
AIAA-99-1348

American Institute of Aeronautics and Astronautics
1

AIRCRAFT DESIGN PROBLEM IMPLEMENTATION UNDER THE
COMMON OBJECT REQUEST BROKER ARCHITECTURE

R. Sistla†, A. R. Dovi†, P. Su†† & R. Shanmugasundaram ‡

Computer Sciences Corporation
3217 N. Armistead Avenue, Hampton, Virginia 23666

Abstract

The paper descr ibes a compo nent-based compu ta-
tiona l envir onment for imple menting aircr aft desig n
probl ems. The envir onment is condu cive to takin g
advanta ge of the paral lelisms inher ent in the probl em
and distr ibute the indiv idual disci plines on machi nes
most appro priate to their needs while insul ating the
developer and the user from the compl exity of the un-
derly ing commu nications const ructs. Commo n Objec t
Reque st Broke r Archi tecture and Java progr amming
langu age are used to encap sulate disci pline codes as
“obje cts”. An inter face file ident ifies all the infor ma-
tion neede d by a user of the objec t. Legac y codes are
“wrap ped” using Java’ s nativ e inter face metho dology
and each such code is calle d from a modul e which im-
pleme nts the servi ces of the objec t. A serve r progr am
ties the imple mentation to the inter face. Data and file
manageme nt are accom plished using Java’ s datab ase
connecti vity to acces s a comme rcial relat ional datab ase
manag ement syste m. Java' s Beans Devel opment Kit is
used to imple ment the disci plines and sub-t asks as re-
usable compo nents that provi de a graph ical inter face for
user input as well as facil itate inter active and visua l
objec t conne ctivity and probl em execu tion progr ess
monit oring. This appro ach has been used to imple-
ment a simpl e aircr aft desig n optimizat ion probl em, the
analy sis part of a large scale high speed civil trans port
desig n optim ization probl em, and a stand alone aerod y-
namic optim izer.

Introduction

Conve ntional aircr aft desig n requi res diver se engi-
neeri ng disci plines to execu te indep endent of each
other , in seque nce, and often times itera tively and in-
teractiv ely. This proce ss is furth er compl icated by the
fact that the focus , empha sis, and appro ach of each dis-
cipline can be quite disti nct, and multi ple invoc ations
of the disci pline progr ams are often requi red to arriv e at
a

† Senior Computer Scientist, Senior Member, AIAA
†† Computer Scientist
‡ Member of Technical Staff, Member, AIAA
Copyright �� 1999 by the American Institute of Aero-
nautics and Astronautics, Inc. All rights reserved.

feasible design. The end result is a set of thumbprint,
carpet, or, correlation plots from which a “best” design
may be chosen. The whole process is vastly time-
consuming and does not, in general, include all engineer-
ing disciplines early in the design process [1,2].

Preli minary desig n tradi tionally deals with disci-
plina ry sizin g and shapi ng, with relia nce on previ ous
desig ns of a vehic le type. The vehic le must susta in
several criti cal fligh t (load ing) condi tions throu ghout
the opera tional envel ope durin g which the loads are
typically redis tributed due to aeroe lastic effec ts. Ana-
lytic al and test verif ication of desig ns may be per-
forme d throu ghout the desig n proce ss [1]. Other condi-
tions such as flutt er, diver gence, contr ol revers al, and
gust loadi ng must also be addre ssed. Howev er, these
conditions may not be inclu ded in more detai l until
stati c stren gth desig n is compl eted [3,4] . Infor mation
from each disci pline is analy zed and the desig n is
modif ied in a seque ntial, itera tive proce ss.

The tradi tional appro ach resul ts in a desig n proce-
dure that is large ly infle xible and compu tationally tax-
ing. New techn iques in multi disciplina ry desig n opti-
mizatio n are aimed at impro ving desig n effic iency, de-
sign cycle time reduc tion, and introd ucing decis ion
criti cal infor mation early in the desig n proce ss [5]. An
earli er effor t withi n the Frame work for Inter disciplina ry
Design and Optim ization (FIDO) proje ct [6] used Paral-
lel Virtu al Machi ne (PVM) to handl e commu nications
among vario us discipl ine codes execu ting in a
“host /slave” mode. This frame work was sensi tive to
the host opera ting syste m and chang ing the analy tical
conne ctivity or switc hing disci pline codes requi red ma-
jor progr amming inter vention.

The goal of the curre nt frame work is to provi de a
progr amming envir onment for autom ating the distr ibu-
tion of a compl ex compu ting task over a netwo rked,
heter ogeneous syste m of compu ters. These compu ters
may inclu de engin eering works tations, vecto r
super computers, and paral lel proce ssing comput ers.
The prese nt paper descr ibes a compu tational envir on-
ment for multi disciplina ry analy sis and optim ization of
a High Speed Civil Trans port (HSCT) aircr aft, capab le
of concu rrent analy ses in a distr ibuted compu ting envi-
ronme nt and signi ficantly reducing the desig n cycle
time while intro ducing more detai led analy sis early in
the desig n process.

