
1

Parallel Computing for the Internet
Eric A. Brewer

Inktomi Corporation

1 Motivation
The rise of the Internet has brought with it the need for

services that can support hundreds of millions of users, 24
hours a day, with rapid evolution and growth. The sheer
scale of these services demands parallel computing on a
grand scale. More importantly, this new class of applications
requires the solution of many difficult problems that are new
to the parallel computing arena, including high availability,
graceful degradation, and online evolution and growth of the
service.

Given the scale requirements, these giant-scale services
use clusters. Table 1 shows some representative clusters and
their traffic. As another example, a single infrastructure host-
ing site run by Exodus Communications houses several thou-
sand nodes that support more than 40 different services;
AOL’s new US$520M data center will be larger than three
football fields and filled almost entirely with clusters [cite].
There are four underlying reason for the use of clusters:

Absolute Scalability: A successful network service must
scale to support a substantial fraction of the world
population. It is expected that most of the developed
world, about 1.1 billion people, will have some form of
infrastructure access in the next ten years. Furthermore,
online time per user and queries/user/day are also
going up. [cite AOL]

Cost/performance: Although a traditional reason for
using clusters, cost/performance of the hardware is not
really an issue for giant-scale services: there is no
alternative solution to clusters that can match the
required scale, and hardware cost is typically dwarfed
by bandwidth and operational costs.

Independent Components: Users expect 24-hour service
from systems consisting of thousands of hardware and
software components. Transient hardware failures and
software faults due to rapid system evolution are
inevitable. Clusters simplify the problem but providing
largely independent faults. Much of this paper focuses
on how to leverage this independence in to high
availability.

Incremental Scalability: the uncertainty and expense of
growing a service leads a strong desire for small
incremental scaling as needed, preserving and
augmenting existing investment. A node should last its
entire three-year depreciation lifetime, and in general
should be replaced when it no longer justifies its
(expensive) rack space compared to new nodes.

roadmap

2 The Basic Internet Model
Our basic model for infrastructure services in shown in

Figure 1. The goal of the model is enable discussion of the
issues facing these services and to capture the key elements
of giant-scale servers in practice. We describe the role of
each component and the impact they have on overall service
requirements. One very important goal is to clarify the fault
model and semantics of these services.

There are many important assumptions in this model.
First, we assume that the service provider has little or no
control over the clients or the IP Network. In some cases,
such as intranets, stronger assumptions may be possible.

Table 1: Example Clusters for Giant-Scale Services

Service Nodes Queries Node HW

AOL web
cache

>300 >3.3B/day
4-CPU DEC

4100s

Inktomi
Search
Engine

500 >40M/day
2-CPU Sun

Workstations

Geocities >300 >25M/day PCs

Anonymous
web-based

e-mail
>400 50M/day PCs

IP Network

ClientClient
ClientClient

Load
Manager

Persistent Data Store

Figure 1: The Basic Internet Model

Single Site
Server

Optional
Backplane

2

We also assume that service is driven by queries. This is
inherent in most common protocols, including HTTP, FTP,
NNTP, POP, IMAP, and variations of RPC. For example,
the basic primitive of HTTP is the “get” command, which is
by definition a query. We often also assume that these que-
ries are “read mostly”, that is, that read-only queries greatly
outnumber updates (queries that affect the persistent data
store). We will point out cases in which we assume read-
mostly traffic.

There are six components to the basic model:

Clients: The clients initiate the queries; they could be
specific to the service, such as stand-alone e-mail
readers, or general, such as web browsers.

IP Network: The network is best effort and based on IP.
It could be the public Internet or some form of private
network such as an intranet.

Load Manager: This component has two purposes. First,
it is a level of indirection between the external name of
the service and the physical names (IP addresses) of
the servers. This is required to preserve the availability
of the external name in the presence of server faults.
Second, the load managers balances load among the
(up) servers.

Servers: The servers are the workers of the systems,
combining CPU, memory, and disks into an easy-to-
replicate unit. The server is the unit of expansion and
often the field replacable unit, which means that if
anything in the server breaks (including disks), you
replace the whole server and deal with the
subcomponents off-line.

