still have to identify and design the module in order to restore the functionality provided in the mouse driver. In the mouse driver case, we could have COM, TNG, Calibrator, Viewer, Mouse Simulator, and some logical operation unit to provide the gesture recognition. The module could be a unique entity in computer like COM that represent the physical hardware port and the software functions related operations like open, close the COM, input, and output byte stream, etc. It could be a protocol, like the TNG that receive the byte stream from COM and implement the TNG protocol that extract the signal information from the byte stream. Or, it could be a calculation unit that provide computational service, like AND, OR, XOR, Calibrator, etc. Identifying modules is important because the requirements specification and design will use them as the building blocks. Mistakes in properly identifying them will affect the extensibility and maintainability of the data flow network.

Dynamic Ports

Most visual programming environment does not provide dynamic ports for their modules. By dynamic ports, it means the input and output ports of a module could be changed in run time. For example, a database module could have several input and output ports for its fields in database. When a database module assign to a different database file, its port configurations (like number, data type, and tags) changes dynamically.

Display Feedback Mechanism

NeatTools is mean to be tool that could apply in HCI (Human Computer Interface) or tele-medicine field. The display feedback lag time should be minimized when possible. Usually, the display procedure inside a module will involve operations to windows graphics context which is relatively slow compare to most other non-display operations. In some situations, especially in
fine-grained
 data flow network design, high frequency events may trigger sequence of display refresh in modules. Sometimes, it could slow down the system a lot or even hang the system completely.

There are two approaches that could be combined and provide a better solution. First, decrease the overhead of module display. In NeatTools, modules could be resize or overlapped by users. When a module request a display refresh to itself, a graphics context have to be created and a region have to calculated before the module's update method could be invoked. Region is a logical sets of pixels or rectangles that could associate with graphics context to determine the region that could apply or prohibit the graphics operations. Region could be simple rectangle or very complex shape because overlapped by several other modules of different dimension. It is an O(n) operation for a desktop with n modules to calculate the logical region that module associate with a graphics context. This could be a very expensive operation, especially when number of modules become huge. It become even worse when a module need to update itself frequently. To eliminate the region calculation associate with each module display update, I add a region data member inside the module and make the region calculation when it need to be done like create, move, duplicate, or resize the modules. This change make the module display refresh an O(1) operation with much less overhead. Second, eliminate some repeated display refresh when possible. In modern windows systems, they usually have some of the mechanism to decrease the need of window redraw. In Microsoft Windows, when an application send out several invalidate requests to window system, it will combine the invalidate regions into a bigger region and send out less paint request back to the application. In X Windows it has the similar mechanism. But, this is not good enough for NeatTools. Because a paint request from window system will cause the desktop to trigger an O(n) calculation to determine which modules need to be updated. To decrease the paint requests from windows system, when module try to update itself, it call an utility method that put itself into a queue. Later, when system is idle, a procedure will pick up the queue, delete the repeated request and refresh the modules only once. Module itself have to cooperate with this mechanism that it should be able to make incremental update without troubled by missing refresh requests. These two approaches proved to increase the module refresh rate a lot and they increase the efficiency by utilizing the CPU idle cycle.

Cyclic Data Flow Network Issues

In a data flow network with synchronized event dispatch mechanism, a cyclic data flow network could cause system hang by infinite loop. So, in stead of avoid cyclic network, NeatTools allows cyclic data flow network exist without hanging itself. The speed is always the key concern in NeatTools. So how we could propose a approach to detect the cyclic network efficiently and prevent the infinite loop was quite a headache.

In NeatTools, a module notify the connected modules that an event need to be processed by invoke the broadcast utility method. So, it is true that when a module's broadcast method on a particular port got invoked recursively more than once, a cyclic situation was found. By using this observation, we could add a counter associate with each output port and identify the cyclic without extra analyze methods. But, when it comes to multi-threads environment like NeatTools, this approach will not always works. For example, a module issue a broadcast and at the same time another module use a different thread and issue an event that flow thought the same broadcast port. The counter that associate with the broadcast port will detect a cyclic situation but it isn't. In this case, add a mutex inside the broadcast method would be enough to prevent the error cyclic detection. But add the mutex as default could decrease the parallelism in the event broadcasting a lot. And, depend on the module design, not every port would always have the multi-threads events flow through. Here, I leave it to the module designer's hand to determine where is critical sections that need to add the mutex to avoid the concurrent problems. The users who design data flow network just use the modules and make connections. They doesn't have to know what's going on under the scene.

Thread and Concurrent Related Issues

Using thread properly could increase the system utilization by eliminate unnecessary busy waiting loops. For example, in the receiving portion of a Socket module, we never know when the next event will come in through network. The traditional way was use a busy waiting loop and use non-blocking socket to keep reading on the socket or use select function to check the socket status. These loops will usually cause busy waiting and waste CPU cycle. By initiate a thread and use a regular blocking socket to read the socket in the thread, when no data comes in, the socket will block the thread. The application's main thread is still keep working without been blocked by socket read operation. That way, we could maximize the performance without complex implementation and time sharing inside application and leave the problems to the operating system that provide threads.

In NeatTools, each module are allow to have its own threads, it depend on the module designer's decision. But there are some issues that has to be taken care of. For example, delete a module without destroy the associate threads could lead to crash, waste system resource, or memory leak. Destroy a working thread without join could cause event broadcast interrupted abnormally and cause problems. So, in the appendix 12.3.8, I dedicate some discuss focus on the guide line and tips to use thread in NeatTools module efficiently and correctly. But, even module designer follow the guide line to create, run, join, and destroy the thread properly, deadlock still could happen in some special situations. For example, a module initiate and start a thread. In this thread, it broadcast events in a loop. Eventually, one of the events cause the module itself to close. Now problem comes, when the module's close method got invoked, it will try to use the waitFor method to join the thread so the loop inside thread will have a completed cycle and exit successfully. In this case, the waitFor method will never return because the loop is stuck in the event broadcast process which is stuck in the waitFor method itself. Now the deadlock happen and system hang forever. To prevent this particular situation, user could use mutex and some extra counter variable to keep track of the possible deadlock. My suggest to the thread issue is, use it only when necessary and always use it with care.

Experiments

During NeatTools' construction stage, I keep improving the functionality by put in more modules and increase the usability by provide more services in the desktop area. I kept a working page at http://www.pulsar.org/ej/work.html and put in descriptions and experiment data flow network with screen dumps. So, in parallel to the hardware team's effort on the headset, improving sensor technology, and TNG device, I cooperate with hardware team by team work on developing the new TNG protocol, new modules, and sample data flow network for them to learn and design more application for Eyal and Brooke.

After I finish the basic functionality to the mouse driver prototype level, I layout a network for experiment purpose. At this point, NeatTools could do exactly what the old mouse driver prototype could do. And we could start to make all kind of different network design to improve it and make it more useful, not just a fixed, hard coded program.

�

Later on, I proposed more prototype networks for Eyal to control mouse. This time, I use signal gesture to control the mouse direction, movement and mouse button click.

�

I layout another network that could let Eyal control the highlighted column and row of keyboard module and use it to type characters into other applications like word, notepad, etc. By using this network, Eyal was able to type characters in computer the first time in his life. Later on, we add an assistant program that could read the words he typed.

�

We keep improving the software and hardware. For example, the hardware team used photo cells a lot. It is cheap and sensitive to light and is very good at pick up the signal comes from the facial expression. But the photo cells change its signal level when the environment's brightness changed. To accommodate this situation, the team member in the session have to keep calibrate once in a while. Sometimes, it is too much trouble for the family member who does not quite familiar with computer operations. So, the hardware team keep trying something that has more steady signal output. They try micro switches and, eventually, come across a special joystick that has a soft rubber at the end of the stick. Eyal could use his mouth to control the joystick very well. Around the same time, Dr. Edward Lipson layout a very complex and sophisticate data flow network in NeatTools called Joy-Mouse.

�

In Joy-Mouse data flow network, user could precise positioning the mouse cursor under control of a joystick. This can be either a standard computer joystick, or a custom one (e.g. small chin joystick for Eyal) that delivers XY signals to analog inputs of an computer interface module such as TNG-3. The adjustable nonlinear profiles in the quadratic and cubic modes provide precise control of the cursor for small joystick deflections, while allowing rapid movement for large deflections. For more information please reference URL: http://www.pulsar.org/neattools/edl/joymouse_docs/JoyMouseManual.html

Dr. Edward Lipson happen to come across a commercial product called FITALY. The small application provide a keyboard interface. User could use mouse click to generate virtually any key stokes. The most important aspect is that the keyboard interface is arranged according to the character frequency analyzed by huge set of documents. So, it ensure to minimize the mouse movement when try to use FITALY to generate key stokes.

�

Results

By using Joy-Mouse, NeatTools, FITALY keyboard, TNG-3 device, Headsets, and sensors, we start to provide a feasible way for Eyal to surf the web, use applications, and send e-mail to his friends. For Brooke, the hardware team design series of foot pedals and hand devices. Combine with Joy-Mouse, NeatTools, and TNG-3 device, she could now use hands and feet to control the commercial educational applications, learning from the courses inside applications, and get her progress evaluated.

Conclusion

In the experiments, NeatTools did provide a powerful and affordable way to improve the life of disable people like Eyal and Brooke. But, there are always rooms to improve our approaches. For example, use facial express to control mouse and type characters by using Joy-Mouse and FITALY keyboard is still very slow compare to normal people typing by hands. How we could provide a more sophisticate method to map customized facial expressions directly into characters, words, or event sentences? How we could add more AI support in helping them self correct and increase the human computer interface throughput? Those are great ideas for future development.

NeatTools' Visual Programming Features

Introduction

Develop an application in NeatTools is very easy. Here is an example that show how you could use mouse click to light up the LED. First, you lunch NeatTools, set desktop in "Edit" mode by pressing on the "ED" button on the left. Open the "Display" tool box by pressing on the "DS" button and ready to start programming.

Now, move your mouse over the button module and drag it into desktop. Then, move mouse over the LED module and drag it into desktop also. Last, move mouse over the output area of button and drag it to the input area of LEF module. You will see a new connection build between button and LED modules. Your first NeatTools program is ready and running. If you click on the button module, you will see the LED module light up. (Like the following picture)

�

You can save your program by press the "SF" button and assign it into a file with .NTL extension. You always could load your program by press the "OF" button and select your NTL file to bring it back.

Multi-Thread Features

NeatTools module could initiate its own threads depend on its design. NeatTools user could just use it without notice. For example you put in a Time and Date Display modules in desktop, connection them. Now, you see the Data module is showing the current time and update every one second. Then, you put in Timer, ClockDivider, and LEDs into desktop, connect them. You see the LEDs light up and cycle through each other. Right now, two threads are running at the same time inside the desktop area. By sharing the events, moduled may share the same thread. For example, the 4 LEDs and ClockDivider share the same thread inside Timer module.

�

Keyboard and Mouse Event Simulator/Filter

NeatTools could receive keyboard or mouse events through Keyboard or Mouse modules' outputs. In the following example, we use the keyboard "1" to control the LED and use 1DViewer to display the mouse X position.

�

NeatTools could generate keyboard or mouse events through Keyboard or Mouse modules' inputs. Computer will "think" that someone is typing the keyboard or moving the mouse. But actually those events are generated by NeatTools. The following example use mouse X position and 1DViewer to fire the keyboard module when mouse X position is in the right area. If user lunch a editor like Notepad or Word and put it in the foreground, you will a "1" character appear when you move the mouse from left to right.

