
Numerical Algoritms and Libraries

Jack J. Dongarra
Danny Sorensen

The increasing availability of advanced-architecture computers is having a
very signi�cant e�ect on all spheres of scienti�c computation, including algo-
rithm research and software development.

This chapter discusses some of the recent developments in numerical algo-
rithms and software libraries designed to exploit these advanced-architecture
computers. Since most of the work is motivated by the need to solve large prob-
lems on the fastest computers available, we focus on three essential components
out of which current and modern problem solving environments are constructed:

1. well-designed numerical software libraries providing a comprehensive func-
tionality and con�ning most machine dependencies into a small number
of kernels, that o�er a wide scope for e�ciently exploiting computer hard-
ware resources,

2. automatic generation and optimization of such a collection of numerical
kernels on various processor architectures, that is, software tools enabling
well-designed software libraries to achieve high performance on most mod-
ern computers in a transportable manner,

3. software systems that transform disparate, loosely-connected computers
and software libraries into a uni�ed, easy-to-access computational service,
that is, a service able to make enormous amounts of computing power
transparently available to users on ordinary platforms.

For the past twenty years or so, there has been a great deal of activity in
the area of algorithms and software for solving scienti�c problems. The linear
algebra community has long recognized the need for help in developing algo-
rithms into software libraries, and several years ago, as a community e�ort,
put together a de facto standard identifying basic operations required in lin-
ear algebra algorithms and software. The hope was that the routines making
up this standard, known collectively as the Basic Linear Algebra Subprograms
(BLAS) [?, ?, ?], would be e�ciently implemented on advanced-architecture
computers by many manufacturers, making it possible to reap the portability
bene�ts of having them e�ciently implemented on a wide range of machines.
This goal has been largely realized.

The key insight of our approach to designing linear algebra algorithms for
advanced-architecture computers is that the frequency with which data is moved
between di�erent levels of the memory hierarchy must be minimized in order to
attain high performance. Thus, our main algorithmic approach for exploiting
both vectorization and parallelism in our implementations is the use of block-
partitioned algorithms, particularly in conjunction with highly-tuned kernels

i

for performing matrix-vector and matrix-matrix operations. In general, the
use of block-partitioned algorithms requires data to be moved as blocks, rather
than as vectors or scalars, so that although the total amount of data moved is
unchanged, the latency (or startup cost) associated with the movement is greatly
reduced because fewer messages are needed to move the data. A second key
idea is that the performance of an algorithm can be tuned by a user by varying
the parameters that specify the data layout. On shared-memory machines,
this is controlled by the block size, while on distributed-memory machines it is
controlled by the block size and the con�guration of the logical process mesh.

Speed and portable optimization are thus con
icting objectives that have
proved di�cult to satisfy simultaneously, and the typical strategy for addressing
this problem by con�ning most of the hardware dependencies in a small number
of heavily-used computational kernels has limitations. For instance, producing
hand-optimized implementations of even a reduced set of well-designed software
components for a wide range of architectures is an expensive and tedious task.
For any given architecture, customizing a numerical kernel's source code to op-
timize performance requires a comprehensive understanding of the exploitable
hardware resources of that architecture. This primarily includes the memory
hierarchy and how it can be utilized to maximize data-reuse, as well as the
functional units and registers and how these hardware components can be pro-
grammed to generate the correct operands at the correct time. Clearly, the size
of the various cache levels, the latency of
oating point instructions, the number
of
oating point units and other hardware constants are essential parameters
that must be taken into consideration as well. Since this time-consuming cus-
tomization process must be repeated whenever a slightly di�erent target archi-
tecture is available, or even when a new version of the compiler is released, the
relentless pace of hardware innovation makes the tuning of numerical libraries
a constant burden.

The di�cult search for fast and accurate numerical methods for solving
numerical problems is compounded by the complexities of porting and tuning
numerical libraries to run on the best hardware available to di�erent parts of the
scienti�c and engineering community. Given the fact that the performance of
common computing platforms has increased exponentially in the past few years,
scientists and engineers have acquired legitimate expectations about being able
to immediately exploit these available resources at their highest capabilities.
Fast, accurate, and robust numerical methods have to be encoded in software
libraries that are highly portable and optimizable across a wide range of systems
in order to be exploited to their fullest potential.

Section 1 discusses an innovative approach [?, ?] to automating the process of
producing such optimized kernels for RISC processor architectures that feature
deep memory hierarchies and pipelined functional units. These research e�orts
have so far demonstrated very encouraging results, and have generated great
interest among the scienti�c computing community.