Persistent Data Store: This is a replicated or partitioned
“database” that is spread across the disks of the
servers. It might also include network-attached storage
such as RAID systems.

Backplane: The services with non-trivial parallelism use
a system-area-network among the servers, which
functions like a backplane in a multiprocessor. The
network handles inter-server traffic such as redirection
to the correct server or coherence traffic for the
persistent data store.

Auxiliary Systems: Nearly all services have several other
service-specific pieces that we can largely ignore in the
basic model. Examples include user-profile databases,
ad servers, site management tools, and support for
logging and log analysis.

2.1 Two Examples
Figures 2 and 3 show two illustrative systems at opposite

ends of the complexity spectrum: a simple web farm and
complex server similar to the Inktomi search engine cluster.
They differ in their load management, their use of a back-
plane, and their persistent data store. Nearly every web-
based service fits this model.

The web farm is shown in Figure 2. First, note that the
load manager is not actually in the flow of the traffic. Round-
robin DNS returns different domain name to IP address map-
pings for different clients, thus roughly balancing the load at
the time of DNS lookup, but providing little support for
availability when a node fails. Second, the persistent data
store is implemented by simple replication of all content to
all nodes, which works well when the total amount of con-
tent is small. Finally, there is no need for a backplane, since
all servers can handle all queries and there is no coherence
traffic. In practice, even simple web farms often have a sec-
ond LAN (backplane) to simplify the manual updating of the
replicas. In this version, node failures reduce the capacity of
the system, but not the availability of its data.

A more complex example is shown in Figure 3. The load
management actually is in the path of the traffic and there-
fore has to be fault tolerant. Here we show a pair of “level 4”
switches that automatically fail over to each other. These
switches, which are available from many vendors, rewrite

Figure 2: A Simple Web Farm

IP Network

ClientClient
ClientClient

Round
Robin DNS

Simple Replicated Store

Single Site
Server

Figure 3: A More Complex Server

IP Network

ClientClient
ClientClient

Load
Manager

Partitioned Data Store

Single Site
Server

Myrinet
Backplane

3

TCP connections from the external IP addresses to one of the
internal server names. They can balance load based on out-
standing connections and can quickly respond to failed
nodes by avoiding them for new connections.

The persistent store is partitioned across the servers, pos-
sibly without any replication. This means that nodes failures
reduce the effective size of the store as well as its overall
capacity. It also means that the nodes are no longer identical
and some queries may need to go to specific nodes.

In the case of a typical Inktomi search engine cluster
(their are currently five worldwide), the backplane is Myri-
net (1.6 Gb/s) and it connects 100 nodes, each with 2 CPUs
and 4 disks. The store is fully partitioned with some replica-
tion for key data; different nodes may get different amounts
of data according to their relative capabilities (nodes may
differ in age and therefore capability). The backplane is used
for subqueries that are merged by the primary node, but there
is no caching of remote data other than the answers to whole
queries.

2.2 Fault Model and End-to-End Semantics
One of the most important reasons to have a basic model

is to look at its fault model and the end-to-end semantics it
provides. This is also the primary area where Internet appli-
cations differ from traditional parallel computing. There are
three basic tenets:

1) Focus on locally measured availability

The first issue is the best-effort nature of the IP Network,
which means that a client may be partitioned from the server.
To the client, the service is down and it is largely out of the
control of the service provider. A trivial example is a broken
modem connection at the client, which partitions it from all
services.1 Because of this effect, we distinguish between the
end-to-end availability and the service availability. End-to-
end availability is the “correct” measure, at it includes fail-
ures in the IP Network that affect end users. Service avail-
ability is measured at the service itself (or perhaps just
outside it) and is a more useful internal metric tied to the
uptime of the service. Service providers thus have direct
control over service availability and only limited indirect
control over end-to-end availability. End-to-end availability
is strictly less than service availability, since it merely adds
faults in the clients and IP Network. In practice, providers
aim for high service availability and use a large number of
independent network connections to decrease the probability
of being partitioned from a large number of clients. In the
rest of this paper, we will thus focus on service availability.

Extension: Make the client failover to an equivalent
server

1: This distributed responsibility has several complex side effects. For
example, browser manufactures get technical support calls when sites go
down, and sites get calls when the user’s ISP is down, their browser is bro-
ken, or their PC is out of virtual memory.

