Service Discovery and Lookup Requirements for Problem Solving Environments

M. Pietrowicz

Current Operation: Functions “Hard-wired” into Web Site

Current scientific workbenches are built on top of web servers equipped with cgi scripts and HTML forms. This architecture successfully provides easy web access to a fixed set of programs. This architecture is limiting, however, in that it is difficult to maintain, difficult to reuse functions in the environment (different workbench projects have to develop similar features again and again), and difficult to share resources and services among workbenches. This architecture also does not provide a way for the arbitrary application to access remote resources and services.

Requirements Analysis

Service and Resource Description

A programming language and system-independent mechanism is required for describing services and other PSE objects. This mechanism must be common with that used in other PSE or Grid services, and should probably be based on XML. The proposed Grid Object Markup Language (GOML) [1] addresses many of these issues. Standards will be required for service description, and may be discipline-dependent. For example, services in different application domains (e.g., chemistry, biology, astronomy, etc.) may require different descriptive elements or keywords, and these elements will have domain-dependent semantics associated with them.

Service Discovery

PSE clients must be able to discover the existence of services and get references to them on request. This will provide easier maintenance of PSE systems, allow authorized users to publish new software services which can be discovered and used by others, enable reuse across scientific disciplines (no need for cross-workbench operation), and provide great flexibility in selecting useful services for individual or group use.

Discovery and Lookup Interface

A standard interface will allow PSEs to operate on top of multiple lookup and directory services, perhaps on top of LDAP, Jini, CORBA, or Globus MDS mechanisms. Language and system-independent naming mechanisms will be required in order for the interface to work. And, services which translate the generic representation of a request into a language-dependent or system-dependent one will be required. Possible translation services might include XML (MDS or LDAP[2.3], or XML (Jini, or XML (CORBA.

A well-defined standard interface will allow us to experiment with different technologies for discovering services.

Service Proxies & Registration

The lookup service will serve up proxies for accessing services. The proxy will provide the necessary GUI and remote communication mechanism. A “proxy-builder” library will be required in order to standardize and simplify proxy development. Examples of the library functions include an interface for authentication, an interface for submitting jobs, and an interface for monitoring jobs. It is also possible for the lookup service to return a component application suitable for installation or execution on a client machine.

The lookup service will be capable of providing proxies to different kinds of clients, from wireless PDA, to desktop computer, to the CAVE. Some of these devices, particularly PDAs which are too small to support a Java VM, will require some some intermediate support via wireless protocols (such as the Wireless Application Protocol, or WAP) to network-based proxies.

Interoperation with PSE Security Services

The flexibility that service discovery provides imposes additional security requirements. Software services are subject to authentication and authorization in the PSE environment. A client must have permission to discover the existence of a lookup service and specific service (similar to “read” permission), permission to use the service (similar to “execute”), and permission to administer the service (similar to “write”). Once a client has access to the service, the service must be able to operate on the client’s behalf; this requires delegation of the client’s permissions to the service. And, a service may need permissions to access the client machine, so the client requires a way to know the identity and source of the service (authentication) and to authorize access.

Easy to Use

A set of GUI-based applications are needed to make service lookup and discovery easy for the user, administrator, and service developer. A “Service Browser” application will allow discovery of accessible services that match the user’s search criteria. The user can select services, get information about the services, run the services, or save references to them (or the search criteria) for later use.

A “Proxy Builder” tool will allow the user to build service proxies (or easily-customizable proxy classes) via a GUI interface. In addition, a set of “helper” classes will enable provide infrastructure to support common service activities such as job submission.

A suite of administration tools, or perhaps an administrative mode of the Service Browser (Jini examples released with the software take this approach), are required to manage PSE services. Service tools will allow users with permission to 1) register services and service proxies 2) update services in the environment, 3) update service descriptions, 4) set service permissions and security policies, and 5) delete services.