Many scientists and researchers increasingly tend nowadays to use simulta-
neously a variety of distributed computing resources such as massively parallel
processors, networks and clusters of workstations and \piles" of PCs. In order to

ii

use e�ciently such a diverse and lively computational environment, many chal-
lenging research aspects of network-based computing such as fault-tolerance,
load balancing, user-interface design, computational servers or virtual libraries,
must be addressed. User-friendly, network-enabled, application-speci�c toolkits
have been speci�cally designed and conceived to tackle the problems posed by
such a complex and innovative approach to scienti�c problem solving [?].

Future directions for research and investigation are �nally presented in Sec-
tion ??.

0.1 Software Design

Developing a library of high-quality subroutines for scienti�c problems requires
to tackle a large number of issues. On one hand, the development or selection of
numerically stable algorithms in order to estimate the accuracy and/or domain
of validity of the results produced by these routines. On the other hand, it
is often required to (re)formulate or adapt those algorithms for performance
reasons that are related to the architecture of the target computers.

0.2 High-Quality, Reusable, Mathematical Software

In developing a library of high-quality subroutines for dense linear algebra com-
putations the design goals fall into three broad classes: performance, ease-of-use
and range-of-use.

0.2.1 Performance

0.2.2 Ease-Of-Use

Ease-of-use is concerned with factors such as portability and the user interface
to the library. Portability, in its most inclusive sense, means that the code is
written in a standard language, such as Fortran, and that the source code can be
compiled on an arbitrary machine to produce a program that will run correctly.
We call this the \mail-order software" model of portability, since it re
ects the
model used by software servers such as netlib [?]. This notion of portability
is quite demanding. It requires that all relevant properties of the computer's
arithmetic and architecture be discovered at runtime within the con�nes of a
Fortran code. For example, if it is important to know the over
ow threshold for
scaling purposes, it must be determined at runtime without over
owing, since
over
ow is generally fatal. Such demands have resulted in quite large and so-
phisticated programs [?, ?] which must be modi�ed frequently to deal with new
architectures and software releases. This \mail-order" notion of software porta-
bility also means that codes generally must be written for the worst possible
machine expected to be used, thereby often degrading performance on all oth-
ers. Ease-of-use is also enhanced if implementation details are largely hidden
from the user, for example, through the use of an object-based interface to the
library [?]. In addition, software for distributed-memory computers should work
correctly for a large class of data decompositions.

iii

0.2.3 Range-Of-Use

The range-of-use may be gauged by how numerically stable the algorithms are
over a range of input problems, and the range of data structures the library
will support. For example, LINPACK and EISPACK deal with dense matrices
stored in a rectangular array, packed matrices where only the upper or lower half
of a symmetric matrix is stored, and banded matrices where only the nonzero
bands are stored. There are also sparse matrices, which may be stored in many
di�erent ways.

1 Automatic Generation of Tuned Numerical Ker-

nels

This section describes an approach for the automatic generation and optimiza-
tion of numerical software for processors with deep memory hierarchies and
pipelined functional units. The production of such software for machines rang-
ing from desktop workstations to embedded processors can be a tedious and time
consuming customization process. The research e�orts presented below aim at
automating much of this process. Very encouraging results generating great
interest among the scienti�c computing community have already been demon-
strated. In this section, we focus on the ongoing Automatically Tuned Linear
Algebra Software (ATLAS) [?] project developed at the University of Tennessee
(see http://www.netlib.org/atlas/). The ATLAS initiative adequately il-
lustrates current and modern research projects on automatic generation and
optimization of numerical software such as PHiPAC [?]. After having developed
the motivation for this research, the ATLAS methodology is outlined within
the context of a particular BLAS function, namely the general matrix-multiply
operation. Much of the technology and approach presented below applies to
other BLAS and on basic linear algebra computations in general, and may be
extended to other important kernel operations. Finally, performance results on
a large collection of computers are presented and discussed.