A partitioned client may be able to reach equivalent serv-
ers, such as mirror sites. There is currently no general way
for a browser to understand groups of equivalent servers,
which is a prerequisite for failover (and load balancing).
Work on “smart clients” [cite] shows how to do this for
applets and client-side plug-ins, in which the service can
control some of the code on the client.

2) Reload Semantics: node failures drop the queries in
progress at that node

The second tenet of the basic model is that it is OK to
lose active connections when a node fails, as long as the
probability of success on retry (reload) is high. Thus, the
basic model is not fault tolerant, but merely highly available.
End-to-end fault tolerance depends on the user retrying the
query, and that query going to a different node that is up
(which is the job of the load manager).

3) Basic Model updates are “at least once” semantics

This means that queries in the basic model have “at least
once” semantics, which can be quite bad in the worst case.
For example, if your connection dies in the middle of a credit
card transaction, should you hit reload or not? If the transac-
tion already committed (but you weren’t told), you will buy
the same item again.

Extension: Use transaction ids to detect already
completed updates.

A useful extension to the basic model is to include trans-
action ids to detect repeat transactions. This is certainly pos-
sible today but rarely done in practice, so we leave it as an
extension. This can also solve the problem of users going to
bookmarked pages that cause a transaction, but the transac-
tion id needs be part of the URL.

To summarize the semantics of the basic model: the ser-
vice provider focuses on locally high availability with inde-
pendence for retried queries and at-least-once semantics.
The extensions show how to improve the semantics, but they
are typically expensive or difficult and therefore generally
avoided in practice. The real value of the basic model is that
allows us to understand what we mean by “availability”,
“fault tolerance”, and “online evolution”, and in general pro-
vides insight into to how to think about faults. A formal
specification of the Basic Model is beyond the scope of this
paper, but would be very useful as it would further drive the
analysis of the tradeoffs.

Given this model, we explore some of the key challenges
of giant-scale services: high availability, graceful degrada-
tion and online evolution.

3 High Availability
High availability is one of the major driving forces of

giant-scale system design. Other infrastructures—such as the
telephone, highway, rail, water and electricity systems—

4

have extreme availability goals that should apply to IP-based
infrastructure services as well. Most of the systems try to
plan for failure of components and for natural disasters.
However, information systems must also deal with constant
rapid evolution in feature set (often at great risk) and rapid
and unpredictable growth. British Telecom traditionally has
used a 25-year planning horizon for the deployment of tele-
phone infrastructure [cite]; Internet companies (and analysts)
have had trouble with even two-year roadmaps.

In this section, we develop basic ways to think about
availability for giant-scale systems and cover some basic
obstacles to high availability. In the next section, we focus
on availability in the presence of rapid growth and change.

Figure x shows one of the Inktomi search engine clusters.
Some of basics of high availability are visible in this photo:
there are no people, monitors or visible cables. People are
the primary cause of outages (often by breaking/moving
cables), so it is wise to simply keep them out. The other prin-
ciple visible in this picture is extreme symmetry: the only
way to keep these giants systems simple enough to manage
is to make them extremely regular and consistent. Any varia-
tion in software, hardware or rack space is suspect.

3.1 Availability Metrics
The traditional metric for availability is uptime, which

simply the fraction of the time that the site is up. Uptime is
typically measured in nines: “4 9s” implies 0.9999 uptime,
or 60 seconds of downtime per week (or less). Traditional
infrastructure systems such as the phone system aim for 4 or
5 nines. Two related metrics are mean-time between failure
(MTBF) and mean-time-to-repair (MTTR). In particular, it
useful to think of uptime as:

(1)

Figure 4: 100-Node 200-CPU Cluster
Key points: no people, no monitors, no visible
cables, extreme symmetry, internal disks.

uptime
MTBF MTTR–

MTBF
---------------------------------------=

Equivalently, downtime = MTTR/MTBF. The consequence
of this equation is that we can improve uptime either by
reducing frequency of failures or reducing the time to fix
them. Although the former is more pleasing aesthetically, the
latter is much easier for systems under constant evolution.
For example, to even tell if a component has a MTBF of one
week requires well more than a week of testing under
(heavy) realistic load; and if it fails, you have to start over,
possibly repeating the process many times. Conversely, mea-
suring the MTTR takes minutes or less and achieving a 10%
improvement takes orders of magnitude less total time due to
the very fast debugging cycle. Thus it is very useful for
giant-scale systems to focus hard on MTTR and simply
apply best effort to MTBF. We will see this fundamental
tradeoff repeated in many forms.