American Institute of Aeronautics and Astronautics
2

The prese nt appro ach incor porates advan ced air-
craft desig n techn iques withi n a new desig n frame work
utili zing the Commo n Objec t Reque st Broke r Architec-
ture (CORBA) and the Java progr amming langu age.
The prima ry benef it of this syste m is the flexi bility to
demon strate advan ced techn ology concu rrent multi dis-
cipli nary desig n integ ration techn iques and the capab il-
ity to intro duce detai led analy ses early in the design
proce ss. Such a multi disciplina ry analy sis and optim i-
zatio n (MDO) syste m capab le of concu rrent analy ses
using sever al disci plines such as aerod ynamics, struc-
tures , missi on/perform ance and optim ization is under
devel opment for the High Perfo rmance Compu tatio n
and Commu nication and Compu tational Aeros ciences
(HPCC P/CAS) progr am. This syste m uses CORBA in
an Objec t Frame work [7] for the integ rated desig n of a
HSCT aircr aft confi guration acros s a netwo rked syste m
of heter ogeneous compu ters using the clien t-serv er
parad igm. A centr al relat ional datab ase is used for in-
forma tion inter change and file manag ement. The goal
of the desig n is to minim ize the vehic le gross takeo ff
weigh t (GTOW) for given fligh t condi tions and mis-
sion require ments.

The paper will describ e two imple mentations in
the aircr aft desig n domai n based on the objec t-oriented
appro ach using CORBA and Java. The first is a sim-
ple repre sentative aircr aft desig n probl em based on fast
limit ed-fidelit y disci pline codes inclu ding an equiv a-
lent plate struc tural analy sis, linea r aerod ynamic analy-
sis, table looku p for propu lsion and a simpl e range
equat ion for perfo rmance fuel weigh t estim ation. The
secon d imple mentation is of a stand alone aerod ynamic
optimizer based on high- fidelity disci pline codes in-
cludi ng a nonli near aerod ynamics code, param etrized
geome try codes and an optim ization code. The compo-
nents of the techn ologies used, CORBA and Java, will
be descr ibed and their use in the imple mentation will
be detai led. Compo nents devel oped for the second im-
pleme ntation were reuse d witho ut chang e in the Analy-
sis part of a large scale desig n of a HSCT aircr aft.

The Framework

A multi disciplina ry analy sis and optim ization
syste m has been devel oped that is capab le of concu rrent
analy ses using sever al disci plines such as aerod ynam-
ics, struc tures, perfo rmance, propu lsion, and optim iza-
tion. This syste m, based on CORBA and the Java
programm ing langu age and its Appli cations Progr am-
ming Inter face’s (API) ’s, uses the clien t-server para-
digm in an Objec t Frame work for imple menting prob-
lems such as the integ rated desig n of a high speed civil
trans port aircr aft over a netwo rked syste m of heter oge-
neous compu ters. The Beans Devel opment Kit (BDK)
is used to provi de a Java Beans -based graph ical inter-
face for user input , inter active and visua l objec t conne c-
tivit y, and for monit oring the progr ess of probl em exe-
cutio n. Java’ s Datab ase Conne ctivity (JDBC) is used

by the clien t and serve r objec ts to commu nicate with a
centr al relat ional datab ase. Java’ s Remot e Metho d In-
vocat ion (RMI) is used on platf orms where a cost-
effec tive comme rcial imple mentation of CORBA is
not available. In the three appli cations descr ibed in
this paper , optim ization plays a commo n role. In the
case of the repre sentative high speed civil trans port
desig n problem, the objec tive is to optim ize the air-
plane weigh t for given cruis e condi tions, range , and
paylo ad requi rements , subje ct to aerod ynamic, struc-
tural , and perfo rmance const raints. The desig n vari-
ables inclu de both struc tural thick ness and geometri c
param eters defin ing the airpl ane shape . The frame work
provi des the capabilit y to switc h betwe en low-, me-
dium- , and high- fidelity codes with ease.

Common Object Request Broker Architecture
(CORBA) :

The Commo n Objec t Reque st Broke r Archi tecture
is a speci fication adopt ed by a conso rtium of indus try
repre sentatives known as the Objec t Manag ement
Group (OMG) to defin e a frame work for devel oping
distr ibuted appli cations. CORBA allow s clien t objec ts
to invok e serve r objec ts acros s the netwo rk witho ut
havin g to deal with the under lying compl exities of ob-
ject imple mentation and invoc ation. In this model , an
objec t is an encap sulated entit y with a uniqu e ident ity
whose servi ces can be acces sed only throu gh a well
defin ed inter face. The imple mentation of the objec t
(lang uage, opera ting syste m, other syste m speci fic as-
pects) as well as the locat ion of the invok ed objec t are
trans parent to the reque sting clien t. The detai ls of the
archi tecture are discu ssed below.

CORBA can be thoug ht of as a “soft ware bus”
[Fig. 1] conne cting vario us objec ts, both appli cation
and servi ce, on a netwo rk of compu ters. Objec ts on the
bus can be used by any other objec ts on the bus, with
the Objec t Reque st Broke r (ORB) media ting the trans-
fer of messa ges betwe en them. In this configu ration,
there is peer- to-peer commu nication where serve rs can
be clien ts for the servi ces of other objec ts on the bus.
CORBA also defin es a wide range of servi ces and fa-
cilit ies [8] to extend the core capab ilities of the ORB.

American Institute of Aeronautics and Astronautics
3

Function
Call

Client Host Server Host

ORBORB
InterfaceInterface

Client Object

software bus

AerodynamicsAerodynamics

Origin 2000

DATABASEDATABASE

Sun SPARC

StructuresStructures

IBM RS 10K

PropulstionPropulstion

Sun SPARC

PerformancePerformance

Sun SPARC

OptimizationOptimization

Sun SPARC

 Master Master

IBM RS 10K

Loads TransferLoads Transfer

Sun SPARC

 Geometry Geometry

Sun SPARC

 Service Service

IBM RS 10K

Figure 1. CORBA as a ‘software bus’.