1.1 Motivation

Straightforward implementation in Fortan or C of computations based on sim-
ple loops rarely achieve the peak execution rates of today's microprocessors.
To realize such high performance for even the simplest of operations often re-
quires tedious, hand-coded, programming e�orts. It would be ideal if compilers
where capable of performing the optimization needed automatically. However,
compiler technology is far from mature enough to perform these optimizations
automatically. This is true even for numerical kernels such as the BLAS on
widely marketed machines which can justify the great expense of compiler de-
velopment. Adequate compilers for less widely marketed machines are almost
certain not to be developed.

iv

Producing hand-optimized implementations of even a reduced set of well-
designed software components for a wide range of architectures is an expensive
proposition. For any given architecture, customizing a numerical kernel's source
code to optimize performance requires a comprehensive understanding of the ex-
ploitable hardware resources of that architecture. This primarily includes the
memory hierarchy and how it can be utilized to provide data in an optimum
fashion, as well as the functional units and registers and how these hardware
components can be programmed to generate the correct operands at the correct
time. Using the compiler optimization at its best, optimizing the operations to
account for many parameters such as blocking factors, loop unrolling depths,
software pipelining strategies, loop ordering, register allocations, and instruction
scheduling are crucial machine-speci�c factors a�ecting performance. Clearly,
the size of the various cache levels, the latency of
oating point instructions, the
number of
oating point units and other hardware constants are essential param-
eters that must be taken into consideration as well. Since this time-consuming
customization process must be repeated whenever a slightly di�erent target ar-
chitecture is available, or even when a new version of the compiler is released, the
relentless pace of hardware innovation makes the tuning of numerical libraries
a constant burden.

The di�cult search for fast and accurate numerical methods for solving
numerical linear algebra problems is compounded by the complexities of porting
and tuning numerical libraries to run on the best hardware available to di�erent
parts of the scienti�c and engineering community. Given the fact that the
performance of common computing platforms has increased exponentially in the
past few years, scientists and engineers have acquired legitimate expectations
about being able to immediately exploit these available resources at their highest
capabilities. Fast, accurate, and robust numerical methods have to be encoded
in software libraries that are highly portable and optimizable across a wide range
of systems in order to be exploited to their fullest potential.

For illustrative purpose, we consider the Basic Linear Algebra Subprograms
(BLAS) described in Section ??. As shown in Section ??, the BLAS have
proven to be very e�ective in assisting portable, e�cient software for sequential,
vector, shared-memory and distributed-memory high-performance computers.
However, the BLAS are just a set of speci�cations for some elementary linear
algebra operations. A reference implementation in Fortran 77 is publically avail-
able, but it is not expected to be e�cient on any particular architecture, so that
many hardware or software vendors provide an \optimized" implementation of
the BLAS for speci�c computers. Hand-optimized BLAS are expensive and te-
dious to produce for any particular architecture, and in general will only be
created when there is a large enough market, which is not true for all platforms.
The process of generating an optimized set of BLAS for a new architecture
or a slightly di�erent machine version can be a time consuming and expensive
process. Many vendors have thus invested considerable resources in producing
optimized BLAS for their architectures. In many cases near optimum perfor-
mance can be achieved for some operations. However, the coverage and the level
of performance achieved is often not uniform across all platforms.

v

1.2 The ATLAS Methodology

In order to illustrate the ATLAS methodology, we consider the following matrix-
multiply operation C �AB + �C, where � and � are scalars, and A, B and
C are matrices, with A an M-by-K matrix, B a K-by-N matrix and C an M-
by-N matrix. In general, the arrays A, B, and C containing respectively the
matrices A, B and C will be too large to �t into cache. It is however possible
to arrange the computations so that the operations are performed with data
for the most part in cache by dividing the matrices into blocks [?]. ATLAS
isolates the machine-speci�c features of the operation to several routines, all
of which deal with performing an optimized \on-chip" matrix multiply, that is,
assuming that all matrix operands �t in Level 1 (L1) cache. This section of code
is automatically created by a code generator which uses timings to determine
the correct blocking and loop unrolling factors to perform optimally. The user
may directly supply the code generator with as much detail as desired, i.e.
size of the L1 cache size, blocking factor(s) to try, etc; if such details are not
provided, the code generator will determine appropriate settings via timings.
The rest of the code produced by ATLAS does not change across architectures.
It handles the looping and blocking necessary to build the complete matrix-
matrix multiply from the on-chip multiply. It is obvious that with this many
interacting e�ects, it would be di�cult, if not impossible to predict a priori
the best blocking factor, loop unrolling, etc. ATLAS provides a code generator
coupled with a timer routine which takes in some initial information, and then
tries di�erent strategies for loop unrolling and latency hiding and chooses the
case which demonstrated the best performance.