We define yield as the fraction of queries that are com-
pleted:

(2)

This is typically very close to uptime numerically (and also
unitless), but it is more useful in practice because it directly
maps to user experience and because it correctly reflects that
not all seconds are of equal value. Being down for a second
that had no queries has no impact on users or yield, but
reduces uptime. Similarly, being down for one second at
peak and off-peak times have the same uptime, but vastly
different yields, since there is often more than a 4:1 ratio of
peak to minimum traffic. Thus we will focus on yield rather
than uptime.

Because these systems are typically based on queries, we
can also measure the completeness of the queries, that is,
how much of the database is reflected in the answer. We
define this fraction as the harvest of the query

(3)

A perfect system would have 100% yield and 100% harvest:
every query would complete and would reflect the entire
database.

The key insight is that we can affect whether faults
impact yield or harvest (or both). For example, replicated
systems tend to map faults to reduction in capacity (and thus
yield at high utilizations), while partitioned systems tend to
map faults to reduction in harvest, as parts of the database
temporarily disappear, but the capacity in queries/sec
remains the same.

3.2 The DQ Principle
The DQ Principle is simple:

Data per query * Queries/sec ~ constant

This is a principle rather than a literal truth, but it is a
remarkably useful tool for thinking about giant-scale sys-

yield
queries completed

queries offered
---=

harvest
data available
complete data
---------------------------------------=

5

tems. The intuition behind this principle is that the overall
capacity of the system tends to have a particular physical
bottleneck, such as total I/O bandwidth or total seeks per
second, that is tied to the movement of data. The DQ value is
the total amount of data that has to be moved per second on
average and it is thus bounded by the underlying physical
limitation; at the high utilization typical of giant-scale sys-
tems, it approaches this limitation.

The DQ value is also measurable and tunable. Adding
nodes or implementing software optimizations are useful
exactly because they increase the DQ value, while faults
reduce the DQ value. The absolute value of DQ is not that
important typically, but the relative value under various
changes is very predictive:

• The best possible result under multiple faults is a
linear reduction in DQ.

• DQ often scales linearly with the number of nodes,
which means that early tests on single nodes tend to
have predictive power for overall cluster performance.

• All proposed hardware/software changes can be
evaluated by their DQ impact.

• We can translate future traffic predictions into future
DQ requirements and thus into hardware and software
targets.

There are two useful corollaries:

harvest * capacity ~ constant
harvest * yield ~ constant (at high utilization)

These follow from the DQ principle because the harvest
is usually proportional to the average data per query, and
capacity is just the total queries per second. When utilization
is high, decreases in capacity cause decreases in yield, giving
them a linear relationship.

For availability, the value of these principles comes in
the analysis of the impact of faults. As stated above, the best
we can do is a degradation in DQ that is linear with the num-
ber of (node) faults. The goal of a design for high availabil-
ity is thus to control how DQ reductions affect our three
availability metrics. (This assumes that we’ve already taken
all of the basic steps above to minimize faults.)

3.3 Replication vs. Partitioning Revisited
Thus we return to the variations of replication and parti-

tioning from the perspective of DQ and our availability met-
rics.

We start with a two-node cluster, shown in fig x. Tradi-
tionally, the replicated version is viewed as “better” because
under a fault it maintains 100% harvest, while the partitioned
version drops to 50% harvest. But the dual analysis is that
the replicated version drops to 50% yield,2 while the parti-

2: This is technically 50% capacity. Here we assume high utilization so
that 50% capacity implies 50% yield. We will make this translation often.

tioned version remains at 100% yield. Even more effective is
to realize that both versions have the same initial DQ value
and lose 50% of it under one fault: replicas keep D the same
and reduce Q (and thus yield), while partitions keep Q con-
stant and reduce D (and thus harvest).

