Paper 19

An interesting general problem studied with a seemingly sound approach. However I don’t see this work as useable for any practical scheduling as the examples are very special and limited in scope. To provide a useful method, one must provide a practical set of rules (expert system) or some heuristic optimization package which one can invoke.

Paper 12

An intriguing problem which I hadn’t thought about before. The approach seems abstract but could evolve into work of clear practical value.

Paper 22

I do not believe that this paper is suitable for the conference. The heuristic rules are not explained and are not of the depth appropriate for conference presentation.

Paper 60

This paper is probably correct but is a detailed investigation of a rather obvious scheduling algorithm. I don’t see why this is very useful -- there are so many machines and so many job mixes that I don’t see how to abstract and apply results of paper.

Paper 73

This paper is a mathematical discussion of routing which seems to have no practical value -- at least on today’s hardware. I do not consider such papers as suitable for the conference.

�

Paper 36

This is a well written paper which needs a few improvements but is a good candidate for conference presentation.

Please check your English - focuss should be focus for instance.

The concept of host-node and I/O processors is confusing as not all machines have these concepts directly. I suggest a short analysis of (real machine) parallel I/O structure and then a clear statement as to how this is to be abstracted.

I believe that work of Marina Chen (for mapping in her Crystal project) should be referenced.

Paper 38

This is a well written paper on a sensible important subject with some high quality ideas and results. I would have rated it higher except it has an unnecessary “not invented here” approach and makes (to me) inflammatory statements without answering the standard or obvious criticisms.

There are very good performance reasons to treat data parallelism seriously and not as a special case of task parallelism.

Gannon and Chandy in HPC++ build on community experience and adopt High Performance Fortran ideas where HPF addresses common issues to HPC++. This allows the researchers and community to focus on the new opportunities and challenges of C++ (HPC++) without rehashing old ideas unnecessarily. On the other hand, DPM cavalierly starts afresh and ignores established wisdom, software and standards.

The DPM work should be more carefully tied to existing research on HPC++, Fortran M/D, CODE, Hence and HPF.

A key argument (for me) against putting everything into a single language is practical implementation. The main problem with HPF is simply the time it takes to build a good compiler. This becomes worse if we have to both data and task parallelism together. If we tackle data and task parallelism with separate frameworks (e.g. AVS and pC++), we stand a better chance of getting incremental community acceptance and modular robust commercial products in an acceptable time frame.

�

Paper 42

This is a workmanlike paper discussing a subset of the redistribution problem without considering issues of:

Irregular adaptive problems: a nontrivial issue as this is where redistribution is most important.

Computer architecture: different communication systems(interconnect topologies) are optimized with different redistribution strategies.

Paper 59

I liked this paper but I am not certain that it is original. The problem is certainly very important and their work appears to have direct practical utility in data parallel compilers. Hopefully others can comment on the originality issue.

I was also concerned (confused) about the experimental results. It was not clear to me what compiler was being used and if their optimization mapped F90 for one compiler into F90 for the same or different compiler. I would also like to see results with Digital or IBM’s high quality Fortran90 compilers. Here we know we have optimized compilers on mainstream high performance workstations. I am personally not familiar with Sequent’s F90 product.

�

Paper 120

This is a potentially interesting paper but it is unclear to me if it is correct and if it is correct, what it shows. Unclear some points are clarified, I find it impossible to evaluate paper.

My main problem is in fact claimed to come from reference 1 -- the SPLASH group. This is their RCTS “rule”. Paper 120 claims this implies that physical system size should be scaled proportionally to square root of k where k is number of processors. This is very difficult to understand as the BH (Barnes Hut) algorithm is of order nlogn (n number of particles). Thus one would expect that constant time scaling is roughly n proportional to k -- not square root of k. Naively the RCTS scaling rule says the parallel efficiency is proportional to one over square root k. Now this is surprising as we know from the major implementation of BH in grand challenges (Ostriker(Princeton -- NSF) and Zurek(Los Alamos -- NASA)) and original Salmon work that BH parallel algorithm is highly efficient. As a possible related comment, the system sizes studied are very small. Physics simulations are in n=100,000 to 10,000,000 range. We know that many algorithms behave in peculiar irrelevant ways when you look at tiny systems.

I do not know what this paper studies. Is it noise -- do they get a 20% improvement in a very inefficient algorithm or is it signal -- is their improvement on an algorithm running at the typical efficiency (80%) that good implementations obtain?

