Event Service Requirements for Problem Solving Environments

M. Pietrowicz

Overview

Currently, the vast majority of potential PSE users do not have the benefit of event services, let alone event services that interoperate in the context of a PSE or a distributed computing environment. Users manually submit jobs, monitor them, manage multi-stage computations, monitor data stores, manage experiments, etc. They would greatly benefit from services that allow them to automatically monitor jobs, run computations, and receive notification when specified events occur. The notification capability has a large potential set of applications, and could include object change notification (find out when data files change), monitoring GRID machines (find out when new machines appear on the network, or crash), or monitoring classes of services (find out when a new chemical engineering computation service becomes available).

Furthermore, a number of event models exist, and it is difficult to standardize on just one of them given that there will be a diverse set of tools and technologies in operation on the GRID. Events will originate from a a variety of sources which use a variety of event mechanisms. The PSE Event Service must be designed to interoperate with these different mechamisms.

Requirements Analysis

Event Description

Events need to be treated like other data objects in a PSE. They need a standard description mechanism that is language and system-independent. This generic representation must be translatable into suitable language and system-dependent representations (object format is desirable [1]), and they must be easy to transport. The description mechanism should be consistent with that implemented for data services [2].

Event Services

Notification services based on a publish/subscribe model are required, with multiple kinds of event addressing. In a nondirected case, events are sent to a central service, and this service routes the events to the interested clients. The clients do not have to subscribe to a specific event source and thus do not have to know what the event sources are in advance. This kind of event service is useful for monitoring events at the system level (machine status, job status, performance information, etc.), or any other kind of monitoring where the requestor does not necessarily know the source of the events at the time of subscription.

There is a performance cost in handling events in a centralized way. When the subscriber knows beforehand what notification is needed and knows the source of the event, performance can be improved by using different kinds of event addressing. Users or services (consumers of events) may subscribe to specific classes of events that selected event sources emit. The events are then delivered to the requested target. This method is efficient and effective when the user knows beforehand what the event source is and specifically what event to monitor (e.g., completion of a specific job, change of a particular data object).

If clients are going to be able to register interest in specific events from specific sources, the PSE framework must provide a way to discover what the event sources are and what kinds of events the sources emit (event discovery). When nondirected addressing is used, there is still a need to discover the centralized event services and the kinds of events that the user may register interest in. This second case is handled by a software lookup and discovery service and a directory service for event types.

PSEs will require a set of monitoring services that range from low-level job monitoring to high-level system monitoring. At the low level, users will need to monitor programs in execution. Third-party and legacy code may be difficult or impossible to modify; this code cannot export events directly. Low-level monitoring can be accomplished by writing secondary, external monitor programs that watch the progress of a particular kind of computation (e.g., examine an output file, look for files containing intermediate computation, check resource usage for the computation, etc.). The monitor program then uses provided PSE packages to send (and possibly register) the events. The monitoring programs, like the jobs under execution, are not always active, so this may be another example of a case where nondirected event addressing is used. Code that is developed for use in the PSE may emit events directly using the PSE packages and may not require the external monitoring.

Support for external monitoring will be required so that users do not need to run the monitors explicitly, and so that the monitors take a minimum of computation time if they are to monitor supercomputing jobs. Users should not be charged directly for the cost of monitoring the supercomputing job.

At the high level, users or system managers will want to watch machine status (e.g., up/down, memory and cpu usage, machine availability, status of jobs active/in-queue/running/completed) and software service status (which services of a particular type are available, which services are new, which have been updated, which have had security changes, etc.).

Scripting services are needed to define computation sequences and run them automatically. In the example given in the PSE requirements analysis overview paper [3], a typical use of Gaussian involves several sequential runs of Gaussian, where the input varies. The user can define the computation sequence up-front, and run the composite job. The scripting service acts as a controller (state machine) that detects appropriate events and triggers the prescribed action in response. As an example, when the first stage of computation is completed, the second stage begins using data generated during the first stage. This requires the user to be able to describe a computation sequence, specify data inputs, and name the destination for the output files (requires underlying component technology and resource naming conventions).

Event-logging services record events and store them in a format that can be searched and manipulated at a later time. This utility would be particularly useful for analyzing system use.