The traditional view of replication silently assumes that
there is enough excess capacity to prevent faults from affect-
ing yield. We refer to this as the load redirection problem:
under faults the remaining replicas have to handle the que-
ries formerly handled by the failed nodes. Under high utili-
zation, this is unrealistic.

Finally, it is important to realize that replication on disk
is cheap but accessing that data requires DQ points; for true
replication you need not only another copy of the data, but
twice the DQ value.

We can generalize this analysis to replica groups with n
nodes:

For example, a loss of 2 of 5 nodes in a replica group implies
a redirected load of 2/3 extra load (two loads spread over
three remaining nodes), and an overload factor for those
nodes of 5/3 or 166% of normal load.

We can also vary the replication based on the importance
of the data, or more interestingly affect which data is lost in
the presence of a fault. For example, for some extra disk
space we can replicate key data in a partitioned system.
Under normal use, one node handles the key data the rest
provide additional partitions. If that node fails, we can make
one of the other nodes serve the key data. We still lose 1/n of
the data, but it always one of the less important partitions.
This intermediate version preserves the key data as in the
normal replication case, but also allows us to use our “repli-
cated” DQ capacity to serve other content rather than sit idle.

Finally, we can exploit randomization to make our lost
harvest a random subset of the data, (as well as to avoid hot
spots in partitions). For example, many of the load balancing
switches simply use a pseudo-random hash function to parti-
tion the data. In the presence of data of varying value,
spreading the key data randomly makes our average- and
worst-case losses the same (the value of the lost data is close
to the average value of the data).

4 Graceful Degradation
It would be nice to believe that we could avoid saturation

at a reasonable cost simply by good design. There are three
major reasons that this is unrealistic:

Failures
Lost

Capacity
Redirected

Load
Overload

Factor

1

k

1
n

1
n 1–

n
n 1–

k
n
--- k

n k–
----------- n

n k–

6

• The peak to average ratio for giant-scale systems
seems to be in the range of 1.6:1 to 6:1, which can
make it expensive to build out capacity well above the
peak.

• Single-event bursts, such as online tickets sales for
Star Wars Phantom Menace, can be more than 10x
above the average. In fact, one such site,
moviephone.com, actually added 10x capacity and
still got overloaded.[cite]

• Some faults are not independent, such as key router
failures or natural disasters. In these cases, DQ drops
substantially and the remaining nodes become
saturated.

Thus a critical part of delivering high availability is the
design of mechanisms for graceful degradation under excess
load. The DQ principle is again helpful: in the presence of
excess capacity, we can either do admission control (ideally
in the load manager as discussed above) to limit Q and thus
maintain D, or we can reduce D and increase Q. The latter
strategy has just started to be used in practice, but it makes a
lot of sense: if we can reduce D dynamically then we can
increase Q (capacity) and thus maintain yield at the expense
of harvest. For example, we would expect cutting the effec-
tive database size in half to roughly double our capacity.
This gives us new options for graceful degradation: we can
focus on harvest with admission control or we can focus on
yield with dynamic database reduction, or we can use a com-
bination depending on the type of query. The larger insight is
that graceful degradation is simply the explicit management
how saturation reduces our availability metrics.

Here are some more sophisticated examples:

• If we have an estimate of query cost (measured in
DQ!), which we do for search engines, then we can do
more aggressive admission control based on cost. This
reduces the average data required per query, D, and
thus increases Q. Note that our admission control
policy is affecting both D and Q: denying one
expensive query may enable several inexpensive
queries, giving us a net gain in harvest and yield.
Admission control should be done probabilistically so
that reloading hard queries eventually works.

• Under saturation of a financial site, we can make
stock quote queries cacheable, which will make them
stale but nonetheless reduces the offered load and thus
increases yield at the expense of harvest (the cached
queries don’t reflect the current database).

To summarize, we can use the DQ principle as a tool for
designing how saturation affects our availability metrics.
First we decide which metrics to preserve (or at least focus
on), and then we use sophisticated admission control to
affect Q and the possibly reduce the average D, and we use

aggressive caching and database reduction to reduce D and
thus increase Q.