�

This function is very important and useful. For example, if we want to help a disable person to use sensor to surf the Web, we can use NeatTools to pick up the signal and process it into the mouse or keyboard simulated events. Or, if we want to make NeatTools works with a existing application and could not change application itself, we can program NeatTools to generate keyboard or mouse events to use and control the application. For the fast prototyping purpose, this function is extremely useful. Cause we always could connect and control an external application in no time.

Networking and TCP/IP

Transfer information to remote computer is very easy. After you layout the socket server and socket client, set the IP address, connection port, and enable both of them. You already build a invisible duplex connection between these two module. The socket and server socket pair could put in different NeatTools process or in remote computer as long as IP address correct. With these Networking modules, user could transmit any NeatTools data type to any computer running NeatTools. Data could be integer, floating point, bytes, wave, or video data. Layout an internet phone using NeatTools is very easy also.

�

Container Nest Structure (Complex Module)

NeatTools could do the visual modular design by hiding data flow network inside a container module and become a complex module. In side the container module, you can put in complex module of other data flow network. So user could design an application using several layer. Each layer will handle different level of complexity. This feature is rarely seen in most visual programming language.

�

Transfer Focus among Text Fields

How we provide the full functional graphical user interface visually is always an interesting topic. For example, we need a text field module which could let user type in character and compose it into character string. Usually, most application will have several text fields for user to type in. How we provide a mechanism which enable user to transfer focus among text fields? Use mouse click to set the current focus would be an obvious way to do it. But for user's convenient, we need to provide some short cut for user to toggle or cycle through all the text fields or GUI components. To implement the short cut feature, I add an input called editFocus which could trigger and set to current focus by other modules. I also add an output called nextFocus which will send out true event when it is in focus and user press the TAB key. By connecting the nextFocus output into next text field's editFocus input, we could build a form with several text fields and user could use TAB key to cycle through the fields.

�

Polymorph Data Type

NeatTools is a strong typed visual programming language. Usually, it is desirable that we need to connect input and output ends only when they are of the same data type. NeatTools system guard that very well. But sometimes, it is not so convenient to implement all the different modules for each different data types. The ControlObj module is one of the modules that need polymorph data type. ControlObj module works as a switch controlled by enable input signal on the top. Which is very useful for all kind of data. With polymorph data type, the ControlObj input/output pairs could connect to any data type. For example, after connect the data input to a integer port, the input/output pair all adapt itself into integer data type. So now the correspond output port could now accept integer data. With polymorph data type, we make balance between strong typed and weak typed checking and make NeatTools more convenient and efficient. In the following example, I use ControlObj to control integer, date, and real number at the same time.

�

Multimedia Features

NeatTools has add most of the multimedia features into modules include Mixer, Wave Input and Output devices, MIDI Input and Output devices. Now, we use signal comes in from any device or even from remote computer to control the CD volume, play MIDI song, hear sound wave, etc. The information perception could be anything we ever think of. We could "hear" the image, or "see" the sound. We plan to add more modules in NeatTools to handle the graphics visualization and data process. In the information age what we need is not just information, we need all kind of different ways to observe information and abstract the patterns and features we want.

The following is am example that we use NeatTools to visualize the sound wave intensity.

�

Multimedia Database

Most people consider database belong to textual programming API layer. But I personal think provide a visual database is a very interesting concept. Especially different database could use connections to build the relation between databases and become the visual relational database network. The relation between databases could be indexing, key word match, or condition match. The indexing relation is quite straight forward, user just connect a integer field value to the index input of another database. Whenever the integer field value change, it will locate the connected database into the correspond record. The keyword match and condition match relation work likewise.

In the following example, the Session database file contain several field include patient's SSN and therapist's Reference Number. Session data use SSN field to build a relation with Patient database by connect from its SSN output to Patient database's search on SSN input. Session data use Therapist_Ref field to build a relation with Therapist database by connect from its Therapist_Ref output to Therapist database's search on Ref_No input. Therefore, when we navigate the Session database by changing its index, the Patient and Therapist_Ref database will move to the correspond record.

�

External Module and Dynamic Link Library

In NeatTools, modules could be build in or external. The external module will be a dynamic link library. NeatTools could load the external module in run time. External module could be compiled separately. So NeatTools become scalable. Users could expand NeatTools' functionality by add its own modules. Also, some device manufacturers provide their own API in DLL. If we make a external module DLL that include manufacturer's API, we could reduce the NeatTools system's dependency to the manufacturer's DLL and keep the NeatTools system compact and small.

The following picture show the dialog box that NeatTools use to load the external modules.

�

State Machine

In many control-based applications, the state diagrams is the dominant aspect of the model that could capture the dynamic behavior. The major concepts of dynamic modeling are events, which are the stimuli, and sates, which are configurations of object behaviors. In NeatTools, events are conduct by connections between modules, and states are represent by a special State module which could hold a single named state and could stimulate the connected state modules when conditions is matched. A State module could have several outgoing connections to other state modules. Each connection could only connect to one state module and could be stimulate by one condition pulse input event.

The following is a very simple example on state machine. There are 3 states, A, B, and C. Each state could trigger by a condition and stimulate the next connected state module. A state module could setup to trigger by several conditions and connect to several other state modules. I will put a detailed example in next section.

�

Future Development

I worked on NeatTools for around 18 months. Right now, I already finished most core structure and functionality. But, scaleable software development like NeatTools usually never comes to an end. There are always plenty of room to make some adjust and improvements.

Aggregate DataType.

The Aggregate DataType is an interesting concept. NeatTools already provide a way to extend new data types and register them into system. If user could aggregate different data types into a single complex data type, later on, provide the mechanism to construct nested complex data type visually, it would be very useful for some application need to handle several data member at the same time. For example, instead of handle X, Y, and Z in a 3D plotting module, if we could provide aggregate data type that has X, Y, and Z data member inside and use it as a single 3D point data type. It will increase the readability and efficiency of data flow network.

Connection Visibility

When data flow network become more and more complex over time, the connections and modules become all over the desktop area and very hard to tell them apart. Even worse, some connections may overlap partially or even completely or they may covered by some modules. How we could provide a method to solve this situation did take a lot of efforts. Currently, NeatTools has a highlight mechanism which will highlight the current closest connection or module and display the related information in status bar. So user could make some operation on the highlighted connection or module. But it still could not handle the overlap or covered connections very well. I wish I could have a efficient algorithm to arrange all the connections and minimized the overlap between connections. So the connections could always very clear and easy to read.

Undo/Redo Features

Although undo is a common and rather simple feature in word processors and spreadsheets, undo in a graphical programming language is a very sophisticated and challenging utility. An extensive, versatile undo/redo feature in NeatTools will going to take a lot of time to implement. This feature is extremely important to the NeatTools user. I wish I could start to add this feature in the near future.

Artistic Modules

Currently, I design the modules emphasized on its functionality. So, sometimes, the outlook is not so appealing. In the future, we could consider add more artistic modules in NeatTools. It could provide the functionality as well as the overall look and feel. About the artistic aspect, we would need people who has computer graphics training and also a good sense on artistic design. A lot of commercial application include LabView do a very good job on this aspect. NeatTools need to work on it a little bit more.

Conclusion

The focus of this thesis work on proposing a new way of constructing a
fine-grained
 data flow network visual programming environment - NeatTools. I have detailed description about module abstraction which forms the module event broadcast model in NeatTools. I also identifying and specifying some of the related systems and ideas. During the experiments for Eyal and Brooke, several key issues about building the visual programming environment was explored and discussed.

Our major findings are:

The same idea could have variant performance base on different design concept and implement architecture. For example, both AVS and NeatTools are provided as data flow visual programming environments. The AVS kernel provided the centralized control over the inter-modular communication and hence serialized parallel channels. On the contrary, In NeatTools, different modules could issue parallel events under different threads and become distribute event broadcast system. So, NeatTools has higher performance on event broadcasting and could meet the requirements as a find-grain data flow visual programming environment.

The coarse-grained data flow model is well suited for combining subsystem and provide integrate solutions. But, all the fine-grain operations and functionality has to implement inside the module and could not be utilized by user directly through the visual programming environment. It could reduce the function reusability and increase the implement redundancy.
 In this sense, a fine-grained data flow model would be a better choice.

Use commercial application frame work like MFC to construct windows applications seems to be obvious to manage the complexity of using low level API like Win32 API. But it could cause an application native to a specific platform and become very hard to port to other platform like X Windows. Without modify the application itself, one could build a simulated Win32 layer on top of UNIX and X Lib (and MOTIF) to provide the cross platform solution (Like Win/U by Bristol Technology). But this solution could add extra layers and decrease application's performance. If we could add a unify thin layer between windows operating system and application. Cross platform and high performance could be achieved at the same time.

Appendix

NeatTools Reference Manual

NeatTools Module Specification:

�

Name: NOTObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate the bit wise NOT operation on the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical (1-bit) NOT operation. When it is 16, it will become the 16 bit wise NOT operation.

�

Name: ANDObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate the bit wise AND operation on the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical (1-bit) AND operation. When it is 16, it will become the 16 bit wise AND operation.

�

Name: ORObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate the bit wise OR operation on the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical (1-bit) OR operation. When it is 16, it will become the 16 bit wise OR operation.

�

Name: XORObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate the bit wise XOR operation on the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical (1-bit) XOR operation. When it is 16, it will become the 16 bit wise XOR operation.

�

Name: GreaterThanObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is larger "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).

�

Name: GreaterEqualObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is greater or equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).

�

Name: EqualObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).

�

Name: NotEqualObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is not equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).

�

Name: AddObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate the sum of all the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: MultiplyObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Multiply all the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: SubstractObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate "input-1" - "input-1" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: DivideObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate "input-1" / "input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: AbsObj

Input: "input" integer port on the left with maximum one connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate ABS("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: PowObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate "input-1" ^ "input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: MaxObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Choose the maximum input value and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: MinObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Choose the minimum input value and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RemainObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate "input-1" % "input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RandomObj

Input: "control(logical)" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: When detect a raise edge signal event (from false to true) on the "control(logical)" port, this module will generate a random integer number and broadcast the result value to "output" port.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).

�

Name: ControlObj

Input: "N(1-512)" and "control(logical)" integer port on the top edge and "in-0", "in-1", ..."in-(N-1)" polymorph ports on the left edge with maximum one connection.

Output: "out-0", "out-1", ..."out-(N-1)" polymorphs port on the right edge with unlimited connections.

Function: "N(1-512)" will determine the number of input-output pair. When detect a raise edge signal event (from false to true) on the "control(logical)" port, this module will connect the input-output pairs. So when there are input events presented on say "in-k", this module will transmit them into the corresponding "out-k" output port.

Properties: "moduleColor" set the background color. "N(1-512)" set the number of the input-output pair.

�

Name: SampleObj

Input: "N(1-512)" and "control(logical)" integer port on the top edge and "in-0", "in-1", ..."in-(N-1)" polymorph ports on the left edge with maximum one connection.

Output: "out-0", "out-1", ..."out-(N-1)" polymorphs port on the right edge with unlimited connections.

Function: "N(1-512)" will determine the number of input-output pair. When detect a raise edge signal event (from false to true) on the "control(logical)" port, this module will sample the current input value from input port say "in-k" and transmit into the corresponding "out-k" output port.

Properties: "moduleColor" set the background color. "N(1-512)" set the number of the input-output pair.

�

Name: PulseObj

Input: "input(logical)" integer port on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: When receiving an input event, this module will generate an true-false event pair to the "output" port.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).

