Draft Analysis of Sliced Bread Cache and Performance



Geoffrey C Fox

January 9,1995



Introduction

Previously I faxed information on Wisconsin cache simulation package which was recommended to me by Stanford.

The cache issues of the Sliced Bread main ASIC are relatively clean and probably can be modeled from an understanding of individual processor performances (memory access patterns) and do not require a detailed analysis of multiprocessor structure. This follows from the system structure which consists of several largely independent (asynchronous) components and one need not be concerned with interactions between these parts except on a statistical basis. Here I consider as major separate components.

Host with geometry and game responsibilities

Audio

Graphics ARC and Pixel processor

I/O



Note that material sent me only has detailed component timings for item 3) and as described later, I consider this optimistic. However all analyses have the following key feature:

	MB3 dominates MB1, MB2, MB3, MB4 individually and even together.

Here I use MB(i) to denote the memory bandwidth needed by component I.



Memory Contention Effects

Suppose we consider the “best” games which surely will maximize use of available resources and so the sum MB1+MB2+MB3+MB4 is around total available memory bandwidth. Now consider changes in any estimate due to cache misses in RAMBUS due to “interference” between components.

Firstly note that assumption of dominance of MB3 implies that we should calculate MB1, MB2 and MB4 assuming RAMBUS cache misses in every RAMBUS memory access.

Now consider the effect on MB3 due to smaller components MB1 MB2 MB4 invalidating a RAMBUS cache and so converting a MB3 hit (when analyzed independently) into a miss when viewed as a parallel system. This effect depends on two numbers:

How often a RAMBUS cache hit is found for MB3 when one ignores MB1,2,4. In spreadsheet this was assumed as 50% in occurrence (and so a larger fraction of needed bandwidth as cache misses are slower than hits).

How much longer a data burst takes when there is a miss compared to case when there is a hit. This ratio depends on burst size and is about a factor of 3 in spreadsheet.



Let r=(MB1+MB2+MB4)/MB3

Then without contention total bandwidth used is just (1+r) * MB3

Including contention and particular scenario (assumptions) in 1) and 2) above increases bandwidth needed by component 3 to MB3 * (1+0.5r) and so total now becomes MB1+MB2+MB3(1+0.5r)+MB4 or (1+1.5r) * MB3



We can illustrate the effect of first assumption of RAMBUS hit/miss ratio in component 3 as follows.

If we originally assumed no RAMBUS hits in component 3, this pessimistic assumption is of course unchanged by contention and so total bandwidth needed is just original independent sum (1+r) * MB3.

If as above, 50% of RAMBUS accesses are hits, then we need a total bandwidth of (1+1.5r) * MB3.

If for component 3 on its own, we make other extreme assumption that 100% of component 3 RAMBUS accesses were hits before contention, then we find need of total memory bandwidth (1+3r) * MB3 in combined contending system.



Strategies for increasing Cache Effectiveness



As you indicate in your memo to me, the system group should write the code for components 2 and 3 from scratch and so one can use hand optimization to ensure good cache use. For the host (component 1), at some level one has an impossible job as surely ARC is a nonstandard system which will have poor compiler support. However much of the host work will be in standard libraries for geometry and control functions. These can be optimized once and for all by the systems group just as in components 2 and 3. A key question is how much of the code (in terms of execution time) is “game-dependent” and likely to written in some high level approach such as C, C++, VRML or Visual Basic. This part of the code is likely to be key intellectual content of game and the software vendor will probably want to make this system as portable between platforms as possible. However with a good design of libraries, I expect you can minimize the execution time of high level code and so make good use of Cache. We conclude that very careful design and implementation of libraries will be very important. However with this investment Sliced Bread should be successful in using the crude cache and multiprocessor system.



Comments on document “Newer graphics Times 2” Faxed to Gentile December 4,94



I found it hard to reproduce texture map memory bandwidth assumptions here. A critical assumption is “relevant” size of texture map for a given polygon. This is presumably roughly the smallest square enclosing polygon and size of this depends on ratio of texel to pixel sizes. 



I assume that the so-called RAM lookup to convert packed texels is on the ASIC and preloaded by the graphics processor before each polygon is processed. There is a diagram that suggests this but I couldn’t see text discussion

There is a nice discussion in SBP-D492 of rendering and role of pixel processor. This introduces notation dXu,dYv to describe stepping through the texture map. How large are these! I would have guessed that one would aim at values in range 1 to 2. If polygon was far away and values start off larger than this, then by using a precalculated lower resolution texture map one can reduce them to 1 to 2 range. Small values of DXu,DYv are discussed on pages 86-87 of SBP-D492(January 3,95 version) for nearby polygons but this is important but not most common case?

The above SBP-D492 discussion describes need for interpolation in case of small DXu,DYv to avoid blocky images. However I would have thought that interpolation is also needed in cases where Dxu, Dyv are near to or larger than 1. Without interpolation one will get abrupt pixel to pixel color changes.

If range of DXu,DYv of 1 to 2 is correct, then one seems to flush texel and RAMBUS caches quite often and I cant reproduce low texture map bandwidth numbers. The situation is worse if you use interpolation.



System Upgrades (Parallel Processing) Using FDI and PEB Bus



It appears that one can consider upgrading system using FDI and PEB buses to link several main ASICS together. One can also make it easier for game developers by adding a real microprocessor as host. However this would need to look into how to connect peripherals (in particular higher resolution headsets) in this scheme as naturally current system hardwires the current peripheral parameters. One would as discussed in my original memo, naturally distribute frame buffer among multiple main ASICS (if system had N main ASICS then each is responsible for 1/N of frame buffer) and this needs consideration in hardware. Simplest is just to move distributed buffer to a single frame buffer after computation. This scheme could be used to increase polygon rendering capability of system at fixed headset size.