5 Online Evolution & Growth
High availability is always a difficult challenge, and one

of the traditional tenets of highly available systems is to aim
for minimal change. This is in direct conflict with both the
growth rates of these services and “Internet time” — the
practice of extremely fast product release cycles. For giant-
scale services, we have to plan for continuous growth and
frequent updates in functionality. Worse still, the frequent
updates mean that in practice the software is never perfect
and that hard-to-resolve issues such as slow memory leaks
and non-deterministic bugs tend to remain unfixed.

Thus task at hand is maintain high availability in the
presence of expansion and frequent software changes. The
philosophy is to make the overall system tolerant of individ-
ual node failures, but to try to avoid cascading failures. Thus
“acceptable” quality software comes down to a target MTBF
and the absence of cascading failures.

We first look at growth rates and how to think about
capacity planning and then we examine online evolution,
looking at several ways to upgrade a service with minimal
impact on availability.

5.1 Growth and Capacity Planning
The remarkable growth of existing giant-scale services is

shown in Figure 5. This is conservative in that it only mea-
sures the growth in unique visitors, and ignores increases in
visits/user, work per query, and bandwidth per query, all of
which have gone up over the past several years. Smaller
sites, such as Snap! and Goto.com (not shown), have even
higher growth rates. The growths are somewhat uneven,
which complicates capacity planning, as you must plan for
higher growth than you will probably achieve; for example,
several of the quarters shown have 30-50% growth rates.

Figure 5: Growth in unique visitors for major giant-
scale services. Based on company and Media
Metrix data [cite].

-

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

Q1 97 Q2 97 Q3 97 Q4 97 Q1 98 Jun-98 Sep-98 Dec-98 Mar-99

U
n

iq
u

e
V

is
it

o
rs

aol.com yahoo.com netscape.com
excite.com lycos.com altavista search services
amazon.com hotbot.com snap.com

7

Once you have a target growth rate, it is a straightfor-
ward but complex task to achieve it. The hard part is under-
standing the lead times for all aspects of expansion, and then
maintaining enough excess capacity to cover the lead times
ahead of the growth curve. Excess capacity targets (“head-
room”) seem to range from 15-30%, which translates to
about 45-90 days.

Table 2 shows some typical lead times. The key long-
lead item is to make sure that you have enough data-center
quality rack space. AOL is currently spending $520M for a
third data center to build out rack space ahead of service
growth. Once rack space is lined up, the second challenge is
manage hardware lead times and inventory. Most giant-scale
services have to keep some inventory of all components, and
they may keep large inventories of long-lead or variable-lead
items. In some cases, because their size, they can get vendors
to maintain the inventory for them, which is an advantage
financially.

Given that rack space is the critical aspect of growth, it
makes sense to expand clusters in larger chunks, at least
whole racks if not whole rooms. This also amortizes many of
the administrative tasks over a larger number of nodes.

The second challenge with small incremental steps is that
they often require repartitioning the database, which may be
expensive. Growing in fewer, larger steps, reduces the repar-
titioning overhead.

Because of the rack space and repartitioning issues, Ink-
tomi now adds whole 100-node clusters rather than adding
nodes to existing clusters. The new cluster is a replica of
existing large clusters. This approach has the advantage of
simplicity: each new cluster is a “cookie cutter” operation,
thus reducing the logistics issues and avoiding repartitioning
altogether.

The lesson from all this is that the long-lead times make
capacity build-out a critical and complex task. Incremental
scalability in practice is thus quite challenging, and giant-
scale services tend focus on big steps at a reduced frequency.

Table 2: Typical leads times for new capacity

Item Lead Time

New cluster from scratch (including
location)

120-150 days

New rack space — existing location,
but added power, A/C, bandwidth

90 days

New rack space only 60 days

New SMPs (ordered) 30-60 days

New PCs (ordered) 2 days

New nodes, in stock, on existing rack
space

10 nodes/day/
person

5.2 Online Evolution

6 Conclusions

7 References
[AOL99] America Online. “Governor Gilmore and America

Online Announce Selection Of Prince William County As
Site For $520 Million Tech Center.” Press Release, March
10, 1999.

aol98 online time