�

Name: DelayObj

Input: "input(logical)" integer port on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: When receiving an input event, this module will hold the value and broadcast the value when next input event comes in.

Properties: "moduleColor" set the background color.

�

Name: AccumulatorObj

Input: "enable(logical)" integer port on the top edge and "clock(logical)" integer port on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: When receiving a raise signal (from false to true) event on "clock" port and current value of "enable" port is true, this module will increase the internal integer accumulator and broadcast the value to the "output" port. If receive a drop signal (from true to false) event on "enable" port, the internal integer accumulator will reset to zero and broadcast the value to the "output" port.

Properties: "moduleColor" set the background color.

�

Name: MultiplexerObj

Input: "N(2-512)" and "select" integer port on the top edge and "in-0", "in-1", ..."in-(N-1)" polymorph ports on the left edge with maximum one connection.

Output: "output" polymorphs port on the right edge with unlimited connections.

Function: "N(2-512)" will determine the number of input port. When receiving an input event on "select" port say k, this module will connect the selected "in-k" input port to "output" port. So when there are input events presented on "in-k" port, this module will transmit them into the "output" port.

Properties: "moduleColor" set the background color. "N(2-512)" set the number of the input port. "select (0-(N-1))" set the current selected input port.

�

Name: DeMultiplexerObj

Input: "N(2-512)" and "select" integer port on the top edge and "input" polymorph ports on the left edge with maximum one connection.

Output: "out-0", "out-1", ... "out-(N-1)" polymorphs port on the right edge with unlimited connections.

Function: "N(2-512)" will determine the number of output port. When receiving an input event on "select" port say k, this module will connect the selected "input" input port to "out-k" port. So when there are input events presented on "input" port, this module will transmit them into the "out-k" port.

Properties: "moduleColor" set the background color. "N(2-512)" set the number of the output port. "select (0-(N-1))" set the current selected output port.

�

Name: EncoderObj

Input: "N(2-32)" integer port on the top edge and "in-0", "in-1", ..."in-(N-1)" integer ports on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: "N(2-32)" will determine the number of input port. When receiving an input event on input port, this module will encode all the output value, encode it into an integer and transmit them into the "output" port. For example, when N = 4 and the input value from "in-0", .."in-3" are 1, 0, 0, 1, this module will encode 1001 binary value into output integer value 9.

Properties: "moduleColor" set the background color. "N(2-32)" set the number of the input port.

�

Name: DecoderObj

Input: "N(2-32)" integer port on the top edge and "input" integer ports on the left edge with maximum one connection.

Output: "out-0", "out-1", ..."out-(N-1)" integer port on the right edge with unlimited connections.

Function: "N(2-32)" will determine the number of input port. When receiving an input event on input port, this module will decode the input value into the decoded bit value and transmit them into the corresponding output port. For example, when N = 4 and the input value is integer 9, this module will decode it into 1001 binary value and send out 1, 0, 0, and 1 into "out-0", "out-1", "out-2", and "out-3" output ports.

Properties: "moduleColor" set the background color. "N(2-32)" set the number of the output port.

�

Name: ClockDividerObj

Input: "N(2-512)" integer port on the top edge and "clock(logical)" integer ports on the left edge with maximum one connection.

Output: "out-0", "out-1", ..."out-(N-1)" integer port on the right edge and "value" integer port on the bottom edge with unlimited connections.

Function: "N(2-512)" will determine the number of output port. When receiving an raise signal (from false to true) on "clock(logical)" port, this module will increase an internal counter say k (k = 0..(N-1)) and transmit a true signal to the corresponding "out-k" output port. So when N=10, the output frequency will be 1/10 of the input frequency.

Properties: "moduleColor" set the background color. "N(2-32)" set the number of the output port. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).

�

Name: TimeObj

Input: None.

Output: "output" date port on the right edge with unlimited connections.

Function: will send out date event every one second. Use the DateObj to show the current time and get the seconds, minutes, etc.

Properties: "moduleColor" set the background color.

�

Name: TimerObj

Input: "enabled(logical)" and "interval" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge and "interval" integer port on the bottom edge with unlimited connections.

Function: When "enabled" is true (default is true), this module will send out integer pulse to "output" port event every "interval" millisecond. The "interval" input and output ports are for two way communication to external integer objects. So the value will keep consist when user modify the interval by property dialog box.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF). "delay" set the interval value in millisedond.

�

Name: CalibrateObj

Input: "calibrate(logical)", "lower" and "upper" integer port on the top edge and "input", "feedback" integer port on the left edge with maximum one connection.

Output: "output" and "decalibrate" integer port on the right edge and "lower", "upper" integer port on the bottom edge with unlimited connections.

Function: When "calibrate" is true, this module will adjust to the current input range of "input" and re-map the value into N bits value and broadcast it to "output" port. When "calibrate" is false, this module will not adjust to the current input range, but keep re-map the value by using the current lower and upper value. If the N bits value comes in from the "feedback" port, this module will map it back to the input range (the reverse mapping). The "lower", "upper" input and output ports are for two way communication to external integer objects. So the value will keep consist when user modify the "lower" and "upper" value by property dialog box.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF). "fraction" set the current blank display area (on the top and bottom of display area) in percent. percent. For example, fraction=0 will use all display area, fraction=25 will have 25% blank area on the top and bottom of display area. "upper" and "lower" set the current input range set.

�

Name: AvgFilterObj

Input: "input" on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: When event comes into "input" port, this module will calculate the average value of last N input value (include the current value) and broadcast the value through the "output" port. Basically, it works as a low-pass filter.

Properties: "moduleColor" set the background color. "N" set the number of contiguous input values to average.

�

Name: DelaySustainObj

Input: "input" on the left edge with maximum one connection. "sampling-clock", "delay", and "sustain" on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections. "delay" and "sustain" on the bottom edge with unlimited connections.

Function: When there is a raise (false to true) event detected in "input" port, this module will delay the input value for "delay" ticks (Tick marks come from sampling-clock). When there is drop (true to false) event detected in "input" port, this module will sustain last value for "sustain" ticks. The "delay", "sustain" input and output ports are for two way communication to external integer objects. So the value will keep consist when user modify the "delay" and "sustain" value by property dialog box.

Properties: "moduleColor" set the background color. "delay" set the number of delay ticks. "sustain" set the number of sustain ticks.

�

Name: RtoIObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Convert the "input" port's real number into integer (with rounding) and broadcast the result to "output" port.

Properties: "moduleColor" set the background color.

�

Name: ItoRObj

Input: "input" integer port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Convert the "input" port's integer into real number and broadcast the result to "output" port.

Properties: "moduleColor" set the background color.

�

Name: RGreaterThanObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is larger "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).

�

Name: RGreaterEqualObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is greater or equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).

�

Name: REqualObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).

�

Name: RNotEqualObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is not equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it become the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).

�

Name: RAddObj

Input: "input" real number port on the real number edge with unlimited connections.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate the sum of all the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RMultiplyObj

Input: "input" real number port on the left edge with unlimited connections.

Output: "output" real number port on the right edge with unlimited connections.

Function: Multiply all the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RSubstractObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate "input-1" - "input-1" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RDivideObj

Input: "input-1" real port on the left edge and "input-2" real port on the top edge with maximum one connection.

Output: "output" real port on the right edge with unlimited connections.

Function: Calculate "input-1" / "input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RAbsObj

Input: "input" real number port on the left with maximum one connections.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ABS("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RPowObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate "input-1" ^ "input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RMaxObj

Input: "input" real number port on the left edge with unlimited connections.

Output: "output" real number port on the right edge with unlimited connections.

Function: Choose the maximum input value and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RMinObj

Input: "input" real number port on the left edge with unlimited connections.

Output: "output" real number port on the right edge with unlimited connections.

Function: Choose the minimum input value and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RSinObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate SIN("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RCosObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate COS("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RASinObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ASIN("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RACosObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ACOS("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RTanObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate TAN("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RATanObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ATAN("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RExpObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate EXP("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RLogObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate LOG("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RSqrtObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate SQRT("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RRoundObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ROUND("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RCeilObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate CEIL("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RFloorObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate FLOOR("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RModObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate the reminder of "input-1"/"input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RATan2Obj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ATAN2("input-1", "input-2") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.

�

Name: RPIObj

Input: None.

Output: "output" real number port on the right edge with unlimited connections.

Function: Return PI value when requested.

Properties: "moduleColor" set the background color.

�

Name: REObj

Input: None.

Output: "output" real number port on the right edge with unlimited connections.

Function: Return e value when requested.

Properties: "moduleColor" set the background color.

�

Name: RRandomObj

Input: "control(logical)" integer port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: When detect a raise signal (from false to true) on the "control" port, this module will prepare a real random number (0-1.0) and broadcast the value to "output" port.

Properties: "moduleColor" set the background color.

�

Name: RCalibrateObj

Input: "calibrate(logical)" integer, "lower" and "upper" real number port on the top edge and "input" real number, "feedback" integer port on the left edge with maximum one connection.

Output: "output" integer and "decalibrate" real number port on the right edge and "lower", "upper" real number port on the bottom edge with unlimited connections.

Function: When "calibrate" is true, this module will adjust to the current input range of "input" and re-map the value into N bits integer value and broadcast it to "output" port. When "calibrate" is false, this module will not adjust to the current input range, but keep re-map the value by using the current lower and upper value. If the N bits value comes in from the "feedback" port, this module will map it back to the input range (the reverse mapping). The "lower", "upper" input and output ports are for two way communication to external integer objects. So the value will keep consist when user modify the "lower" and "upper" value by property dialog box.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF). "fraction" set the current blank display area (on the top and bottom of display area) in percent. percent. For example, fraction=0 will use all display area, fraction=25 will have 25% blank area on the top and bottom of display area. "upper" and "lower" set the current input range set.

�

Name: SKeyboardObj

Input: "input" string port on the left edge with maximum one connection.

Output: "output" string number port on the right edge with unlimited connections.

Function: This module will generate string event with exact one character when user press a key. It works even NeatTools is minimized or in the background. If user supply a string event into the "input" port, it will simulate the keyboard event (just like someone is typing the keyboard) to the windows system. This function will only work when NeatTools is in background to avoid feedback problems.

Properties: "moduleColor" set the background color.

� � � � � � � etc.

Name: KeyboardObj

Input: "stroke(logical)" integer port on the left edge and "depress(logical)" integer port on the top edge with maximum one connection.

Output: "output" string number port on the right edge with unlimited connections.

Function: This module will generate integer event when a key that match this module pressed. It works even NeatTools is minimized or in the background. If user supply a true integer event into the "stroke(logical)" port, it will simulate a stroke keyboard event (just like someone press and then release the key) to the windows system. If user supply a raise integer event (from false to true) into the "depress(logical)" port, it will simulate a depress keyboard event (just like someone press the key) to the windows system. If user supply a drop integer event (from true to false) into the "depress(logical)" port, it will simulate a release keyboard event (just like someone release the key) to the windows system. These functions will only work when NeatTools is in background to avoid feedback problems.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).

� � � � � �

Name: MixerObj

Input: "input-L/Mono" integer port on the left edge and "input-R" integer port on the top edge with maximum one connection.

Output: "output-L/Mono" integer port on the right edge and "output-R" integer port on the bottom edge with unlimited connections.