Ease of Use (Applications)

For the event services to be useful, several applications need to be developed. An “Event Browser” would allow the user to discover all of the defined event types and active event sources, register interest in specific events and classes of events, and specify event delivery constraints (where to deliver and in what format). The browser should be a well-thought-out GUI with simple searching, point-and-click, and drag-and-drop operation.

A “Script Builder” would take the Event Browser one step further. With a script builder, the user could lay out (probably graphically) a sequence of events to monitor and actions to take. A simple example of this might be a sequence such as: 1) Run an application, 2) wait for the application to complete, 3) feed the output to a second application, 4) wait for the application to complete, and 5) publish the results to a specified PSE Data Store. Then, the user could run the script, monitor progress, and intervene if necessary.

An “Experiment Builder” would allow the scientist to define and partially automate multi-step experiments. The experiment would include a sequence of tasks (components), and different participants in the experiment would be responsible for different components of the project. Since the tasks are components, it would be possible for the Experiment Builder to treat the result objects of one task as input to another task [3].

A set of monitoring GUIs could be provided to display and save the set of events of interest to a user. The monitor could be simple (e.g., a scrolling window) or more sophisticated (e.g., an email-style tool capable of displaying events, saving events, searching, and possibly interacting with the event target).

An Event Log Browser would be capable of browsing and searching the record of saved events, and may be equipped with tools for analyzing the data. The system should be designed so that a selection of tools could be developed and “plugged in”.

A set of Administrative Tools for events will be useful in managing a directory of event types.

Interoperation with Existing Event Models

Given the number of event models (COM/DCOM, CORBA, EJB, Jini Distributed Events, and others) proposed or in use, and given the variations present in a Grid environment, it may not be possible or practical to adopt a single model for use in a Grid environment or in PSEs. A mechanism is needed to translate events from source format to that required by the receiver. This will probably mean translating the event into a generic, non-language, non-system specific format, transmitting the event, receiving it, and translating it to the format required by the receiver. Alliance groups are researching this topic, particularly the Globus team [1] and the Common Component Architecture Forum [4].

Interoperation with Other PSE or Grid Services

The event services must operate with other PSE or Grid services such as Security (which clients have permission to receive which events), Data Management (monitoring data stores and data objects), Lookup & Discovery (monitor the introduction of new services or upgrades to existing services).

Summary List of Event Management Requirements for Problem Solving Environments

1.0 Mechanism Independent Event Description & Protocol

2.0 Event Services

2.1 Notification

2.2 Discovery

2.3 Monitoring (at no cost to the user)

2.4 Scripting

2.5 Logging & Log Analysis

3.0 Ease of Use

3.1 Event Source Browser (discover event types and sources) with Registration

3.2 Script Builder (uses component technology)

3.3 Experiment Builder

3.4 Monitoring GUIs (e.g., Data Store Monitoring)

4.0 Interoperation with other PSE/Grid Services

4.1 Data Store Monitoring

4.2 Security

5.0 Interoperation with Existing Event Models

5.1 CORBA

5.2 EJB

5.3 Jini

Applicable Jini Capabilities

Event Description

Please see [2] for a discussion of Jini’s descriptive capabilities.

Event Services

Jini provides infrastructure for generating, sending, receiving, and handling events across the network (remote events), i.e., the event sources and consumers belong to different VMs. An event source will send events to its event listeners. Unlike the standard Java AWT event model, Jini has a single event listener type that may receive any remote event. This generality (single kind of event listener for all kinds of events) provides flexibility in handling problems such as out-of-order delivery of events, partial failure (e.g., the sender generates an event that the receiver cannot receive), or network latency. Jini’s event infrastructure could interoperate with the generic event description and event delivery mechanism described above.

Event Services and Ease of Use

Jini remote event capabilities are low-level in comparison to the event services and applications described above. Each of the services and applications could be built directly on top of Jini remote events, or on top of a generic mechanism that interoperates with Jini remote events.

References

[1]
I. Foster, S. Tuecke. A Grid Event Service and Grid Object Markup Language.

[2]
M. Pietrowicz. Data Management Requirements for Problem Solving Environments.

[3]
J. Alameda, M. Pietrowicz, B. Veeraraghavan. Scenarios for Requirements Analysis of Problem

Solving Environments

[4]
Common Component Architecture Forum. http://www.acl.lanl.gov/cca-forum