1.3 Well-Designed Numerical Software Libraries

Portability of programs has always been an important consideration. Porta-
bility was easy to achieve when there was a single architectural paradigm (the
serial von Neumann machine) and a single programming language for scienti�c
programming (Fortran) embodying that common model of computation. Ar-
chitectural and linguistic diversity have made portability much more di�cult,
but no less important, to attain. Users simply do not wish to invest signi�cant
amounts of time to create large-scale application codes for each new machine.
Our answer is to develop portable software libraries that hide machine-speci�c
details.

In order to be truly portable, parallel software libraries must be standardized.
In a parallel computing environment in which the higher-level routines and/or
abstractions are built upon lower-level computation and message-passing rou-
tines, the bene�ts of standardization are particularly apparent. Furthermore,
the de�nition of computational and message-passing standards provides vendors
with a clearly de�ned base set of routines that they can implement e�ciently.

From the user's point of view, portability means that, as new machines are
developed, they are simply added to the network, supplying cycles where they
are most appropriate.

vi

From the mathematical software developer's point of view, portability may
require signi�cant e�ort. Economy in development and maintenance of math-
ematical software demands that such development e�ort be leveraged over as
many di�erent computer systems as possible. Given the great diversity of par-
allel architectures, this type of portability is attainable to only a limited degree,
but machine dependences can at least be isolated.

Like portability, scalability demands that a program be reasonably e�ective
over a wide range of number of processors. The scalability of parallel algorithms,
and software libraries based on them, over a wide range of architectural designs
and numbers of processors will likely require that the fundamental granularity
of computation be adjustable to suit the particular circumstances in which the
software may happen to execute. The ScaLAPACK approach to this problem
is block algorithms with adjustable block size.

Scalable parallel architectures of the present and the future are likely to
be based on a distributed-memory architectural paradigm. In the longer term,
progress in hardware development, operating systems, languages, compilers,
and networks may make it possible for users to view such distributed architec-
tures (without signi�cant loss of e�ciency) as having a shared-memory with a
global address space. Today, however, the distributed nature of the underlying
hardware continues to be visible at the programming level; therefore, e�cient
procedures for explicit communication will continue to be necessary. Given this
fact, standards for basic message passing (send/receive), as well as higher-level
communication constructs (global summation, broadcast, etc.), have become
essential to the development of scalable libraries that have any degree of porta-
bility. In addition to standardizing general communication primitives, it may
also be advantageous to establish standards for problem-speci�c constructs in
commonly occurring areas such as linear algebra.

Traditionally, large, general-purpose mathematical software libraries have
required users to write their own programs that call library routines to solve
speci�c subproblems that arise during a computation. Adapted to a shared-
memory parallel environment, this conventional interface still o�ers some po-
tential for hiding underlying complexity. For example, the LAPACK project
incorporates parallelism in the Level 3 BLAS, where it is not directly visible to
the user.

When going from shared-memory systems to the more readily scalable distributed-
memory systems, the complexity of the distributed data structures required is
more di�cult to hide from the user. One of the major design goal of High
Performance Fortran (HPF) [?] was to achieve (almost) a transparent program
portability to the user, from shared-memory multiprocessors up to distributed-
memory parallel computers and networks of workstations. But writing e�cient
numerical kernels with HPF is not an easy task. First of all, there is the need
to recast linear algebra kernels in terms of block operations (otherwise, as al-
ready mentioned, the performance will be limited by that of Level 1 BLAS rou-
tines). Second, the user is required to explicitly state how the data is partitioned
amongst the processors. Third, not only must the problem decomposition and
data layout be speci�ed, but di�erent phases of the user's problem may require

vii

transformations between di�erent distributed data structures. Hence, the HPF
programmer may well choose to call ScaLAPACK routines just as he called LA-
PACK routines on sequential processors with a memory hierarchy. To facilitate
this task, an interface has been developed [?]. The design of this interface has
been made possible because ScaLAPACK is using the same block-cyclic distri-
bution primitives as those speci�ed in the HPF standards. Of course, HPF can
still prove a useful tool at a higher level, that of parallelizing a whole scien-
ti�c operation, because the user will be relieved from the low level details of
generating the code for communications.

1.4 Automatic Generation and Optimization of Numerical

Kernels on Various Processor Architectures

The ATLAS package presently available on netlib is organized around the matrix-
matrix multiplication. This operation is the essential building block of all of the
Level 3 BLAS. Initial research using publicly available matrix-multiply-based
BLAS implementations [?, ?] suggests that this provides a perfectly acceptable
Level 3 BLAS. As time allows, we can avoid some of the O(N2) costs associated
with using the matrix-multiply-based BLAS by supporting the Level 3 BLAS
directly in ATLAS. We also plan on providing the software for complex data
types.