Function: This module is designed to couple the windows' multimedia control components. The "Output Volume" module will accept mono or stereo input value to change the volume level of a sound source. It also will feedback with output value that indicate the volume level of a particular sound source. It will couple the exist mixer applications. So when user change the level value in other mixer application, this module will reflect the change by send out events from output ports. When the module show gray text, it indicate that your system does not support this type of sound source.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).

� � � � � �

Name: MixerObj

Input: "input " integer port on the left edge with maximum one connection.

Output: "output" integer port on the bottom edge with unlimited connections.

Function: This module is designed to couple the windows' multimedia control components. The "Output Mute" module will accept input value to change the state (Mute or not) of a sound source. It also will feedback with output value that indicate the state of a particular sound source. It will couple the exist mixer applications. So when user change the state of a sound source in other mixer application, this module will reflect the change by send out events from output port. When the module show gray text, it indicate that your system does not support this type of sound source.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).

� � � � � �

Name: MixerObj

Input: "input-L/Mono" integer port on the left edge and "input-R" integer port on the top edge with maximum one connection.

Output: "output-L/Mono" integer port on the right edge and "output-R" integer port on the bottom edge with unlimited connections.

Function: This module is designed to couple the windows' multimedia control components. The "Input Volume" module will accept mono or stereo input value to change the recording level of a sound source. It also will feedback with output value that indicate the recording level of a particular sound source. It will couple the exist mixer applications. So when user change the level value in other mixer application, this module will reflect the change by send out events from output ports. When the module show gray text, it indicate that your system does not support this type of sound source for recording.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).

� � � � � �

Name: MixerObj

Input: "input " integer port on the left edge with maximum one connection.

Output: "output" integer port on the bottom edge with unlimited connections.

Function: This module is designed to couple the windows' multimedia control components. The "Input Mute" module will accept input value to change the state (Mute or not) of a sound source's recording. It also will feedback with output value that indicate the state of a particular sound source's recording. It will couple the exist mixer applications. So when user change the state of a sound source in other mixer application, this module will reflect the change by send out events from output port. When the module show gray text, it indicate that your system does not support this type of sound source's mute operation.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).

�

Name: MIDIOutObj

Input: "input" MIDI port on the left edge and "enabled(logical)" integer port on the top edge with maximum one connection.

Output: None.

Function: When "enabled" is true, this module will open the assigned MIDI device and start to wait for MIDI event coming from the "input" port. When receive a MIDI event, this module will transfer it into the assigned and opened MIDI device.

Properties: "moduleColor" set the background color. "device" set the destination MIDI device. Depend on windows' setting. It could be internal FM or external MIDI port. If it is internal FM, send in MIDI events will generate sound. If it is external MIDI port, send in MIDI events could control external MIDI instrument which connected to this hardware MIDI port.

�

Name: MIDIInObj

Input: "enabled(logical)" integer port on the top edge with maximum one connection.

Output: "output" MIDI port on the right edge with unlimited connections.

Function: When "enabled" is true, this module will open the assigned MIDI device and start to send out MIDI events (which coming from the hardware MIDI port or the internal MIDI device) to the "output" port.

Properties: "moduleColor" set the background color. "device" set the destination MIDI device. Depend on windows' setting. It could be internal MIDI devise or external MIDI port. If it is external MIDI port, play notes or playback on external MIDI instrument will send in MIDI events and broadcast through "output" port.

�

Name: MIDIObj

Input: "midi-in" MIDI port on the top edge with maximum one connection. 127 notes inputs (from "Octave[0] C" to "Octave[10]G"), "channel(0-15)", "channel_pressure", "program(0-127)", "volume", "pan", "damper" and "pitch" integer port on the left edge with maximum one connection.

Output: "midi-out" MIDI port on the bottom edge with unlimited connections. 127 notes outputs (from "Octave[0] C" to "Octave[10]G"), "channel(0-15)", "channel_pressure", "program(0-127)", "volume", "pan", "damper" and "pitch" integer port on the right edge with unlimited connections.

Function: In order to generate MIDI event from integer event, user can use this module to create almost all type of MIDI events. When receive a MIDI event through "midi-in" port, this module will decompose the MIDI event into integer event into the related output ports.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).

�

Name: MIDIChannelObj

Input: "midi-in" MIDI port on the top edge with maximum one connection. "ch1-in", "ch2-in", ..., "ch15-in", and "misc-in" MIDI port on the left edge with maximum one connection.

Output: "midi-out" MIDI port on the bottom edge with unlimited connections. "ch1-out", "ch2-out", ..., "ch15-out", and "misc-out" MIDI port on the right edge with unlimited connections.

Function: There are 16 channel in the MIDI signal. When receive MIDI event from the "midi-in" port, this module can separate the event into the correspond output channel port. If user want a MIDI event change to anther channel, he can feed the MIDI event to say the "ch1-in" port. Then the even coming out from the "midi-out" port will have MIDI signal with channel 1 assigned.

Properties: "moduleColor" set the background color.

�

Name: MIDIFileObj

Input: "record(logical)" integer, "play(logical)" integer, "pause(logical)" integer, "filename" string, "sequence" integer, "pos" integer, "N(1-128)" integer, and "ratio" integer port on the top edge with maximum one connection. There are MIDI ports (name and number of the MIDI ports determined by MIDI file user assigned) on the left edge with maximum one connection.

Output: "count", "total", and "tempo" integer port on the bottom edge with unlimited connections. There are MIDI ports (name and number of the MIDI ports determined by MIDI file user assigned) on the right edge with unlimited connections.

Function: This module could load in a MIDI file with "MID" extension and play it back or recording(Recording portion is not complete yet). When "record(logical)" receive a raise event (from false to true), it will start to recording MIDI events into assigned file. When "play(logical)" receive a raise event, it will start to play back the content of the current MIDI file. When "pause" is true, it will pause the current recording or playback action. The "filename" and "sequence" combine could use to assign the MIDI filename. When "sequence" is zero, the "filename" is the assigned filename. If "sequence" not equal to zero, say 1, the assigned filename will become "filename_1". Just change the sequence number and user could record on sequences of different files. The "pos" is the current begin event count. So user could playback from any starting position. The "N" set the

Properties: "moduleColor" set the background color.

NeatTools Class Hierarchy:

+-JObject

 |

 +-JClipboard

 |

 +-JColor

 |

 +-JDimension

 |

 +-JEvent

 |

 +-JFontMetrics

 |

 +-JInsets

 |

 +-JLayoutManager

 | |

 | +-JBorderLayout

 | |

 | +-JFlowLayout

 | |

 | +-JGridLayout

 |

 +-JPoint

 | |

 | +-JRect

 | |

 | +-JComponent

 | |

 | +-JCanvas

 | | |

 | | +-JLabel

 | | | |

 | | | +-JButton

 | | | | |

 | | | | +-JPushButton

 | | | | | |

 | | | | | +-JThumb

 | | | | | |

 | | | | | +-JTriangleButton

 | | | | |

 | | | | +-JToggleButton

 | | | | |

 | | | | +-JModuleButton

 | | | |

 | | | +-JTextField

 | | |

 | | +-JListBox

 | | |

 | | +-JRuler

 | | |

 | | +-JScroller

 | | |

 | | +-JSeparator

 | | |

 | | +-JAbout

 | | |

 | | +-JModuleCanvas

 | |

 | +-JDialog

 | |

 | +-JModal

 | | |

 | | +-JMessageBox

 | | |

 | | +-JColorBox

 | | |

 | | +-JInputBox

 | | | |

 | | | +-JFileBox

 | | | |

 | | | +-JIntegerBox

 | | |

 | | +-JIntegerListBox

 | | |

 | | +-JPropertyBox

 | |

 | +-JPanel

 | |

 | +-JWindow

 |

 +-JBlockInputStream

 |

 +-JBlockOutputStream

 |

 +-JFile

 |

 +-JFilterInputStream

 | |

 | +-JBufferedInputStream

 |

 +-JFilterOutputStream

 | |

 | +-JBufferedOutputStream

 |

 +-JPipedStream

 |

 +-JBoolean

 |

 +-JCharacter

 |

 +-JDouble

 |

 +-JFloat

 |

 +-JInteger

 |

 +-JLong

 |

 +-JMath

 |

 +-JPObject

 | |

 | +-JObjectPtr

 |

 +-JReference

 | |

 | +-JFont

 | |

 | +-JGraphics

 | |

 | +-JImage

 | |

 | +-JRegion

 | |

 | +-JBlock

 | |

 | +-JCriticalSection

 | |

 | +-JDescriptor

 | | |

 | | +-JColor

 | | |

 | | +-JFileInputStream

 | | | |

 | | | +-JFileIOStream

 | | |

 | | +-JFileOutputStream

 | | |

 | | +-JSocket

 | | | |

 | | | +-JServerSocket

 | | |

 | | +-JSocketInputStream

 | | |

 | | +-JSocketOutputStream

 | |

 | +-JProcess

 | |

 | +-JString

 | |

 | +-JThread

 | |

 | +-JArray

 | |

 | +-JList

 | |

 | +-JDList

 |

 +-JSystem

 |

 +-JThrowable

 | |

 | +-JError

 | |

 | +-JException

 | |

 | +-JIOException

 | | |

 | | +-JEOFException

 | | |

 | | +-JInterruptedIOException

 | | |

 | | +-JClassReferenceException

 | | |

 | | +-JSocketException

 | | |

 | | +-JUnknownHostException

 | |

 | +-JRuntimeException

 | |

 | +-JArithmeticException

 | |

 | +-JIllegalArgumentException

 | |

 | +-JNullPointerException

 | |

 | +-JProcessCreateException

 | |

 | +-JThreadCreateException

 |

 +-JDataType

 | |

 | +-JBlockData

 | | |

 | | +-JBytesData

 | | |

 | | +-JVideoData

 | | |

 | | +-JWaveData

 | |

 | +-JIntegerData

 | | |

 | | +-JColorData

 | | |

 | | +-JDateData

 | | |

 | | +-JMIDIData

 | |

 | +-JRealData

 | |

 | +-JStringData

 |

 +-JFDimension

 |

 +-JFPoint

 | |

 | +-JFRect

 | |

 | +-JViewObj

 | |

 | +-JGuideObj

 | |

 | +-JLineObj

 | |

 | +-JModuleObj

 | | |

 | | +-JColorObj

 | | |

 | | +-JLEDObj

 | | | |

 | | | +-JLabelObj

 | | | | |

 | | | | +-JDateObj

 | | | | |

 | | | | +-JIntegerObj

 | | | | |

 | | | | +-JRealObj

 | | | |

 | | | +-JNBitsObj

 | | | |

 | | | +-J1DMeterObj

 | | | | |

 | | | | +-J1DViewerObj

 | | | |

 | | | +-J2DMeterObj

 | | | |

 | | | +-JBtnObj

 | | | |

 | | | +-J1DSliderObj

 | | | |

 | | | +-J2DSliderObj

 | | | |

 | | | +-JFocusObj

 | | | |

 | | | +-JPushBtnObj

 | | | |

 | | | +-JSwitchObj

 | | |

 | | +-JRAddObj

 | | | |

 | | | +-JRAbsObj

 | | | | |

 | | | | +-JItoRObj

 | | | | |

 | | | | +-JRACosObj

 | | | | |

 | | | | +-JRASinObj

 | | | | |

 | | | | +-JRATanObj

 | | | | |

 | | | | +-JRCeilObj

 | | | | |

 | | | | +-JRCosObj

 | | | | |

 | | | | +-JRDivideObj

 | | | | | |

 | | | | | +-JRAtan2Obj

 | | | | | |

 | | | | | +-JRModObj

 | | | | | |

 | | | | | +-JRPowObj

 | | | | | |

 | | | | | +-JRSubtractObj

 | | | | |

 | | | | +-JRExpObj

 | | | | |

 | | | | +-JRFloorObj

 | | | | |

 | | | | +-JRLogObj

 | | | | |

 | | | | +-JRRandomObj

 | | | | |

 | | | | +-JRRoundObj

 | | | | |

 | | | | +-JRSinObj

 | | | | |

 | | | | +-JRSqrtObj

 | | | | |

 | | | | +-JRTanObj

 | | | | |

 | | | | +-JRtoIObj

 | | | |

 | | | +-JRMaxObj

 | | | |

 | | | +-JRMinObj

 | | | |

 | | | +-JRMultiplyObj

 | | | |

 | | | +-JRPIObj

 | | | |

 | | | +-JREObj

 | | |

 | | +-JTimeObj

 | | |

 | | +-JAddObj

 | | |

 | | +-JAbsObj

 | | | |

 | | | +-JDelayObj

 | | | |

 | | | +-JDivideObj

 | | | | |

 | | | | +-JAccumulatorObj

 | | | | |

 | | | | +-JPowObj

 | | | | |

 | | | | +-JRemainObj

 | | | | |

 | | | | +-JSubtractObj

 | | | |

 | | | +-JNodeObj

 | | |

 | | +-JAvgFilterObj

 | | |

 | | +-JBtoIObj

 | | |

 | | +-JCOMObj

 | | |

 | | +-JComplexObj

 | | |

 | | +-JConvertObj

 | | |

 | | +-JDataBaseObj

 | | |

 | | +-JDaviconObj

 | | |

 | | +-JDeMultiplexerObj

 | | |

 | | +-JDecoderObj

 | | |

 | | +-JDelaySustainObj

 | | |

 | | +-JEncoderObj

 | | |

 | | +-JExclusiveObj

 | | |

 | | +-JItoBObj

 | | |

 | | +-JLPTObj

 | | |

 | | +-JMIDIChannelObj

 | | |

 | | +-JMIDIOutObj

 | | | |

 | | | +-JMIDIInObj

 | | |

 | | +-JMaxObj

 | | |

 | | +-JMinObj

 | | |

 | | +-JMultiplexerObj

 | | |

 | | +-JMultiplyObj

 | | |

 | | +-JRecorderObj

 | | | |

 | | | +-JMIDIFileObj

 | | | | |

 | | | | +-JRMIDFileObj

 | | | |

 | | | +-JWaveFileObj

 | | |

 | | +-JSampleObj

 | | | |

 | | | +-JControlObj

 | | |

 | | +-JSocketObj

 | | | |

 | | | +-JServerSocketObj

 | | |

 | | +-JWaveOutObj

 | | | |

 | | | +-JWaveInObj

 | | |

 | | +-JANDObj

 | | |

 | | +-JCalibrateObj

 | | |

 | | +-JClockDividerObj

 | | |

 | | +-JJoyStickObj

 | | |

 | | +-JMIDIObj

 | | |

 | | +-JMixerObj

 | | |

 | | +-JNOTObj

 | | | |

 | | | +-JCHObj

 | | | |

 | | | +-JDGreaterThanObj

 | | | | |

 | | | | +-JDEqualObj

 | | | | |

 | | | | +-JDGreaterEqualObj

 | | | | |

 | | | | +-JDNotEqualObj

 | | | |

 | | | +-JGreaterThanObj

 | | | | |

 | | | | +-JEqualObj

 | | | | |

 | | | | +-JGreaterEqualObj

 | | | | |

 | | | | +-JNotEqualObj

 | | | |

 | | | +-JKeyboardObj

 | | | |

 | | | +-JMouseBtnObj

 | | | | |

 | | | | +-JMousePosObj

 | | | |

 | | | +-JMouseObj

 | | | |

 | | | +-JPulseObj

 | | | |

 | | | +-JRGreaterThanObj

 | | | | |

 | | | | +-JREqualObj

 | | | | |

 | | | | +-JRGreaterEqualObj

 | | | | |

 | | | | +-JRNotEqualObj

 | | | |

 | | | +-JRandomObj

 | | | |

 | | | +-JSGreaterThanObj

 | | | |

 | | | +-JSEqualObj

 | | | |

 | | | +-JSGreaterEqualObj

 | | | |

 | | | +-JSNotEqualObj

 | | |

 | | +-JORObj

 | | |

 | | +-JOxfordObj

 | | |

 | | +-JRCalibrateObj

 | | |

 | | +-JTNGObj

 | | | |

 | | | +-JTNG3Obj

 | | |

 | | +-JTimerObj

 | | |

 | | +-JXORObj

 | |

 | +-JViewSet

 | |

 | +-JFocusSet

 | |

 | +-JLinkObj

 |

 +-JProperty

 | |

 | +-JColorProperty

 | |

 | +-JIntegerListProperty

 | |

 | +-JIntegerProperty

 | |

 | +-JRealProperty

 | |

 | +-JStringProperty

 | |

 | +-JFileProperty

 |

 +-JInetAddress

 |

 +-JAssociation

 |

 +-JDataBase

 |

 +-JDate

 |

 +-JFileArray

 |

 +-JHashTable

 | |

 | +-JDictionary

 |

 +-JRandom

NeatTools Architecture

The NeatTools architecture defines the complete structure for implementing NeatTools' cross-platform, extensive module unit, usability, and functionality features by using UML (Unified Modeling Language).

Three-Layer Architecture

The NeatTools' implementation model is defined as a three-layer architecture. This architecture is necessary for cross-platform design. There are several advantages associated with this approach:

It separates the application design from platform dependent detail by providing abstract windows and a system resource layer for building the application upon the abstract layer.

Based upon the well defined interfaces in the class, a system programmer can refine the design and algorithms later without needing to change the dependent layer.

The current commercial windows abstract layers, like Microsoft MFC, Borland OWL, and OSF MOTIF tend to be fat in design and fixed on one specific platform.

The conceptual framework for NeatTools is based on an architecture with three layers:

Operating system and programming language layer

Java like cross-platform API layer

NeatTools application layer

Functions of the layers are summarized in the following table:

Layer�Description��Operating system and programming language�the service and resources provided by operation systems and programming language itself.��Java like cross-platform API�a set of abstract classes that provide the windows and basic service for application construction needs.��NeatTools application�provides the actual implementation of usability and functionality which meet the general requirement as a real-time visual programming tool.��Table 1: Summary of layers

The operating system and programming language layer provide all the basic system service and resources. This layer includes Win32 API, X11 API, and C++ run time library. The Win32 API and X11 API provide the generally required functionality of windowing, graphics context, objects and memory management in a platform dependent fashion. The C++ run time usually comes with the actual compiler implementations. There are even some standards proposed for the C++ language itself. However, there are still some significant differences between companies and platforms. Hence, it is desirable to have an abstract layer which provides standardized interfacing between the application layer and the operating system layer.

The Java-like cross platform API layer is the abstract layer that works between the operating system and the application. It releases the application's dependency on the operating system and provides a higher level utility class object support. Usually, the API is a collection of procedures. It is usually very difficult for a programmer to: find out the relevant procedures in an API; know its capability and usage; know how it interacts with other procedures; not to mention putting them together in order to accomplish a required task. In this sense, a cross-platform API layer is necessary and desirable.

Now comes the second question: why Java-like. "Java-like" means it defines the class and interface according to a Java API specification. NeatTools needs to be fast and efficient to handle the real-time and computationally intensive task (s). By implementing a Java-like API in C++, we gain Java’s ability to run on different platforms as well as the high performance of C++. The application layer is where we build the actual NeatTools implementation in cross platform fashion. Different applications will eventually need some special classes which could perform the usability and functionality needed for the particular applications. So the presence of this layer is natural.

Package structure

The NeatTools implementation is moderately complex. It is composed of approximately 100 classes in a Java-like cross platform API layer and approximately 120 classes in a NeatTools application layer. The complexity of the classes is managed by organizing them into logical packages. The NeatTools implementation is decomposed into the top-level packages shown in Figure 1:

�

Figure 1: Top-level packages

OS and C++ runtime Package

The Operating system and C++ runtime package is further decomposed as show in Figure 2:

�

Figure 2: OS and C++ runtime layer

Java-like API package

The Java-like cross platform package is further decomposed into NET, AWT, UTIL, IO, and LANG packages as show in Figure 3:

�

Figure 3: Java like cross-platform API layer

�

Figure 4: Exceptions class diagram in Java like API layer

 LANG package

The LANG package contains the classes that make up the core of the Java-like API layer. The classes of the LANG package are summarized in the following table:

Class�Description��JBlock�Memory block class��JBoolean�Object wrapper for Boolean values��JCharacter�Object wrapper for char values��JCriticalSection�Exclusive object for critical section��JDescriptor�Generic descriptor manipulate object��JDouble�Object wrapper for double values��JFloat�Object wrapper for float values��JInteger�Object wrapper for integer values��JLong�Object wrapper for long values��JMath�Object wrapper for math functions��JObject�Generic object class, at top of inheritance hierarchy��JObjectPtr�Object wrapper for object pointer��JPObject�Object wrapper for object reference��JProcess�Generic behavior for process��JReference�Generic handle manipulate object��JString�Character strings��JThread�Class for managing threads��JThrowable�Generic exception class; all object thrown must be a Throwable��Table 2: Classes of LANG package

 UTIL package

The UTIL package contains various utility classes, including random numbers, system properties, and other useful classes. Classes of the UTIL package are summarized in the following table:

Class�Description��JArray�A array of objects��JAssociation�Association object that associate two objects��JDList�A double link list��JDictionary�A class that maps between keys and values��JFileArray�A massive array that store content in file system��JHashTable�A hash table��JList�A link list��JRandom�A random number generator object��Table 3: Classes of UTIL package

 IO package

The IO package provides input and output classes and classes for streams and files. The classes of IO packages are summarized in the following table:

Class�Description��JBlockInputStream�An input stream from a memory block��JBlockOutputStream�An output stream from a memory block��JBufferedInputStream�A buffered input stream��JBufferedOutputStream�A buffered output stream��JFile�Represents a file on the file system��JFileIOStream�A input/output stream from and to a file��JFileInputStream�An input stream from a file��JFileOutputStream�An output stream to a file��JFilterInputStream�A class which provides a filter for input stream��JFilterOutputStream�A class which provides a filter for output stream��JInputStream�An abstract class representing an input stream��JOutputStream�An abstract class representing an output stream��JPipedStream�An piped input/output stream��Table 4: Classes of IO package

 NET package

The NET package contains classes for performing network operations, such as sockets and URLs. Classes of the NET package are summarized in the following table:

Class�Description��JInetAddress�An object representation of an Internet host��JServerSocket�A server-side socket��JSocket�A socket��JSocketInputStream�An input stream from a socket connection��JSocketOutputStream�An output stream to a socket connection��Table 5: Classes of NET package

 AWT package

The AWT package contains the classes that make up the Abstract Windowing Toolkit. This package contains the window abstraction and graphics abstraction related classes. The classes of AWT package are summarized in the following table:

Class�Description��JBorderLayout�A layout manager for arranging items in border formation��JButton�A UI button��JCanvas�A canvas for drawing and performing other graphics operation��JClipboard�An object wrapper for clipboard buffer��JColor�A representation of a color��JColorBox�A dialog box that could change color setting��JComponent�The generic class for all UI components��JDialog�A window for brief interactions with users��JDimension�width and height��JEvent�An object representing events caused by the system or based on user input��JFileBox�A dialog box that could select a file in file system��JFlowLayout�A layout manager that lays out objects from left to right in rows��JFont�A representation of a font��JFontMetrics�A class for holding information about a specific font's character information��JGraphics�The generic behavior for representing a graphics context, and for drawing and painting shapes and objects��JGridLayout�A layout manager with rows and columns; elements are added to each cell in the grid��JImage�A representation of a bitmap image��JInputBox�A dialog box for input text��JInsets�Distances from the outer border of the window; used to layout components��JIntegerBox�A dialog box for input integer values��JIntegerListBox�A dialog box for select integer values��JLabel�A text label for UI components��JLayoutManager�A generic class for all layout manager��JListBox�A scrolling list��JMessageBox�A dialog box that display a message to users��JModal�A specialized dialog box that will interact with users��JPanel�A container that is displayed��JPoint�x and y coordinates��JPushButton�A UI pushbutton��JRect�x and y coordinates for the top corner, plus width and height��JRegion�A logical region defined in graphics context��JRuler�A UI ruler��JScroller�A UI scrollbar��JSeparator�A UI separator��JTextField�A fixed-size editable text field��JThumb�A UI thumb in scrollbar��JToggleButton�A UI toggle button��JTriangleButton�A UI triangle button in scrollbar��JWindow�A top-level window��Table 6: Classes of AWT package

NeatTools application package

The NeatTools application package is further decomposed into NEAT, DESKTOP, Modules, and External Modules packages as show in Figure 5:

�

Figure 5: NeatTools application layer

 NEAT package

�

Figure 5: Property in NEAT package

�

Figure 7: NEAT package (continue)

The NeatTools modules could define internal properties which could be modified through a property dialog box. Each property will become an item in a property list box. A user could select and modify them. Taking advantage of the object oriented programming technique, the Property class becomes the generic property representation. And all other properties will be derived from Property class and will benefit the unified process and editing procedures.

Just as the LANG package is the core of Java-like API layer, the NEAT package is the core of the NeatTools application layer. It defines the basic object structure of how JViewObj aggregates into JVewSet. It also defines the basic module behavior which includes input group and output group (an aggregation of JFocusSet. Here, JFocusSet is the composition of JLinkObj that represents the input and output links of a module object). Because of the polymorph feature of object orient programming, the JViewSet could become the composition of any object which derived from JVewObj. This structure forms a container-component relationship pattern.

The classes of NEAT package are summarized in the following table:

Class�Description��JANDObj�A NeatTools module that handle AND operation��JAbout�A banner that shows the NeatTools��JColorProperty�A property that represent color values��JFDimension�width and height in floating point format��JFPoint�x and y in floating point format��JFRect�A rectangle in floating point format��JFileProperty�A property that represent files��JFocusSet�A composition of JViewObj reference��JGuideObj�A guide line in NeatTools desktop area��JIntegerListProperty�A property that represent a list of integer values��JIntegerProperty�A property that represent integer values��JLineObj�A line representation in NeatTools desktop area��JLinkObj�A link between two NeatTools modules��JModuleButton�A UI button that display NeatTools modules��JModuleCanvas�A UI canvas that display NeatTools modules��JModuleObj�A generic class of all NeatTools modules��JProperty�A generic class of all properties��JPropertyBox�A dialog box that could change the property settings��JRealProperty�A property that represent the floating point values��JStringProperty�A property that represent the string values��JViewObj�A generic class of all display object in NeatTools desktop area��JViewSet�A composition of JViewObj objects��Table 7: Classes of NEAT package

 Modules package

All NeatTools modules are derived directly or indirectly from JModuleObj. Currently, there are around 100 different modules in NeatTools. Each modules works like a black box, or Ics, which could handle one or several functions in a particular field. As AND module is the AND gate in digital logic, OR module is the OR gate in digital logic. Please see section 3 for more detailed information on NeatTools module structure.

 External modules package

The external modules are just like a normal NeatTools module. The only difference is how it is complied and linked into the system. Follow the special instructions in "NeatTools external module development kit" and it will guide you through the creation of an external module and into a dynamic linkage library (DLL). NeatTools will load the external modules in startup when it can locate them in the NeatTools directory. Or they could be loaded in runtime by pressing "Load Module" button in NeatTools. If an external module is used in a NeatTools network and the module was not loaded in memory yet, NeatTools will popup a dialog box for the user to specify the location of the particular external module.

 DESKTOP package

The DESKTOP package contains a very complex class called JView which is a UI canvas as well as the NeatTools desktop area. It contains the aggregation and composition of all the NeatTools modules, links between modules, guide lines, and focus objects selected by users. It also handles all the user and system events, such as mouse events, keyboard events, and system notify events. It represents and implements module display, module layout, grid snapping, thread operation exclusive, module persistency, module creation, data flow network construction, clipboard buffer operations, and event broadcast initialization.

Module Programming Introduction

Module Event Broadcast Model

By using module abstraction, I simplify the module event broadcast model into a process involve only three methods and directly function call between these methods. There three method include engine, broadcast, and access. Usually, programmer will have to override engine and access method to define the module's behavior. The behavior here means how module react to external events and change its internal state to respond to the event. Also, some module could change its state or broadcast message without external trigger by using its own thread.

How those three method methods work together? and how NeatTools system involve in the process? First, I have to mansion the Link Object which NeatTools use to record the logical connection between modules. The object defined as follow (Programmer always could find all the header files under http://www.pulsar.org/ej/work/oop/oop.html :

class

JLinkObj : public JViewSet {

 ...

public:

 ...

 JLinkObj();

 ...

 void access(const JDataType& data);

 void engine();

 ...

 JModuleObj *from, *to;

 int fn, tn;

};

In this object, I defined the public data member include the Module pointer 'from' and 'to', and Interger 'fn' and 'tn'. Pointer 'from' reference the source module and Pointer 'to' reference the destination module. 'fn' stand for the output port number of the source module and 'tn' stand for the input port number of the destination module. In NeatTools module, programmer can define the number of input or output by fixed number or dynamically change the number of input or output port. Each port could accept one or more connections depend on the behavior of module. I will discuss that later on. So what happen when user make connection between two modules? NeatTools will initiate a link and put it in a link list of links and then each module on the particular port will have separate link list which has the reference to the link itself. (for performance reason, so module could direct access to the link object without search).

Now, lets get back to the broadcast model again. Module programmer could decide to broadcast event on a particular port at any time. It could happen in its thread loop or just respond to incoming event from other modules. When broadcast(fn) is been called, NeatTools will invoke all the connected module's engine(tn, link). When a module's engine method got invoked, it knows an event occur and it comes from which module, which output port, and it goes into which input port by access the data member of the link parameter. When programmer implement the engine method, he will first use tn to identify which input port got event and then use link.access(data) to access the event content. the link.access(data) will translate into call source module's access(fn, link, data) method. So before call broadcast, programmer should prepare the value in data member so when the destination module call its access method, it could provide the value right on time. Why, we have this trouble to have the engine call the access in order to get the data? Because, in some situation, like AND gate, its input port could accept any number of connections. And when an event occur through one of the connection, the AND has to go through all the input connection to figure out the result value. In this case, The AND gate call module's access even when that module did not call broadcast. So, programmer should keep it in mind that access should always provide current value.

In order to see how it works, let see a simple example on a module which calculate X2 as an output when integer event going in. We will just focus on the broadcast related methods at this time.

// JSquareObj.h

class JSquareObj : public JModuleObj {

 protected:

 virtual void writeContent(class JOutputStream& os);

 virtual void readContent(class JDictionary& dict);

 public:

 virtual const char* className() const;

 virtual JObject* clone() const;

 JSquareObj();

 virtual void draw(JGraphics g, int x, int y, int w, int h);

 virtual void access(int n, JLinkObj& link, const JDataType& data);

 virtual boolean inputAllowed(int n);

 virtual boolean outputAllowed(int n);

 virtual void engine(int n, JLinkObj& link);

 protected:

 int value;

};

#include "JSquareObj.h"

#include "JLinkObj.h"

#include "JIntegerData.h"

char* theJSquareObj = JSquareObj().Register();

void JSqureObj::writeContent(JOutputStream& os) {

 JModuleObj::writeContent(os);

 putInteger(os, "value", value);

}

void JSquareObj::readContent(JDictionary& dict) {

 JModuleObj::readContent(dict);

 value = getInteger(dict, "value");

}

const char* JSquareObj::className() const { return "JSquareObj";}

JObject* JSquareObj::clone() const { return new JSquareObj(*this);}

JSquareObj::JSquareObj() { igm = 1; value = 0;}

void JSquareObj::draw(JGraphics g, int x, int y, int w, int h) {

 JRect rect(x, y, w, h);

 drawText(g, JString("Sqr"), rect);

}

void JSquareObj::access(int n, JLinkObj& link, const JDataType& data) { INT(data) = value;}

boolean JSquareObj::inputAllowed(int n)

{ return !inputSet(n).last();}

boolean JSquareObj::outputAllowed(int n) { return true;}

void JSquareObj::engine(int n, JLinkObj& link) {

 int nv;

 link.access(JIntegerData(nv));

 nv *= nv;

 if (value != nv) {

 value = nv;

 broadcast(0);

 }

}

Here, we start our focus on engine method. In this method, we declare a temporary integer variable nv. the link.access(JIntegerData(nv)) will first create JIntegerData (a derived class of JDataType) instance and use it as a media to transfer integer value into nv. Every data type are derived class of JDataType. I will discuss the data type polymorphism later. Because of polymorphism, we can use the same access method to transfer all kind of different data type. After this statement, the input value will assign on variable nv. So we calculate the square of nv. If nv and value are different, we update the value and call broadcast(0). Here we only have one output port, so the only valid broadcast number would be zero. When process broadcast method, the destination module's engine method will get invoked and eventually it will call source module's access method. Here, in access method, we have only one statement: INT(data) = value. INT is a macro defined in JIntegerData.h to type cast JIntegerData into int&. So we can use it and assign new value. Programmer also could use data.assign(JInteger(value)). JInteger is a wrapper class for int data (Like the Integer class in Java). But the first implementation is faster.

Basic Methods in Module

Almost every object class in NeatTools are subclass of JObject directly or indirectly. There are some method which always need to be take care of or override to ensure the basic object behavior works correctly.

In the previous example module, after invoke some header files, you will see a strange line :

char* theJSquareObj = JSquareObj().Register();

What this line does is: it will call the Register method and register the module into NeatTools system. So later on, NeatTools could duplicate or recreate object instance by using this registered copy. If you fail to define this line, your module will become invisible to NeatTools system.

Programmer also need to override the className() and clone() methods. In NeatTools, I use the character string return by className() method to identify different objects. Please make sure not to define different class with the same name return by className(). The clone method will new and return a object instance. If you fail to define these methods, NeatTools could not generate the module you designed.

The constructor is an option. But usually you will initialize your data member or set the default input or output port number. 'igm' and 'ogm' are the variable represent the current input and output port number. In this example, I set 'igm' to 1 and the default value of 'ogm' (defined in JModuleObj) is 1 also. So here, this module has only one input and one output port. If you try to change the number of input or output port respond to property or input event, there are some complex issues on layout refresh problem. Please reference the source code in NeatTools Module develop kit and find out how to implement this feature.

Information Methods in Module

NeatTools need more information on each input and output port. For example the data type, the attached edge, the tag, etc. The following methods will need to be override: (If you have some module which has common behavior, you can use one of the class as base class and use it to derive other class. This way, we could save time and space.)