Figure 2. The Object Request Broker, ORB.

IDLIDL
SkeletonSkeleton

IDLIDL
StubsStubs

Object Request BrokerObject Request Broker

Objec t Reque st Broke r (ORB) :

A softw are imple mentation of the CORBA speci-
ficat ion is calle d the Objec t Reque st Broke r, or, ORB
[Fig. 2]. The ORB media tes the trans fer of messa ges
from a progr am to an objec t on a remot e netwo rked
host. The ORB deliv ers reque sts to objec ts and retur ns
any respo nses. The key featu re of the ORB is the trans-
paren cy of how it facil itates the clien t/object commu ni-
catio n. The clien t is not requi red to know where the
targe t objec t resid es, how and in what progr amming
langu age it was imple mented, or the opera ting syste m
on the host compu ter. When a clien t makes a reque st,
the clien t is not conce rned wheth er that objec t is cur-
rentl y activ e and ready to accep t reque sts. The ORB
trans parently activ ates the objec t, if requi red, befor e
deliv ering the reque st. The clien t does not need to
know what under lying commu nication mecha nism the
ORB uses to media te the messa ge passi ng betwe en the
clien t and the serve r. All these enabl e the user to gen-
erate “thin clien ts” i.e., all the numbe r crunc hing is
done on the server-s ide on compu ters most appro priate
for the task. The ORB frees the appli cation devel oper
to focus more on the appli cation domai n issue s and
less about the low-l evel distr ibuted syste m progr am-
ming issue s.

An ORB is one compo nent of the OMG’s Objec t
Manag ement Archi tecture (OMA) . The other s inclu de
the appli cation objec ts, CORBA servi ces, and CORBA
facil ities. Servi ces inclu de a) Namin g Servi ce - which
allow s the clien ts to find objec ts based on names , b)
Tradi ng Servi ce - which allow s clien ts to find objec ts
based on their prope rties. CORBA facil ities defin e a

set of high-leve l servi ces that appli cations frequ ently
requi re when manip ulating distr ibuted objec ts.

Diffe rent comme rcial imple mentations of the
ORB must all be able to talk to each other using a
stand ard netwo rk proto col calle d the Inter net Inter -ORB
Protocol (IIOP).

Withi n an objec t frame work, each objec t commu-
nicat es with other s on a peer- to-peer basis . Each objec t
is a clien t of other servi ces and a serve r for the servi ces
it provi des. Very often , a clien t for one reque st is a
serve r for anoth er. This archi tecture facil itates netwo rk
progr amming by allow ing the creat ion of distr ibuted
appli cations as sets of coope rating reusa ble objec ts that
inter act as thoug h they were imple mented in a singl e
progr amming langu age on one compu ter.

Interface Definition Language (IDL):

Altho ugh CORBA objec ts are imple mented using
stand ard progr amming langu ages, each CORBA objec t
has a clear ly defin ed inter face, speci fied in the CORBA
Inter face Defin ition Languag e. Befor e a clien t can
make a reque st to an objec t, the clien t must know the
types of opera tions suppo rted by the objec t. An ob-
ject’ s inter face speci fies the opera tions and types that
the objec t suppo rts and thus defin es the reque sts that
can be made to that objec t. These objec t inter faces,
writt en in IDL, are simil ar to class es in C++ and to
interfa ces in Java. IDL is a decla rative langu age, not a
progr amming langu age. It force s inter faces to be sepa-
rate from objec t imple mentations . To use a discipli ne
code, the user needs to know only what inter faces are
imple mented by the code.

The IDL inter face is compi led by an IDL Com-
piler . IDL compi lers are avail able for sever al pro-
gramm ing langu ages. For Java, the IDL compi ler pro-
duces sever al Java const ructs which corre spond to the
IDL defin ition. The mappe d const ructors may be di-
vided into those that allow a clien t to acces s an objec t
throu gh the objec t inter face, and anoth er set of con-
struc ts which allow the objec t to be imple mented in a
serve r.

Java and i t s APIs:

Java is a general-purpose concurrent class-based object-
oriented programming language that fits naturally into
the CORBA object orientation architecture. Java is spe-
cifically designed to have as few implementation depend-
encies as possible and allows application developers to
write a program once and then be able to run it every-
where on the Internet. Java is robust, architecture neu-
tral, portable and with the “just-in-time” compilers, ap-
proaches speeds comparable to those of languages such as
C or FORTRAN. Java’s multithreading capability pro-
vides the ability to execute multiple activities in parallel.

American Institute of Aeronautics and Astronautics
4

Java’ s many APIs such as RMI, JNI, JDBC and
Java Beans (disc ussed below), make Java the progr am-
ming langu age of choic e for distr ibuted appli cations ,
parti cularly those depen dent on legac y codes , relat ional
datab ases and requi ring a graph ical user interfa ce.

Remot e Metho d Invoc ation (RMI) : Remot e
Metho d Invoc ation (RMI) is Java’ s alter native to
CORBA ’s remot e invoc ation capab ilities and is de-
signe d to simpl ify the commu nication betwe en two
objects resid ing on diffe rent hosts . RMI is usefu l only
for commu nication betwe en Java objec ts, and it does
not curre ntly use a stand ard trans mission proto col such
as IIOP. This API is a handy alter native when a suit-
able comme rcial ORB is not avail able (or too expen-
sive) for a speci fic platf orm. Of cours e, the platf orm
shoul d have the Java Virtu al Machi ne (JVM) on it.