We have preliminary results for the most important Level 2 BLAS routine
(matrix-vector multiply) as well. This is of particular importance, because ma-
trix vector operations, which have O(N2) operations and O(N2) data, demand
a signi�cantly di�erent code generation approach than that required for matrix-
matrix operations, where the data is O(N2), but the operation count is O(N3).
Initial results suggest that ATLAS will achieve comparable success with opti-
mizing the Level 2 BLAS as has been achieved for Level 3 (this means that
the ATLAS timings compared to the vendor will be comparable; obviously, un-
less the target architecture supports many pipes to memory, a Level 2 BLAS
operation will not be as e�cient as the corresponding Level 3 BLAS operation).

Another avenue of ongoing research involves sparse algorithms. The funda-
mental building block of iterative methods is the sparse matrix-vector multiply.
This work leverages the present research (in particular, make use of the dense
matrix-vector multiply). The present work uses compile-time adaptation of soft-
ware. Since matrix-vector multiply may be called literally thousands of times
during the course of an iterative method, run-time adaptation is also investi-
gated. These run-time adaptations may include matrix dependent transforma-
tions [?], as well as speci�c code generation.

ATLAS has demonstrated the ability to produce highly optimized matrix
multiply for a wide range of architectures based on a code generator that probes
and searches the system for an optimal set of parameters. This avoids the tedious
task of generating by hand routines optimized for a speci�c architecture. We
believe these ideas can be expanded to cover not only the Level 3 BLAS, but
Level 2 BLAS as well. In addition there is scope for additional operations
beyond the BLAS, such as sparse matrix-vector operations, and FFTs.

viii

The scienti�c community has long used the Internet for communication of
email, software, and documentation. Until recently there has been little use of
the network for actual computations. This situation is changing rapidly and
will have an enormous impact on the future. Novel user interfaces that hide
the complexity of scalable parallelism require new concepts and mechanisms
for representing scienti�c computational problems and for specifying how those
problems relate to each other. Very high level languages and systems, perhaps
graphically based, not only would facilitate the use of mathematical software
from the user's point of view, but also help to automate the determination
of e�ective partitioning, mapping, granularity, data structures, etc. However,
new concepts in problem speci�cation and representation may also require new
mathematical research on the analytic, algebraic, and topological properties of
problems (e.g., existence and uniqueness).

Software and Documentation Availability

Most of the software mentioned in this document and the corresponding docu-
mentations are in the public domain, and are available from netlib (http://www.netlib.org/) [?].
For instance, the EISPACK, LINPACK, LAPACK, BLACS, ScaLAPACK, and
ATLAS software packages are in the public domain, and are available from
netlib. Moreover, these publically available software packages can also be re-
trieved by e-mail. For example, to obtain more information on LAPACK, one
should send the following one-line email message to netlib@ornl.gov: send

index from lapack. Information for other packages can be similarly obtained.
Real-time information on the NetSolve project can be found at the following
web address http://www.cs.utk.edu/netsolve.

ix

1. Traditional Libraries. The ultimate development of fully mature
parallel scalable libraries will necessarily depend on breakthroughs in many
other supporting technologies. Development of scalable libraries cannot wait,
however, until all of the enabling technologies are in place. The reason is twofold:
(1) the need for such libraries for existing and near-term parallel architectures
is immediate, and (2) progress in all of the supporting technologies will be
critically dependent on feedback from concurrent e�orts in library development.

The linear algebra community has long recognized that we needed something
to help us in developing our algorithms into software libraries. Several years ago,
as a community e�ort, we put together a de facto standard for identifying basic
operations required in our algorithms and software. Our hope was that the
standard would be implemented on the machines by many manufacturers and
that we would then be able to draw on the power of having that implementation
in a rather portable way. We began with those BLAS operations designed for
basic matrix computations. Since on a parallel system message passing is critical
we have been involved with the development of message passing standards. Both
PVM and MPI have helped in the establishment of standards and the promotion
of portable software that is critical for software library work.

2. User Interfaces. As computer architectures and programming paradigms
become increasingly complex, it becomes desirable to hide this complexity as
much as possible from the end user. The traditional user interface for large,
general-purpose mathematical and scienti�c libraries is to have users write their
own programs (usually in Fortran) that call on library routines to solve speci�c
subproblems that arise during the course of the computation. When extended
to run on parallel architectures, this approach has only a limited ability to hide
the underlying architectural and programming complexity from the user. As
we extend the conventional notion of mathematical and scienti�c libraries to
scalable architectures, we must rethink the conventional concept of user inter-
face and devise alternate approaches that are capable of hiding architectural,
algorithmic, and data complexity from users.