Summary List of Service Discovery and Lookup Requirements

1.0 Service description mechanism, language and system-independent

1.1 Standards for service description

1.2 Translation from xml to language or system-dependent format

1.3 Compatible with other data-discription mechanisms in PSE or on Grid

2.0 Service Discovery

3.0 Generic Discovery and Lookup Interface

4.0 Service Proxies

4.1 Proxy or executable delivery to client

4.2 Standard format for proxies to simplify proxy development

4.3 Support for variety of clients, from PDA, to desktop computer, to CAVE

5.0 Security

5.1 For service discovery and access

5.2 For client protection against service

5.3 For delegation of permissions to services

5.4 For administering services

6.0 Easy to Use

6.1 Service Browser

6.2 Service Proxy Builder

6.3 Service Administration Tools

Applicable Jini Capabilities

Service Description Mechanism

Jini capabilities supporting service description are described in [4].

Service Discovery

In Jini terminology, discovery is the process of finding appropriate Jini Lookup Services, which contain an index of service descriptions and the corresponding service proxies. Lookup is the process of querying a particular Jini Lookup Service for the presence of a particular service (by ID, by matching descriptive attributes, and by class membership) and then getting a proxy object(s) corresponding to the service(s).

Three Jini discovery protocols support discovery.

· The Multicast Announcement protocol is used to announce the presence of a Jini Lookup Service.

· The Multicast Request Protocol is used by applications to find lookup services in a given proximity (IP Time-to-Live, or number of hops) to the client on the network.

· The Unicast Discovery Protocol is used to communicate with a specific, known Jini Lookup Service.

Both Jini discovery protocols use IP (Internet Protocol), and Jini multicasts are based on UDP/IP.

Clients may not need to discover every single lookup service in close proximity. Usually, a client has a specific area of interest or scientific discipline in mind, and an intent to access a specific resource. For example, a chemist may want to run a Gaussian computation and not be bothered with the overhead of discovering lookup services created for other purposes. Jini lookup services belong to “groups” and can be created to provide access to services of interest to groups (e.g., chemistry).

Discovery can be restricted by finding lookup services which belong to a specified group or list of groups. For example, a client could discover all of the lookup services which belong to the “chemistry” and “chemical engineering” groups. Lookup services would be set up to contain all of the commonly-used services for the two communities, so the client who is uninterested in other communities would not need to receive references to lookup services external to those communities.

The Multicast Request Protocol will find references to Jini Lookup Services within a given proximity. Lookup services, however, are services themselves, and they can be registered in other lookup services. This provides a way to federate lookup services that may be outside a reasonable proximity for discovery. A chemical engineering department in Illinois, for example, might set up a lookup service and populate it with references to the services it provides and with references to its partners’ lookup services (e.g., a chemical engineering department in Kansas).

This mechanism is well-suited to dynamic work groups (groups of people who may be distributed geographically, who may work for different organizations, and who collaborate on a joint project).

When a client has obtained references to one or more Jini Lookup Services, it can search each of the lookup services for services of interest. This can be accomplished via the “lookup” methods in the Jini “ServiceRegistrar” interface. These methods take the Jini class “ServiceTemplate” as a parameter. The ServiceTemplate class contains fields for a Jini “ServiceID” (unique service identifier), an array of service types of type “Class”, and an array of attribute sets of type “Entry”. A match is found if the fields in the “ServiceTemplate” match a service’s corresponding fields saved in the lookup service, taking into account wildcard matches.

Service Proxies

The “lookup” method for Jini “ServiceRegistrar” classes will return a proxy or array of class “ServiceMatches” which contain proxies. There are few restrictions on the proxy, and the main restriction is that the proxy must be a serializable Java object. A proxy can contain binary code suitable for execution on a local machine, so the proxy could be literally anything. Typically, however, the proxy is a Java Bean (Java component) that provides a way to access a remote resource, typically via RMI if the remote resource is a running Java program.

Security

Jini security capabilities are described in [5].

Service Browser

A Service Browser is a GUI-based application which will allow the user to discover lookup services and browse their contents. An example service browser is included with the Jini software.

References

[1]
I. Foster, S. Tuecke. A Grid Event Service and Grid Object Markup Language

[2]
G. von Laszewski, I. Foster. Usage of LDAP in Globus.

[3]
S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S. Tuecke. A Directory

Service for Configuring High-Performance Distributed Computations

[4]
M. Pietrowicz.
Data Management Requirements for Problem Solving Environments.

[5]
J. Alameda, M. Pietrowicz, B. Veeraraghavan. Security Requirements and Scenarios for Problem Solving Environments.