Java Native Interface (JNI) : While a pure Java
solution is nice in principle, realistically, for an applica-
tion such as airplane design, there are several situations
where it becomes necessary to use codes written in an-
other language. Java’s Native Interface methodology
permits calling such legacy codes from a Java program.
To make calling native methods possible, Java comes
with hooks for working with system libraries and a few
tools to relieve some of the associated tedium. However,
the usage of native methods precludes portability. In the
present framework, the portability issue would not be a
problem since these methods would be used on the server
side of the application.

Java Database Connectivity (JDBC) : The
JDBC API is a set of specifications that define how a
program written in Java can communicate and interact
with a database. JDBC defines how the communication
is to be carried out and how the application and database
interact with each other. More specifically, the JDBC
API defines how an application opens a connection,
communicates with a database, executes SQL statements,
and retrieves query results. JDBC provides a vehicle for
the exchange of SQL between Java applications and data-
bases. JDBC classes are available for several popular
commercial databases which makes it possible to switch
databases on an application without being required to
make any significant changes to the Java code.

JavaBeans: A JavaBean is a reusable software
component that can be manipulated visually in a builder
tool. The builder tools may include web page builders,
visual application builders, GUI layout builders, or even
server application builders. The JavaBeans API provides
an environment in which a programmer can “wrap” an
object as a component that can be used by other develop-
ers. JavaBeans provide the capability and a set of stan-
dards for a design or builder tool to be able to query the

component package and access the object’s properties
through a process known as introspection.

JavaB eans have three disti nct eleme nts: Prope r-
ties, Event s, and Metho ds. Prope rties are the inter nal
varia bles assoc iated with a compo nent. Event s are a
way for compo nents and appli cations to commu nicate
with each other . Commo n event s inclu de mouse
movem ents and click s, keys being press ed, objec ts
receivi ng or losin g focus , etc. In addit ion, the user can
add custo m bean event s to handl e speci al requi rements.
Metho ds are funct ions that the compo nent can perfo rm
by invoc ation from the outsi de world .

JavaB eans can expos e selec ted prope rties for a user
to set at desig n time or get at run time. Prope rties can
be as simpl e as a file name or as sophi sticated as a
color edito r or array s of data. Simpl e prope rties are
displ ayed in the JavaB ean’s Prope rty Sheet , while more
sophi sticated prope rties requi re custo m built prope rty
edito rs acces sible from the bean’ s Prope rty Sheet . Cus-
tomiz ers can also be writt en to permi t users to edit
multi ple prope rties at the same time and make this
graph ical user interac tion more user frien dly.

Object Creation:
In the curre nt imple mentation, Iona Techn ologies’

imple mentation of the CORBA stand ard for the Java
progr amming langu age, Orbix Web, was chose n as the
ORB. For each disci pline, to be wrapp ed as an objec t,
an inter face file is writt en in IDL (Java for RMI im-
plementa tion) ident ifying the servi ces offer ed by that
object, the requi red input param eters, the outpu ts, and
the types of error s the objec t can “thro w”. Figur e 3
shows a listi ng of an IDL inter face for the imple menta-
tion of the airpl ane drag estim ation disci pline code as
“aeroDrag” objec t. The inter face for aeroD rag has only
one method, indic ating that the objec t provi des only
one servi ce - getTo talDrag that takes as input two
float ing point value s: cruis e angle of attac k and the
press ure drag coeff icient, and retur ns a float ing point
value , the total drag coeff icient - cd_to tal..

The object and its services, as identified in the in-
terface file, are then implemented in Java in an imple-
mentation file. The services are often obtained by the
execution of a discipline code. Discipline codes are in
general legacy codes, written either in FORTRAN or C,
and are accessed through an intermediate function which
is created following the guidelines set in JNI for calls to

American Institute of Aeronautics and Astronautics
5

Figure 3. An IDL interface for the aeroDrag object.

nativ e funct ions. Withi n the imple mentation file, a
centr al relat ional datab ase is queri ed for neede d data and
file infor mation. Any requi red file manag ement is
done based on this file infor mation. A third item of
softw are assoc iated with the creat ion of a disci pline
objec t is the “Serv er” class code. This compo nent ties
the imple mentation class to its IDL inter face. Serve rs
provi de objec ts for use by clien ts and other serve rs.

In a client code (the fourth of four files associated
with an object), the service getTotalDrag from object
aeroDrag is obtained by first instantiating the object as

aeroDrag my_aeroDrag =
aeroDragHelper.bind(":aeroDragSrv","cmb");

where my_aeroDrag is an instance of aeroDrag and the
implementation is linked to the interface by the object
reference aeroDragSrv. The service is being requested of
a server on the computer “cmb”. The actual request for
service is done by:

float cd_total =
my_aeroDrag.getTotalDrag (alfaCruise,

 cd_pres);

To create a JavaBean, the client code is “wrapped”
following the guidelines set by Java’s Beans Develop-
ment Kit. This wrapper is associated with a BeansInfo
file which identifies the discipline and other properties
exposed to the user through a Property Sheet and associ-
ated custom property editors. Customizers, if any,
would be implemented in separate software components.