JString inputTag(int n), JString outputTag(int n)

NeatTools use these methods to display the tag or description for a particular input or output port. The default behavior in Module is following:

JString JModuleObj::inputTag(int n) {

 char* tag[] = { "input", "enable(logical)"};

 return tag[n];

}

JString JModuleObj::outputTag(int n)

{ return "output";}

So when user move to the port area, NeatTools system will display the tag by using the return value of this method.

int inputType(int n), int outputType(int n)

Each input or output port could associate with different data type. Here we can return different data type identify for each different port. Or just return one data type identify for every port. The default behavior is following:

int JModuleObj::inputType(int n) { return JIntegerData::id;}

int JModuleObj::outputType(int n) { return JIntegerData::id;}

Here, it define every input and output port are all integer type. If you want to use other data type, please see the header files in NEAT directory. If you want to set different data type for each different port, you can write something like this:

int JTestObj::inputType(int n) {

 switch (n) {

 case 0: return JIntegerData::id;

 case 1: return JStringData::id;

 case 2: return JWaveData::id;

 }

 return JIntegerData::id;

}

boolean inputAllowed(int n), boolean outputAllowed(int n)

This two methods define the accessibility of a input or output port. When it return true, NeatTools could add new connection to it. When it return false, NeatTools will indicate this port already been occupied. The default behavior is following:

boolean JModuleObj::inputAllowed(int n) { return false;}

boolean JModuleObj::outputAllowed(int n) { return false;}

So if you derive your module directly from JModuleObj, you will have to override these methods to ensure your input or output port could accept new connections. If you want input port accept only one connection, you can do something like this:

boolean JSquareObj::inputAllowed(int n)

{ return !inputSet(n).last();}

The inputSet(n) will return the link list of the input port number n. So if link is empty, its last() method will return null. So inputAllowed() will return true and NeatTools could accept new connection for this port. Otherwise, NeatTools will not accept new connection. Programmer could apply the outputSet(n) to the outputAllowed() method.

int inputFace(int n), int outputFace(int n)

These two method decide the attach face that a connection would connect to. For inputFace(n), you could return either LEFT or TOP. For outputFace(n), you could return either RIGHT or BOTTOM. The default behavior is following:

int JModuleObj::inputFace(int n) { return (!n)? LEFT : TOP;}

int JModuleObj::outputFace(int n) { return RIGHT;}

It means inputFace(0) will return LEFT and inputFace(1) will return TOP. and outputFace() always return RIGHT. So connection to the first input port will attach on left edge, but the second input port will attach on top edge.

JFRect inputArea(int n), JFRect outputArea(int n)

These two methods decide the area that a port will accept connections. When user's mouse move within the area defined by JFRect (A floating point rectangle with x, y, with, height data member), NeatTools will show the inverse rectangle to indicate the port area. Module itself is derived from JFRect also. So itself has the x, y, with, and height data member which define the current position and dimension of the module. By using module's with and height value you can define inputArea or outputArea like this:

JFRect JModuleObj::inputArea(int n) {

 if (!n) return JFRect(0, height/4, width/6, height/2);

 return JFRect(width/4, 0, width/2, height/6);

}

JFRect JModuleObj::outputArea(int n)

{ return JFRect(width*5/6, height/4, width/6, height/2);}

But, I found out, it is too much trouble for most module with several input port and some of the module need to change the number of input or output port dynamically. So I wrote some utility method which will calculate the rectangle automatically. The default behavior is following:

JFRect JModuleObj::inputArea(int n) {

 if (!n) return leftArea(n, 0, 1);

 return topArea(n, 1, 1);

}

JFRect JModuleObj::outputArea(int n)

{ return rightArea(n, 0, 1);}

The leftArea, topArea, rightArea, and bottomArea method are defined in JMoudleObj.

JFRect topArea(int n, int start, int N,

 double from = 0.25, double delta = 0.5, int factor = 6);

JFRect bottomArea(int n, int start, int N,

 double from = 0.25, double delta = 0.5, int factor = 6);

JFRect leftArea(int n, int start, int N,

 double from = 0.25, double delta = 0.5, int factor = 6);

JFRect rightArea(int n, int start, int N,

 double from = 0.25, double delta = 0.5, int factor = 6);

The 'n' stand for the port number. 'start' means start from which port number. 'N' means for how many port. 'from' stand for the relative position that area start. 'delta' stand for the relative distance that 'N' port will occupy. 'factor' stand for the divide factor of area. If 'factor' is 6, it means area will have height/6 or width/6 dimension. So leftArea(n, 0, 3) means start from port 0 to port 2 (total 3 ports) will occupy area JFRect(0, height/4, width/6, height/2) and divide it into 3 portions from top to down are port0, port1, and port2.

JFPoint inputPoint(int n, class JLinkObj& link), JFPoint outputPoint(int n, class JLinkObj& link)

These two method is pretty much like the inputArea and outputArea. But the only different is it will return the final attachment point of the connection to a particular port. You will see the link become one of the parameter. It is because, for those port could accept more than one connection, each connection will going to have different attachment point event they are belong to the same port. But using this parameter, we could decide its order and calculate the attachment point when necessary. Again, I wrote the following utility methods. The usage is exactly the same to area utility methods. Only you have to put in the extra link parameter.

JFPoint topPoint(int n, class JLinkObj& link, int start, int N,

 double from = 0.25, double delta = 0.5);

JFPoint bottomPoint(int n, class JLinkObj& link, int start, int N, double from = 0.25, double delta = 0.5);

JFPoint leftPoint(int n, class JLinkObj& link, int start, int N, double from = 0.25, double delta = 0.5);

JFPoint rightPoint(int n, class JLinkObj& link, int start, int N, double from = 0.25, double delta = 0.5);

Display Related Methods in Module

Display is a very important issue in NeatTools. I have been change the display mechanism several time to increase to through put especially for high frequency events that involve repaint modules. But there are only a few method that related to display. That's talk about paint, update, and repaint method:

void paint(JGraphics g, double dx, double dy, JRegion& rgn, double scale);

void update(JGraphics g, double dx, double dy, JRegion& rgn, double scale);

void repaint();

NeatTools will call paint method where there is a need to refresh the graphics contents of module. For example, when user do resize, scroll, scale, etc. operations on the NeatTools windows could cause a module's paint method get invoked. If module itself decide refresh itself to respond to its internal state's change (like LED receive a true event and decide to turn itself on), it could call the repaint() method. Eventually, NeatTools could invoke module's update method. (Depend on the situation, cause module could covered by other module or out of desktop's scope.) Usually, when receive paint, module will draw everything include frame and contents. But when received update, module could only draw the contents. To save space, usually, in paint method we will only draw frame and call the update to draw the contents. But basically, programmer could whatever he want depend on the situations. The following is an example on LED object:

void JLEDObj::paint(JGraphics g, double dx, double dy, JRegion& rgn, double scale) {

 JRect rect = getIExtent(dx, dy, scale);

 g.setJColor(moduleColor);

 if ((rect.width > depth2) && (rect.height > depth2))

 g.draw3DJRect(rect, depth);

 update(g, dx, dy, rgn, scale);

}

void JLEDObj::update(JGraphics g, double dx, double dy, JRegion& rgn, double scale) {

 JRect rect = getIExtent(dx, dy, scale);

 if (value == 0) g.setJColor(bkgnd);

 else g.setJColor(color);

 if ((rect.width > depth2) && (rect.height > depth2)) {

 g.fillJRect(rect.shrink(depth, depth));

 } else g.fillJRect(rect);

}

The JGraphics object is the graphics context that module could make their graphics operations or setup parameters. It works like a media between program and actual devices. In this case, the JGraphics is always an area on screen, if user make some operation by calling JGraphics' methods, it will reflect the change to screen.

Here, in paint, first we use getIExtent to get the current module extent in integer screen unit. Cause NeatTools could display module in any scale. So, module will not know its current size on screen until its paint or update method get invoked. After this statement, the rect will store the current module size in pixel unit. Then, depend on the value itself, if value is false, we set the current color to background color, otherwise we set it to foreground color. If current size is large enough to draw the frame, we call g.draw3DJRect to draw the 3d frame. Then we call update to draw the contents.

In update, we follow the same process and later on fill the LED module with the proper color by using g.fillJRect methods.

void JLEDObj::engine(int n, JLinkObj& link) {

 if (!n) {

 int iv;

 link.access(JIntegerData(iv));

 setValue(iv);

 } else processColor(n, link);

}

boolean JLEDObj::setValue(int _value) {

 if (_value != value) {

 value = _value;

 broadcast(0);

 repaint();

 return true;

 }

 return false;

}

So, when will LED decide to update itself and make visual feedback to user? Let's look at the engine method. If n is equal to zero (the input port on the left edge, in this case), it will use link.access to assign the integer value into iv variable. And call setValue(iv). In setValue method, we will check if the value need change, if it does, we update the value first and call broadcast(0) and repaint() to refresh its display. Later on, NeatTools will invoke it's update method to fill the color when necessary.

The default behavior of display methods in JViewObj (JViewObj is the base class of all objects that could display itself on screen) are:

void JViewObj::paint(JGraphics g, double dx, double dy, JRegion& rgn, double scale) {}

void JViewObj::update(JGraphics g, double dx, double dy, JRegion& rgn, double scale)

{ paint(g, dx, dy, rgn, scale);}

Here the paint draw nothing and update call paint directly. So derived class could just override paint for their simple display need.

The default behavior of display methods in JModuleObj are:

void JModuleObj::draw(JGraphics g, int x, int y, int w, int h) {

 JRect rect(x, y, w, h);

 drawText(g, JString("Mod"), rect);

}

void JModuleObj::paint(JGraphics g, double dx, double dy, JRegion& rgn, double scale) {

 g.setJColor(moduleColor);

 JRect rect = getIExtent(dx, dy, scale);

 g.fill3DRect(rect.x, rect.y, rect.width, rect.height, 2);

 g.setJColor(moduleColor.darker());

 draw(g, rect.x+3, rect.y+3, rect.width-8, rect.height-8);

 g.setJColor(moduleColor.brighter());

 draw(g, rect.x+5, rect.y+5, rect.width-8, rect.height-8);

 g.setJColor(JColor::black);

 draw(g, rect.x+4, rect.y+4, rect.width-8, rect.height-8);

}

Here, I define a new method for user who only need simple display on their module. When system need module's display, it will call paint. In paint, we use color and offset to create the 3D look and feel. So, if user only override draw method and draw some simple text or shapes, it will have the 3D look without repeat the process three times.

Module persistency related Methods

One important thing that NeatTools system does is provide user the capacity to layout modules and make connections between modules. But the other task that NeatTools does is equally important - module persistency. That means, NeatTools provide a way to let module store its current state and connections into secondary storage space like hard disk. And later on, retrieve the information and reconstruct every module, restore their state and rebuild their connections. So, how NeatTools do that? NeatTools rely on two methods in module to accomplish this requirement.

protected:

 virtual void writeContent(class JOutputStream& os);

 virtual void readContent(class JDictionary& dict);

The implementation in LED looks like this:

void JLEDObj::writeContent(JOutputStream& os) {

 JModuleObj::writeContent(os);

 putObject(os, "color", color);

 putObject(os, "bkgnd", bkgnd);

 putInteger(os, "value", value);

}

void JLEDObj::readContent(JDictionary& dict) {

 JModuleObj::readContent(dict);

 JObject *obj = getObject(dict, "color");

 if (obj) color = *(JColor*)obj;

 obj = getObject(dict, "bkgnd");

 if (obj) bkgnd = *(JColor*)obj;

 value = getInteger(dict, "value");

}

'writeContent' method will be invoked when NeatTools want a module to write its current states into output stream. Programmer has to call base class's writeConnect method first. Cause every module will only handle the data member that declare in its object scope. Some times a data member is just for temporary usage, we could decide not to write their current state. readContent is the opposite to writeContent. When we try to 'put' a variable, we assign a string name to identify the variable. Later on, the readContent provide user a dictionary object which contain all the available variables. Programmer could use string name as a key to retrive the variables. All the putX and getX method are defined in JObject class. The only tricky thing is that, getObject could return null. In that case, we could check for that situation and assign object only when the return object is not null.