One possible approach is that of a \problem solving environment," typi�ed
by current packages like MATLAB, which would provide an interactive, graphi-
cal interface for specifying and solving scienti�c problems, with both algorithms
and data structures hidden from the user because the package itself is responsible
for storing and retrieving the problem data in an e�cient distributed manner.
Such an approach seems especially appropriate in keeping with the trend to-
ward graphical workstations as the primary user access to computing facilities,
together with networks of computational resources that include various parallel
computers and conventional supercomputers. The ultimate hope would be to
provide seamless access to such computational engines that would be invoked
selectively for di�erent parts of the user's computation according to whichever
machine is most appropriate for a particular subproblem. We envision at least
two interfaces for a library in linear algebra. One would be along conventional
lines (LAPACK-style) for immediate use in conventional programs that are be-
ing ported to novel machines, and the other would be in the form of a problem
solving environment (MATLAB-style). The two proposed interface styles are

x

not inconsistent or incompatible: the problem solving environment can in fact
be built on top of software that is based on a more conventional interface.

3. Heterogeneous Networking. Current trends in parallel architectures,
high-speed networks, and personal workstations suggest that the computational
environment of the future for working scientists will require the seamless inte-
gration of heterogeneous systems into a coherent problem-solving environment.
Graphical workstations will provide the standard user interface, with a variety
of computational engines and data storage devices distributed across a network.
The diversity of parallel architectures means that inevitably di�erent computa-
tional tasks will be more e�cient on some than on others, with no single archi-
tecture uniformly superior. Thus, we expect the \problem-solving environment"
envisioned above eventually to migrate to a heterogeneous network of worksta-
tions, �le servers, and parallel computation servers. The various computational
tasks required to solve a given problem would automatically and transparently
be targeted to the most appropriate computational engine on the network. Sys-
tem resources would be shared among many users, but in a somewhat di�erent
manner than conventional timesharing computer systems. We have already
made important �rst steps toward achieving these goals with systems like PVM
and MPI, which supplies the low-level services necessary to coordinate the use
of multiple workstations and other computers for individual jobs, and this sys-
tem could serve as the foundation for a complete problem-solving environment
of the type we envision.

Network computing techniques such as NetSolve o�ers the ability to look for
computational resources on a network for a submitted problem (which can be
a single LAPACK, ScaLAPACK or Matlab function call), choose the best one
available, solve it (with retry for fault tolerance) and return the answer to the
user. This system is available for Fortran, C, and Matlab users.

4. Software Tools and Standards. An ambitious development e�ort in
scalable libraries will require a great deal of supporting infrastructure. More-
over, the portability of any library is critically dependent on adherence to stan-
dards. In the case of software for parallel architectures, precious few standards
exist, so new standards must evolve along with the research and development.
A particularly important area for scalable distributed-memory architectures is
internode communication. The BLAS have proven to be very e�ective in assist-
ing portable, e�cient software for sequential and some of the current class of
high-performance computers. We are investigating the possibility of expanding
the set of standards that have been developed. There is a need for a light weight
interface to much of the functionality of traditional BLAS. In addition, itera-
tive and sparse direct methods require additional functionality not in traditional
BLAS. Numerical methods for dense matrices on parallel computers require high
e�ciency kernels that provide functionality similar to that in traditional BLAS
on sequential machines.

Software tools are also of great importance, both for developers to use in
designing and tuning the library software, and for end-users to monitor the
e�ciency of their applications.

Conclusions

xi

1. In spite of a lack of enabling technologies, library development cannot
wait for research in programming languages, compilers, software tools,
and other areas to mature, but must be done in conjunction with work in
these areas. The the time to begin is now.

2. The user{library interface needs rethinking. It is not clear that the conven-
tional library interface will be adequate to hide the underlying complexity
from the user.

3. Object-oriented programming will be required to develop portable libraries
that allow the user to work at an appropriate conceptual level.

4. Work on algorithms, particularly linear algebra, is important and cannot
be isolated from general library development.

5. Language standards are important. The lack of language standards is the
most signi�cant obstacle to the development of communication libraries.
A language standard must emerge before a software tool \development
sweep" can begin.

These are some of the major research issues in developing scalable parallel
linear algebra libraries.

References

xii