A distr ibuted appli cation can then be assem bled in
one of two ways. In the first appro ach, a ‘mast er’ cli-
ent progr am can be writt en to imple ment the desig n

analysis algor ithm by makin g servi ce calls to the dis-
tribu ted appli cation objec ts. In the secon d appro ach,
the custo m discipline JavaBeans can be imported into
either BDK’s Beanbox, or into one of several commer-
cially available application builders such as Java Studio,
Visual Cafe’, Jbuilder, etc. Once imported, these beans
become available as icons or menu options. A user
would select appropriate beans from the menu and place
them in the work area. A “connection wizard” is usually
used to connect the beans together to form the required
analytical network. The connections are made by tying
events to methods. One type of connection handles se-
quencing the executions of the various discipline beans.
Another type of event called the Property Change Event
manages the communication of changes in exposed prop-
erties between discipline beans dependent on these prop-
erties. In this environment, graphical user interface
component beans can be integrated into the application
including buttons, labels, text windows and chart beans
to monitor execution progress. The application execu-
tion can be started by a simple clicking on a button.

In either case, when the master program is executed
or when the button is pressed, the client calls are trans-
ferred to the ORB which then passes the function calls
through the server code to the target object. Compo-
nents of the ORB are implemented by the OrbixWeb
daemons running on the server hosts or by the RMIregis-
tries in the case of Remote Method Invocation.

S i m p l e A i r p l a n e D e s i g n O p t i m i z a t i o n
P r o b l e m

This secti on descr ibes the imple mentation of a
simpl ified airpl ane desig n optim ization bench mark
probl em in the CORBA /Java based Objec t Frame work.
This probl em is consi dered an excellen t multi discipli-
nary optim ization test case since the inter play of multi-
ple disci plines is attem pted while carry ing along only a
small numbe r of desig n varia bles, const raints, and a
singl e objec tive funct ion. Figur e 4 shows the examp le
HSCT model , without engin e masse s and contr ol sur-
faces , that was studi ed withi n this frame work. Figur e
5 prese nts the disci pline segme nts and the infor mation
flow neces sary for the desig n and analy sis of an opti-
mal HSCT confi guratio n.

The princ ipal disci plines for the desig n probl em
are: aerod ynamics, struc tures, propu lsion, and perfo rm-
ance. The desig n objec tive is to minim ize the aircr aft
gross take- off weigh t for a given cruis e condi tions,
range , and paylo ad requi rements. The weigh t is mini-
mized subje ct to aerod ynamic, struc tural, and perfo rm-
ance const raints such as the limit ing value s of lift and
drag, maxim um stres ses at criti cal point s on the wing
inboa rd and outboard panel s, and range . Desig n vari

module Aerodynamics
{
 // Exception checks if error code is returned
 exception gotNegativeFlag
 {
 long errorNo;
 };

 interface aeroDrag
 {
 //Operations
 float getTotalDrag(in float alfa_cruise,
 in float cd_pres)
 raises (gotNegativeFlag);
 };
};

American Institute of Aeronautics and Astronautics
6

ables include wing sweep, wing root chord, distance to
wing sweep angle break, and the inboard and outboard
skin thickness.

START

Aerodynamic Analysis

Performance

Propulsion

Fuel Wgt.
 Converged?

No

Drag Polars

Weight Estimation

Gradient Computation

PerformanceStructuralAerodynamic

Structural Optimization

No

EXIT

Yes

Airplane Wt.
 Converged?

Yes

Initialize

Structural Analysis

Analysis

Figure 5. Flow-chart of Design Optimization Problem

After initialization, the design optimization pro-
ceeds in three phases, a) analysis, b) gradient computa-
tion, and c) optimization. The analysis phase begins
with a calculation of drag polars using the medium-
fidelity code Wingdes [9]. Lift and drag values for a
range of angles of attack are used in generating paramet-
ric representations of aerodynamic responses. All subse-
quent aerodynamic analyses for that design cycle will
utilize these drag polars to compute lift and drag. The
next step in the analysis phase is the iteration for the
airplane weight convergence. The weight iteration loop
begins with a static trim analysis where force balance is
computed for two different load factors: a) load factor =
1.0 for drag calculation used in performance analysis,
and b) load factor = 2.5 for loads calculation in structural
design. The propulsion segment computes the current
fuel flow rate. The performance segment uses this flow
rate to produce an estimate for fuel weight.

A structural analysis is done once during the first
iteration to determine the structural weight. A loads
transfer program converts the aerodynamic pressure dis-
tribution over the airplane to vertical forces on the
structure at a trimmed angle-of-attack and a load factor
of 2.5. The structural analysis program used here is the
Equivalent Laminated Plates Solution, ELAPS [10].
The total weight is then computed as the sum of the
fixed weights, structural weight, and the fuel weight.
The process is repeated until the total weight converges
within a predefined tolerance.

In the next phase , all the syste m respo nse deriva-
tives required by the optim izer are compu ted. The
gradi ents of aerod ynamic and struc tural const raints are
compu ted using finit e-differen ces. Gradi ents of the
fuel weigh t with respe ct to desig n varia bles are ob-
taine d using a close d-form expre ssion.

Figure 4. HSCT model problem and design point data

Airplane length 300 ft.
Wing Span 145 ft.
Leading Edge Sweep 73o

Cruise Altitude 63,000 ft.
Cruise Mach Number 2.4

American Institute of Aeronautics and Astronautics
7

Converged?

Initialize Update Cycle

Drag Polars

Weight Estimation

Structural
Gradients

Aerodynamic
Gradients

Performance
Gradients

Optimize

Yes

No

Figure 6. JavaBeans Connectivity.

In the third phase , Conmi n [11] with linea r ap-
proxi mations is used as the optim ization progr am.
Conmi n uses the metho d of useab le-feasibl e direc tions
to minim ize the objec tive funct ion, the airpl ane gross
weigh t, subje ct to the afore mentio ned desig n con-
strai nts and compu tes an updat ed set of value s for the
desig n variables .

The probl em disci plines were wrapp ed as objec ts
in the CORBA /Java envir onment. The clien t side
codes were wrapp ed as JavaB eans and impor ted into
BDK’s Beanb ox. Figure 6 shows the analy tical con-
necti vity of the disci pline JavaB eans in the Beanb ox.
The Desig n Optim ization Probl em is prese nted in
Fig. 5.

Outboard

Inboard

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 V
al

ue

0 1 2 3 4 5 6 7 8 9 10 11 12

Cycle Number

Thickness Present FIDO

Figure 7. Variation of Structural Design Variables.

Fuel

Structural

Total

Weight Present FIDO

2.5

5

7.5

10

12.5

N
or

m
al

iz
ed

 V
al

ue

0 1 2 3 4 5 6 7 8 9 10 11 12

Cycle Number

Figure 8. Variation of Airplane Weights.

A typic al HSCT confi guration flyin g at Mach
2.4 at an altit ude of 63,00 0 feet was analy zed using
the analy tical conne ctivity shown in Fig. 5. Figur e 7
shows the varia tion of the struc tural desig n varia bles
with cycle numbe r while Fig. 8 shows the varia tion of
the airpl ane weigh t compo nents with cycle numbe r.
The resul ts show excel lent agree ment with resul ts
obtaine d from an imple mentation of the curre nt prob-
lem in an earli er PVM based framework[12].

Stand-alone Aerodynamic Optmizer

A secon d appli cation imple mented in the
CORBA /Java distr ibuted compu ting frame work is a
stand -alone aerod ynamic optim izer. The appli cation
uses the paral lel compu tation of aerod ynamic deriv a-
tives via autom atic diffe rentiation of the Euler /Navier-
Stoke s solve r CFL3D [13] coupl ed with an optimizer
and surfa ce/volume grid defor mation tools to perfo rm
an optim ization to reduc e the drag of a HSCT airpl ane
confi guratio n.

Centr al to any gradi ent-based probl em is the
evalu ation of solut ion deriv atives with respe ct to the
chose n desig n varia bles. Differe ntiation of the CFD
sourc e code used to obtai n the solut ion gives exact
deriv atives of the discr ete equat ions, witho ut the step
size probl ems of finit e diffe rences[14] . A param eter-
ized surfa ce defin ition is used that relat es the shape to
geometri c design varia bles. The metho d is a free- form
defor mation appro ach very simil ar to morph ing tech-
nique s used in compu ter anima tion.

Figure 9 shows the analytical connectivity for the
application. The design cycle begins with grid genera-
tion. Grid generation includes the following steps: a)
use the updated design variables along with the parame-

American Institute of Aeronautics and Astronautics
8

START

Analysis

Optimization

Gradient Computation

cycle No. =
maxCycles ?

No

Grid Generation

EXIT

Yes

Figure 9. Stand-alone aerodynamic Optimizer.

teriz ed grid to form an updat ed surfa ce grid and its
sensi tivity deriv atives with respe ct to the desig n vari-
ables , b) use the updat ed surfa ce grid to gener ate a
volum e grid and corre sponding sensi tivity deriv atives,
and c) conve rt the volum e grid and sensi tivity data to
binar y forma t. The forme r may be divid ed from a
singl e block to multi ple block s so that CFL3D may
be execute d in a parallel mode

Grid gener ation is follo wed by the analy sis phase
in which an analy sis is condu cted using CFL3D .
This can be follo wed by a gradi ent compu tation
phase . Durin g this phase a flow solve r analy sis is
follo wed by sensi tivity analy sis. Under assum ed
HSCT fligh t conditio ns the flow solut ion conve rges
rapid ly and hence the analy sis phase is skipp ed in
favor of a combi ned analysis and gradi ent calcu lation
phase .

In the next phase , the optim izer compu tes new
value s of the desig n varia bles. The updat ed desig n
varia bles are the input to the next cycle in the optim i-
zatio n proce ss. The overa ll analy sis is run for a prese t
numbe r of desig n cycle s. The uncon strained optim i-
zatio n probl em uses 27 shape desig n varia bles to
maxim ize the value of the lift coeff icient .

The analysis codes which include the geometry
analysis codes, CFL3D, and the optimizer were wrapped
as objects in the CORBA/Java framework. The client-
side was wrapped using JavaBeans technology to provide
a graphical user interface through which the user is

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

1 2 3 4 5 6 7 8 9 10 11

Unscaled DVs

Scaled DVs

Cycle Number

CD

Figure 10. Variation of CD with cycle number.

able to modif y selec ted input condi tions inclu ding
optio ns to start the analy sis from scrat ch or conti nue
from a selec ted cycle in a previ ous desig n analy sis.
Norma lized drag resul ts for an optim ization run of 10
cycle s is prese nted in Fig. 10. Both scale d and un-
scale d desig n varia bles are shown for the curre nt im-
pleme ntation. These resul ts compa re ident ically with
those obtai ned by the conve ntional proce ss.

A High Fidelity Aircraft Design Pro b lem

The experience gained from the earlier implemen-
tations and a number of the objects developed therein are
being used in the CORBA/Java implementation of a
large scale aircraft design optimization problem titled
HSCT4.0. The objective is to demonstrate the applica-
tion of high performance computing techniques to the
problem of multidisciplinary optimization of a subsonic
transport configuration using high fidelity analysis
simulations early in the design process. The HSCT4.0
problem considers 27 shape design variables and 244
structural design variables (the 0/45/90/core layers in 61
optimization zones). Figure 4 shows the example
model and Fig. 11 shows a high level flow chart of the
multidisciplinary analysis portion of the design optimi-
zation problem.

During the Analysis phase, the values of the ob-
jective function and the constraints are evaluated. The
process begins by deriving an updated geometry and
corresponding linear, nonlinear aerodynamic meshes and
a structural finite element mesh by applying the updated
shape design variables to a baseline parameterized ge-
ometry grid.

Next, in the Weights process, structural weight
from a finite element analysis, fuel weight from a per-
formance analysis, and empirical weights representing
all other components such as passengers, seats, actua-
tors, etc. are all evaluated and assembled to provide the

American Institute of Aeronautics and Astronautics
9

Geometry

Weights Nonlinear
Corrections

Rigid Trim

Displace-
ments

Performance
Loads
Convergence

Stress &
Buckling

Ground
Scrape

Polars

take-off and
landing speeds

mission lift and drag
coefficients

cruise lift and drag
coefficients

trimmed cruise
 aero loads

cruise weight
and c.g.

achievable
scrape angle

cruise
displacements

maneuver
loads

stress,
buckling

range/metrics

nonlinear
corrections

grids
weight, metrics,
section props

weights and c.g.s

aero grids &
scrape geometry

design variables

Figur e 11. Flowc hart of analy sis in MDO probl em.

"as built" weight in terms of nodal weights and a total
weight and center of gravity location for cruise and take
off conditions.

A Nonlinear Corrections module periodically
computes "corrections" for use with subsequent linear
aerodynamics computations. The process uses updated
linear and nonlinear aerodynamics grids, aircraft total
weight for each load condition considered, along with
multiple runs of the linear aerodynamics code covering a
range of bracketing angles-of-attack and tail angles of
incidence. For each load condition, the angle-of-attack
is determined that generates the same configuration
normal force as that of the nonlinear aerodynamic calcu-
lation. The nonlinear corrections are calculated as the
difference between the Z components of the linear panel
loads, interpolated at the angle of attack that matches
the normal force, with the nonlinear panel loads that
have been transferred to the linear aero grid.

The Rigid Trim calculation for the cruise condi-
tion uses the derived linear aerodynamic grids along
with the nonlinear corrections to compute the angle-of-
attack and tail angle of incidence, that produces the tar-
get lift coefficient (as per the weight estimation), with

no net pitching moment. The resulting surface pres-
sures and the induced drag coefficient are then determined
by the final trim angle and tail angle of incidence.

Once the Rigid Trim process has been completed,
the Polars, Performance, and Ground Scrape sequence of
processes may proceed in parallel with the Displace-
ments, Loads Convergence, and the Stress & Buckling
process sequence.

Aircraft drag polars are calculated for the current
design over a range of Mach numbers, altitudes, and
angles-of-attack so as to provide the required input to
the performance module. At each mission condition,
lift and drag due to lift are computed from linear aerody-
namics calculations that span the Mach number range.
Empirical corrections are applied to drag due to lift. In
addition, wave drag and friction drag are computed to
obtain the total drag.

The table of lift coefficients and coefficients of
drag components at the mission points are input to the
performance module, the outputs from which include
range, take off field length, landing field length, lift off
speed, approach speed and time to climb to cruise.

The ground scrape process provides a basis for
constraints such that the aircraft tail will not scrape the
ground on take off or landing. The ground scrape con-
straints are formulated as limits on the maximum value
of the take off and landing gross weights for avoiding
tail scrape. Additionally, ground clearances are com-
puted for selected airframe and engine locations at the
take off and landing angles of attack and a given pitch
angle.

The trimmed cruise loads are input to the Dis-
placements module. Within the Displacements module,
the pressure loads on the aerodynamic grid are transferred
as consistent loads at the nodes of the structural mesh.
The cruise displacements obtained from a structural
analysis are then input to the Loads Convergence mod-
ule.

Converged loads for selected flight conditions are
obtained through an aeroelastic analysis. At each load
condition, the aircraft is trimmed for a consistent set of
loads, angle of attack, and tail incidence angle. The
trimmed loads are transferred to the structural nodes.
Displacements computed from a structural analysis are
then used to deform the aerodynamic grid. The aircraft
is then trimmed at this new configuration and the trim
loads transferred to the aircraft structure, followed by
another structural analysis. This process is repeated till
the trimmed loads (and the corresponding displacements)
converge to a pre-set tolerance.

American Institute of Aeronautics and Astronautics
10

These converged loads for the selected load condi-
tions are input to the Stress and Buckling module. In
this module, the Hoffman Stress Failure Index (SFI) is
computed for every face sheet for each of 2260 elements
for 7 flight conditions. A buckling load factor (BLF) is
computed for each of the elements in terms of the in-
plane stress resultants.

All compo nents of the Analy sis part of the
HSCT4 .0 probl em have been imple mented as objec ts
in the curre nt CORBA/Jav a envir onment. Some ob-
jects devel oped for the earli er examp les, such as the
Geome try and Nonli near Corre ctions objec ts from the
Stand alone Aerod ynamic Optim izer, were used with-
out modification.

Conclusion

A compo nent-based compu tational envir onment
for imple menting aircr aft desig n probl ems has been
descr ibed. The envir onment is condu cive to takin g
advan tage of the paral lelisms inher ent in the probl em
and distr ibute the indiv idual disci plines on machi nes
most appro priate to their needs while insul ating the
devel oper and the user from the compl exity of the un-
derly ing commu nications const ructs. CORBA and
the Java progr amming langu age are used to encap su-
late disci pline codes as “obje cts”.

Under the CORBA a multi discipline analy sis
and optim ization syste m has been devel oped that is
capable of concu rrent analy sis. The prima ry disci-
pline s consi dered in this paper are aerod ynamics and
structures coupl ed with a forma l optim ization tech-
nique . All objec ts are imple mented using Java, with
each CORBA objec t having a clear ly defin ed inter face.
Java is a gener al-purpose concu rrent class -based object
orien ted progr amming langu age. Java is robus t, archi-
tectu re neutr al, porta ble and with just- in-time compi l-
ers, appro aches speed s compa rable to those of lan-
guage s such as C and FORTR AN. While a pure Java
solut ion is nice in princ iple, reali stically, for an appli-
catio n such as aircr aft desig n it becom es necessary to
use codes writt en in other langu ages. This is permi t-
ted throu gh Java’ s Nativ e Inter face Techn iques, which
permi ts codes writt en in other langu ages to be calle d
from a Java progr am. The Java JDBC API allows
Java progr ams to commu nicate and inter act with a
centr al datab ase. JavaB eans have been used to im-
pleme nt the objec ts as reusa ble softw are compo nents
that permi t user inter action and visua l objec t conne c-
tivit y. JavaB eans allow the user to selec t prope rties at
desig n time or acces s at run time.

Three desig n probl ems were prese nted. The first
examp le is the “Simp le Airpl ane Desig n Probl em”
which is multi discip linary in natur e. The contr ibut-
ing disci plines are aerod ynamics, propu lsion, per-
forma nce and struc tures coupl ed with a forma l optim i-
zatio n techn ique. Resul ts show excel lent agree ment

with earli er bench mark resul ts. The secon d examp le is
the “Stan d-alone Aerod ynamic Optim izer”. Resul ts of
the optim ization compa red ident ically with those ob-
taine d by the conve ntional proce ss. Good desig n
conve rgence was achie ved withi n ten desig n cycle s.
Final ly the imple mentation of the analy sis porti on of
a large scale high speed civil trans port desig n optim i-
zatio n probl em is descr ibed.

A compo nent-based multi disciplina ry analy sis
and optim ization desig n frame work that will allow
globa l coupl ing of sever al uncou pled engin eering dis-
cipli nes has been demon strated using the CORBA .
Contr ibuting disci plines funct ion concu rrently as ob-
jects in the frame work. Desig n trend s compa red well
with resul ts obtai ned from conve ntional technique s.

Acknowledgment
This work was supported by NASA Contract

NAS1-20431.

References

1. D'Vari, R., and Baker, M., "A Static and Dynamic
Aeroelastic Loads and Sensitivity Analysis for Struc-
tural Loads Optimization and Its Application to
Transport Aircraft," AIAA Paper 93-1643, April
1993.

2. Raymer, D.P., Aircraft Design: A Conceptual A p -
proach , AIAA Education Series, AIAA, Washington,
DC, 1992.

3. Radovchich, N. A., "Some Experiences in Aeroelas-
tic Design of Structures[PADS].", Recent Experi-
ences in Multidisciplinary Analysis and Optimiza-
tion, Part 1, NASA CP-2327, April 1984, pp 455-
503.

4. Ladner, F.K., and Roch, A. J., " A Summary of the
Design Synthesis Process," Society of Aeronautical
Weight Engineers Paper 907, 1972.

5. Salas, A. O., and Townsend, J. C., “Framework Re-
quirements for MDO Application Development,”
AIAA Paper 98-4740, September 1998.

6. Townsend, J. C., Weston, R. P., and Eidson, T. M.,
"A Programming Environment for Distributed Com-
plex Computing. An Overview of the Framework for
Interdisciplinary Design Optimization (FIDO) Pro-
ject, NASA TM 109058, December 1993.

7. Steve Vinoski, “CORBA: Integrating diverse applica-
tions within distributed Heterogeneous Environ-
ments”, IEEE Communications, Vol. 14, No. 2,
February 1997.

8. Object Management Group, The Common Object
Request Broker: Architecture & Specification, 2.0
ed., July 1995.

American Institute of Aeronautics and Astronautics
11

9. Carlson, H. W., and Walkley, K. B., “Numerical
Methods and a Computer Program for Subsonic and
Supersonic Aerodynamic Design and Analysis of
Wings with Attainable Thrust Considerations,”
NASA Contractor Report, NASA CR-3808, August
1984.

10. Giles, G. L., “Equivalent Plate Analysis of Aircraft
Wing Box Structures with General Planform Geome-
try”, Journal of Aircraft, Vol. 23, No. 11, 1986, pp.
859-864.

11. Vanderplaats, G. N., “CONMIN - a FORTRAN
Program for Constrained Function Minimization
User’s Manual”, NASA TM-X-62282, August 1973.

12. Weston, R. P., Townsend, J. C., Eidson, T. M.,
Gates, R. L., “A Distributed Computing Environ-
ment for Multidisciplinary Design”, AIAA Paper 94-
4372, September 1994.

13. Sherrie L. K., Biedron, R. T., Rumsey, C. L.,
"CFL3D User's Manual (Version 5.0)", e-mail:
r.t.biedron@larc.nasa.gov, NASA Langley Research
Center, November 1996.

14. Biedron, R. T., Samareh, J. A., and Green, L. L.
“Parallel Computation of Sensitivity Derivatives
with application to Aerodynamic Optimization of a
Wing,” To appear in the proceedings of the 1998
NASA Computational Aerosciences Workshop, Mof-
fett Field, CA., August 1998.