Property Related Methods in Module

The property related methods are:

JArray getProperties();

boolean updateProperty(JProperty& prop);

When user right click on a module, NeatTools will call the getProperties method first to get all the properties that belong to this module. Later on, if user decide to change one of the property, after property have been changed and user pressed the OK button, NeatTools will invoke updateProperty with a property parameter. The JProperty is the base class for every property. Currently, NeatTools has JIntegerProperty, JIntegerListProperty, JStringProperty, and JFileProperty. All you need is include the header files and look at the header file itself or copy the usage from other module's source code.

The default behavior is following:

JArray JModuleObj::getProperties() {

 JArray properties;

 properties.append(JColorProperty("moduleColor", moduleColor));

 return properties;

}

boolean JModuleObj::updateProperty(JProperty& prop) {

 if (prop.getName() == JString("moduleColor")) {

 moduleColor = ((JColorProperty*)&prop)->color;

 repaintView(*this);

 return true;

 }

 return false;

}

All module has a moduleColor property that define the base color of module. In getProperties, we initialize a properties array and append a JColorProperty instance with name of "moduleColor". When NeatTools call updateProperty, we have to check the property's getName method and make sure we are handling the right property. Then we proceed the needed operations. If we process the property, we should return true. So NeatTools knows this property has been processed. Otherwise, we return false.

In case we derived from other module, for example, JLEDObj derived from JModuleObj. The implementation is a little bit different:

JArray JLEDObj::getProperties() {

 JArray properties = JModuleObj::getProperties();

 properties.append(JIntegerProperty("value", value, -limit-1, limit));

 properties.append(JColorProperty("color", color));

 properties.append(JColorProperty("bkgnd", bkgnd));

 return properties;

}

boolean JLEDObj::updateProperty(JProperty& prop) {

 if (JModuleObj::updateProperty(prop)) return true;

 if (prop.getName() == JString("value")) {

 setValue(((JIntegerProperty*)&prop)->value);

 return true;

 } else if (prop.getName() == JString("color")) {

 color = ((JColorProperty*)&prop)->color;

 repaintView(*this);

 return true;

 } else if (prop.getName() == JString("bkgnd")) {

 bkgnd = ((JColorProperty*)&prop)->color;

 repaintView(*this);

 return true;

 }

 return false;

}

When we derive class from other module class, in getProperties method, we usually call base class' getProperties first and get its property array. Then, we append properties that belong to the derived class. In updateProperty method, we call the base class' updateProperty method first, if it return true, it means the property belong to the base class and the property is already been processed. In this case, we return true also. Otherwise, we proceed to check the property and use the new property value to setup module's internal state or operations needed.

About Polymorph Data Type

The polymorph data type is a special data type that could connection to any data type. NeatTools query the data type by invoke inputType or outputType. When programmer dealing with polymorth data type, he will use the inputSet and outputSet to get the connected module's inputType or outputType to recursively get the current data type. But care should be taken on the cyclic situation. Basically, we use counter for each port to make sure the cyclic situation does not happen. When access method been call, we redirect it to the access of the connected module. Cyclic could happen, so programmer need to do some extra code to avoid that. Their are several module use polymorph data type like JMultiplexer and JDeMultiplexer. Please reference their source code for more information.

Use Thread in Module

In some situations, programmer will need to handle or process something without hanging the NeatTools system. For example, in JSocketObj, after the socket and server socket are connected, how we know a socket package is arraived? We can use non-blocking socket to test if package is ready for read. But how long should we check the socket input? If we use the blocked socket to read package, it could happen that no package is coming in and NeatTools got stuck by your module. In this case, if we dedicate a separate thread loop to execute the socket read, even the thread is block by the socket read procedure, the NeatTools still can proceed without stopped by modules.

How we use thread in module? Lets look at the code from JTimeObj module.

JTimeObj::~JTimeObj() { close();}

void JTimeObj::run() {

 valid = true;

 updateTime();

 while (valid) {

 while (!isTimeChanged() && valid)

 JThread::sleep(10);

 updateTime();

 if (!valid) break;

 JThread::sleep(900);

 broadcast(0);

 }

}

void JTimeObj::reset() { valid = false;}

void JTimeObj::startup() {

 thread = JThread(this);

 thread.start();

}

void JTimeObj::close() {

 if (!valid) return;

 valid = false;

 thread.waitFor();

}

When NeatTools prepare a new instance of module, it will first call the startup method. So, this method could be a good place to start a new thread. Here, we first initialize a new thread and assign it into thread variable. After that, we call thread.start method. If everything went well, a thread will start to running begin by invoke run method. Usually, we will have a loop inside run method. If we exit the run method, the thread stopped and removed by system. If the module's instance been remove by system, it will call the ~JTimeObj and eventually call the close method. In close method, we mark the valid to false and wait for thread to exit. Do not delete thread directly. Use waitFor method instead to avoid the memory leaking problem. Now, their is one problem left, the valid is true to indicate their is a thread running inside JTimeObj module. But it could happen that user duplicate an active module. After duplicate operation, the new JTimeObj instance has true value in valid variable but it actually does not has a thread running. So, the reset method come into action. When user try to duplicate module, NeatTools will try to invoke the reset method on the new module. So if we set valid to false in reset method, everything will going to be perfect.

Concurrency Issues when Design Module

Because NeatTools allow module use their own threads, the concurrency problems could happen. Programmer should keep it in mind that it's engine and access method could be called by other modules at the same time. For example, lets look at the following situation in engine method:

void JTNG4Obj::engine(int n, JLinkObj& link) {

 switch (n) {

 case IN_COM: {

 JBlock _data;

 link.access(JBytesData(_data));

 csb.lock();

 buf+=_data;

 csb.unlock();

 break;

 }

 ...

 }

}

In JTNG4Obj module, I use a JBlock variable 'buf' in it. Because, the engine method could be invoke by more than one thread at the same time, it could happen that they execute the buf+=_data statement almost at the same time. What could happen? Information lost could happen. Or worse, NeatTools could crash. Here, I use a instance of JCriticalSection class to guard the statements from access by more than one thread. The lock method will allow only one thread enter. And the unlock will turn off the critical section lock. To determine where you should use JCriticalSection to guard your critical section statements need experience and knowledge of your module design. I will leave the concurrent problems to programmer themselves.

�

Bibliography

Nancy A. Lynch and Mark R. Tuttle. An introduction to Input / Output Automata. CWI-Quarterly, 2(3), 1989.

Myers, Brad A. "User Interface Software Tools", ACM Transactions on Computer-Human Interaction, 2(1): 64-103, March 1995.

Myers, Brad A. and Mary Beth Rosson. Survey on User Interface Programming. In Proceedings of SIGCHI'92 Human Factors in Computing Systems, May 1992.

Myers, Brad A. "Challenges of HCI Design and Implementation", ACM Interactions 1, 1(1994), to appear.

X Business Group, Inc. Interface Develop Technology. 3155 Kearney Street, Suite 160, Fremont, CA 94538. (510) 266-1075, 1944.

Wilson, David. "Programming with MacApp pages", Addison-Wesley Publishing Company Reading, MA, 1990.

Linton, Mark A., John M. Vlissides and Paul R. Calder. "Composing User Interfaces with InterViews". IEEE Computer 22(2): 8-22, February 1989.

Microsoft Corporation. Visual C++, Visual Basic, Visual J++. PO Box 72368, Roselle IL 60172-9900. (800) 426-9400, 1997.

Szekely, Pedro. Separating the User Interface from the Functionality of Application Programs. Ph.D. Thesis. Carnegie Mellon University School of Computer Science technical reports CMU-CS-88-101, January 1988.

 Laura Lemay and Charles L. Perkins. "Teach Yourself Java in 21 Days", Sams Net, 201 West 103rd Street, Indianapolis, Indiana 46290.

 Richard C. Lee and William M. Tepfenhart. "UML and C++, A Practical Guide To Object-Oriented Development", AT&T Lucent Technologies, Prentice Hall, Upper Saddle River, NJ 07458.

 Richard J. Simon, Tony Davis, John Eaton, and R. Murray Goertz. "Windows 95 Multimedia & ODBC API Bible", Waite Group Press, 200 Tamal Plaza, Corte Madera, CA 94925.

 Charles Petzold. "Programming Windows 3.1" Third Edition, Microsoft Press, A Division of Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052-6399.

 Jon Siegel. "CORBA, Fundamentals and Programming", Wiley Computer Publishing, John Wiley & Sons, Inc. Professional, Reference and Trade Group, 605 Third Avenue, New York, NY 10158-0012

 Oracle Corporation. "Oracle7 Server Concepts Manual", Oracle7 Server Documentation Manager, Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065.

 Matt Pietrek. "Windows Internals, The Implementation of the Windows Operating Environment", Addison-Wesley Publishing Company (800)358-4566.

 Bradford Nichols, Dick Buttlar & Jacqueline Proulx Farrell. "Pthreads programming", O'Reilly & Associates, Inc. 101 Morris Street, Sebastopol, CA 95472-9902.

 Nabajyoti Barkakati. "X Window System Programming, Your Complete Guide to Developing X and Motif Applications!", Sames Publishing, 201 W. 103rd Street, Indianapolis, Indiana 46290.

 Kurt Hensen "An Introduction to the Practical Use of Colored Petri Nets", Department of Computer Science, University of Aarhus, Ny Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark

 Object Managements Group, home page http://www.omg.org/, 492 Old Connecticut Path, Framingham. MA 01701, USA. (508)820-4300.

 Rational Software Corporation, home page http://www.rational.com/, 4900 Perl East Circle, Suite 106, Boulder, CO 80301, USA. (303)444-3464.

 Advanced Visual Systems Inc. home page http://www.avs.com/, 300Fifth Avenue, Waltham, MA 02154, USA. (781)890-4300.

 National Instruments Corporation. home page http://www.natinst.com/, 11500N. Mopac Expwy, Austin, TX 78759-3504, USA. (512)794-0100.

 JavaSoft, home page http://www.javasoft.com/, (888)543-5282.

�VITA

NAME OF AUTHOR: Yuh-Jye Chang

PLACE OF BIRTH: Wen-Lin, Taiwan

DATE OF BIRTH: Feb 22, 1966

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

Stevens Institute of Technology, Hoboken, New Jersey

National Taiwan University, Taipei, Taiwan

DEGREES AWARDED:

Master of Computer Science, 1991, Stevens Institute of Technology

Bachelor of Mechanical Engineering, 1988, National Taiwan University

AWARDS AND HONORS:

Creative Entertainment Choice, 1997

Java Cup International Winner, 1996

National Taiwan University Symphony Vice-leader, 1987

PROFESSIONAL EXPERIENCE:

Research Assistant, Northeast Parallel Architectures Center, Syracuse University, 1997

Teaching Assistant, Department of Computer Information Science, Syracuse University, 1996

Project Leader, NewTek Corp, 1992

Robot Lab Assistant, Department of Mechanical Engineering, National Taiwan University, 1987

�PAGE �
ix
�

�PAGE �
157
�

