HPC in Signal and Image Processing

D. R. Prabhu, A. K. Krishnamurthy, and S. C. Ahalt

Department of Electrical Engineering

Ohio State University

Columbus, OH 43210

Introduction

The Signal and Image Processing (SIP) community is extremely diverse, and includes applications in geophysics, biomedical engineering, wireless communications, factory automation, speech processing, and automatic target recognition (ATR), to name a few. A general introduction to Signal Processing can be found [1], with a more advanced treatment in [2]. There have also been numerous excellent books focusing on image processing [3, 4, 8], as well as books focused on multi-dimensional signal processing [5, 6].

Individual research groups within the SIP community have been working for a number of years on tasks that share a number of basic characteristics, and a framework has gradually emerged by which shared algorithms, software, and data can be distributed and tested. The overall aim of the community was to speed development, reduce cost, and improve the quality of fielded systems. This effort gave rise to a set of common tools being used by the majority of SIP algorithm designers and researchers. Most notably, C, C++, MATLAB, and Khoros emerged as the primary tools used in the SIP community. However, in contrast to other areas of research, much of the SIP community did not embrace the use of High Performance Computing (HPC). While the reasons for this phenomenon have been debated, one significant factor was that SIP developers became accustomed to working and testing codes on interactive systems, while most HPC systems were managed as batch-oriented systems.

Thus, until recently most of the algorithm development work in the SIP community has been performed on single-processor workstations or on networks of loosely coupled workstations. Similarly, most of the deployed SIP systems have been implemented on either programmable, embedded DSP chips that are designed to run SIP algorithms, or on highly specialized, closely coupled embedded architectures that could take advantage of regularization in SIP processing algorithms. Although there are isolated examples of subsets of the SIP community extensively using High Performance Computing resources, most notably the seismographic community [7], only recently have HPCs become more widely utilized by SIP researchers. This use of HPC resources in the SIP community has largely arisen from DoD research and engineering activities. Within DoD the need for very high performance signal and image processing has increased dramatically in the last 5 years, particularly for automatic object recognition and related image processing tasks. In these types of applications either computational requirements and/or streaming data (I/O) requirements dictate the use of HPC architectures.

Consequently, recent HPC work in the SIP community has focused on two themes. The first theme is the use of libraries, software components, and higher-level languages (HLLs) that allow complex SIP algorithms to be assembled, rigorously tested, and executed on commodity HPC platforms. That is, SIP algorithms are increasingly developed and tested on HPCs, and in some cases production algorithms are executed on HPCs in order to process massive data sets in a timely fashion. The second theme is emerging research directed at finding methods of mapping SIP algorithms to highly parallel, embedded processors. These two themes underlie the examples discussed below.

A large portion of the work in signal/image processing often involves simulation and modeling of a variety of sensors and algorithms. In a typical simulation code, there is an outer loop stepping through space or time, and the results from one iteration of the outer loop do not influence the results of subsequent iterations. Coarse-grain parallelization of such codes is fairly straightforward. The total number of outer loop iterations is divided evenly across the number of available CPUs. Each CPU computes a part of the outer loop. At the end of computation, one of the CPUs gathers results from the rest of the CPUs and creates the final outputs. It is relatively easy to distribute the first chunk of work to the first CPU, the second chunk to the second CPU, and so on. It is also relatively easy to gather results at the end with the above simple distribution. Unfortunately, this simplistic method may not be the best way of distributing work to achieve good load balance. The preferred way to distribute this type of SIP application is to deal out a tiny chunk of work to all CPUs, and then have each CPU request for more work when it is done computing its part. This method, however, results in more communication.

Our experience with different SIP algorithms and SIP simulation and modeling codes are described below. Before we begin these descriptions, we note that it is critical to obtain good serial performance before any parallelization work is undertaken. For example, the developer should use the highest level of optimization that results in the best performance and yields correct outputs. Additionally, compiler flags that make full use of the available cache and software pipelines of the processors on the target platform should be used. Linking to a fast math library before linking to the regular math library can often yield a significant speed-up, but one should be careful to examine the resulting precision and verify for correctness. Serial performance can sometimes be significantly improved by using certain well-written fast libraries for math computation and signal/image processing. An example of such a fast library is FFTW from MIT [12].

The examples provided below are representative of the increasing use of HPC in the SIP community. It should be noted that, while the examples discussed below are necessarily biased toward DoD applications, the seismographic community continues to make extensive use SIP algorithms on virtually all HPC architectures.

Some examples of HPC use in Signal and Image Processing

Automatic Target Recognition

Automatic Target Recognition (ATR) is one of the most important military applications of signal/image processing algorithms. An ATR system typically has a variety of sensors such as infrared, millimeter wave, etc. and either performs onboard computations on acquired data, or transmits data to a nearby ground station for analysis. A typical ATR system has severe
 constraints on streaming input data rates (of signals or images) as well as latency requirements (time taken to process one signal or image).

For example, in the Predator system used for TESAR imagery, images vary in size and complexity with data rates up to 1 Mpixel/s depending on the radar mode, platform velocity, and imaging geometry. Thus a fielded ATR system must be able to handle this data rate and identify targets in a timely manner for presentation on a waterfall display. Operational requirements set the time allowed for ATR computation; for example, it should be possible to command the Predator to re-image a scene of interest while still in range. This constraint typically permits a 20 second latency period for such reconnaissance ATR systems.

As an example of how HPC has impacted the development of ATR systems, an existing three-stage template-based algorithm for automatic target recognition of military ground targets in synthetic aperture radar (SAR) images was redesigned and implemented. The system was ultimately targeted to two multiprocessing configurations: (1) a 10-processor laboratory/fieldable system, and (2) a high-performance computing system [9]. The Scalable Programming Environment (SPE) from NCCOSC [10] was employed to parallelize the ATR code in a highly scalable way. Input images were distributed to several ATR processes running on multiple CPUs in a round robin fashion. The outputs of the ATR processes were then collected by an ATR detection collector process, and made available to a waterfall-type display. Scalability was demonstrated on the fieldable system for 10 target-types, and on the HPCs at the Army Research Laboratory’s Major Shared Resource Center (ARL MSRC) for up to 100 different target-types.

The above example demonstrates how software tools have evolved to support SIP applications on modern HPCs. SPE is an MPI-based tool for developing parallel signal/image processing type of applications. SPE allows the construction of data-flow-type applications with simple connections. Program modules are mapped to processors, and the connections between user-denominated ports (e.g. “atr:image_input”) are made at run time based on configuration file specifications. The programming environment is flexible and allows independently developed programs to be assembled together in different configurations as a single parallel application - without the need for recompilation. There is also an excellent interface for job control, tracing, and profiling.

SADARM Simulations

The first simulation/modeling code to be described was a serial code used for scene-generation in SADARM hardware-in-the-loop simulation [11]. This code computes the sensor measurements in a simulated descent of the SADARM submunition. For each time step, the following are computed – pose, IR, magnetometer, active mmW, passive mmW, and encounter measurements. The original non-optimized serial code ran for approximately 9 hours on one CPU of an SGI Origin 2000 (195 MHz R10K processors) to produce a simulation output set. Prior to the parallelization, multiple copies of the serial code were run simultaneously on multiple CPUs for simulation. Each copy would take 9 hours to complete. In order to perform any “what-if” computation by changing inputs based on the results of a previous run, it required 9 hours to generate the new output set.

[image: image1.wmf]Computation Time vs. # CPUs

1

10

100

1000

0

10

20

30

40

CPUs

Computation Time, minutes

Original code

Serial Optimized

Parallel Code

[image: image2.wmf]Speed-up vs. # CPUs

0

10

20

30

40

50

60

70

0

10

20

30

40

CPUs

Speed-up

Serial Optimized

Parallel Code

Linear Reference

Total Speed-up

Relative to Original

Code

The optimized and parallelized code completed the same simulation run in approximately 22 minutes using 12 CPUs, and in only 9 minutes using 32 CPUs on the SGI Origin 2000. Running the code on 32 CPUs of an SGI Origin 2000 with 300 MHz R12K processors further reduced the computation time to about 6 minutes. A plot of the computation time vs. number of CPUs is presented in Figure 1. The resulting speed-up curves are shown in Figure 2. Serial optimization of the code was achieved through the use of appropriate compiler flags and through linking to a hardware-optimized fast math library. Parallelization of the code was achieved through employing the Message Passing Interface (MPI). This speed-up has had a significant impact on SADARM verification and validation efforts, and has resulted in significant cost savings to DoD.

One limitation of such a straightforward coarse-grained parallelization approach is that the parallel code will not scale beyond the number of outer loop iterations, where each CPU gets exactly one iteration. To achieve scalability to a larger number of processors, one would then have to examine the inner loops, if any, and then carefully distribute work among all the available processors in order to achieve load balance, while still achieving good performance.
Radar Propagation Codes

A second simulation/modeling code was coarse-grain parallelized. This code was a radar propagation code that is being developed by the Army Research Laboratory in collaboration with the University of Michigan. The code had the familiar outer loop structure with independent iterations. A typical run involved only about 30 iterations of the outer loop; consequently, the parallel code would not scale to beyond 30 processors. The serial code took about 8.75 hours on a SUN Ultra SPARC machine. The parallel code took only about 7.5 minutes to run on 30 CPUs of a SUN E10K at the ARL MSRC. The speed-up enables rapid “what-if” computations and facilitates rapid computational steering while resulting in significant cost savings.

Radar Cross-Section Codes

The third simulation/modeling code that was parallelized was a radar cross section computation code developed at the Army Research Laboratory. The original code was a serial MATLAB code in m-file form. MATLAB has been identified as one of the key higher level programming languages for algorithm development work in signal/image processing. Core MATLAB, along with numerous toolboxes for specialized applications, provides a very rich collection of functions and visualization tools for rapid code development and prototyping. The signal processing and image processing toolboxes significantly reduce algorithm development time for signal/image processing applications. Unfortunately, MATLAB is inherently serial code, and is thus somewhat difficult to use on parallel machines. Some parts of MATLAB that are linked to certain vendor provided libraries do run in multi-threaded mode, but do not result in good overall parallelization of user developed code.

The MATLAB compiler from Mathworks, Inc. was used to convert the serial m-file into standalone C code. The serial code once again had the familiar outer loop that was stepping through all the 360 degrees of a circle in steps of 1 degree. The computations for any given angle were independent of those for other angles in that loop. So coarse-grain parallelization of the code was relatively straightforward. Calls to MPI functions were hand-inserted in the resulting C code. The MATLAB compiler converts each variable in MATLAB to an mxArray structure in C, so one has to be careful while obtaining and setting values of variables within the automatically generated C code. The modified C code, with MPI calls, was then compiled and linked with the MPI library and run on multiple processors. The original code (vectorized and well-written in MATLAB) took about 3 hours to run on a SUN Ultra SPARC machine. The parallel code took only about 9 minutes to produce identical outputs on 8 CPUs of a SUN E10K at the ARL MSRC.

There are other ways of parallelizing serial MATLAB code. One approach is to use a commercial package called RTExpress from Integrated Sensors Inc. (ISI) [13]. RTExpress converts MATLAB m-files to C code, compiles the resulting C code, links with MPI libraries and ISI-developed parallel libraries for MATLAB functions, and runs the resulting parallel code on multiple CPUs. There is a small amount of input from the user through a target balancing tool (tbt), where the user assigns different parts of the code to different groups. The groups are subsequently mapped to different processors automatically by RTExpress. This environment is a fairly good rapid prototyping tool and has support for over 90% of the functionality of core MATLAB. Toolbox functions are not yet implemented. Some of the other competing products that are currently in development are MultiMATLAB at Cornell University [14] and Parallel Problems Server at MIT [15].

Sometimes, compiling m-files and producing either MEX files or standalone C programs can speed-up execution times, especially if the MATLAB code has been poorly written, not vectorized, or has a lot of for loops inside it.

In addition to MATLAB, Khoros from Khoral Research Inc. [16] has also been identified as a key higher level programming language for the development of signal/image processing algorithms. The commercially available version of Khoros is serial in nature and does not run on multiple processors. However, Advanced Khoros 2.3, which has recently completed beta testing, has a Parallel Toolbox that provides “parallel glyphs” to the user. Parallel glyphs are MPI-based modules that run on multiple CPUs and blend in seamlessly with other glyphs that can either be serial or parallel.

Conclusion

The signal/image processing community is largely divided into two major groups - embedded systems developers and algorithm developers. Most signal/image processing algorithms are eventually embedded into fielded systems with real-time performance constraints in addition to constraints on size, weight, and power consumption. Portability from the large HPCs to embedded systems has always been time consuming. The Vector Signal Image Processing Library (VSIPL) [17] is an emerging standard API/library for vector signal image processing primitives, with the goals of portability across platforms, reuse, interoperability, and reduction of development cost. The VSIPL 1.0 API standard is currently undergoing a few final finishing touches. Several vendors including Mercury Computers, MPI Software Technology, Annapolis Microsystems, Sky Computers, and Atlantis Corporation have already announced VSIPL products. Advanced Khoros 2.3 has some VSIPL support.

The Programming Environment and Training (PET) program at the ARL MSRC supported the code parallelization work described in this paper.

References:

1. Oppenheim and Shafer, Discrete-Time Signal Processing, Prentice-Hall, 1989.

2. Zelniker and Taylor, Advanced Digital Signal Processing, Marcel Dekker, 1994.

3. Anil K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989.

4. R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison-Wesley, 1992.

5. J.S. Lim, Two-dimensional Signal and Image Processing, Prentice-Hall, 1990.

6. D.E. Dudgeon and R.M. Mersereau, Multidimensional Digital Signal Processing, Prentice-Hall, 1984.

7. Tanis, M.C., and B.A. Smith, “Finite-difference migration of 3-D seismic data with a parallel algorithm”, 67th Annual International Meeting, SEG, Expanded Abstracts, 1422-1425, 1997.

8. W.K. Pratt, Digital Image Processing, 2nd edition, Wiley, 1991.

9. Gary. H. Stolovy and D. R. Prabhu, “Multiple-Target ATR for Synthetic Aperture Radar Imagery”, Proceedings of ITEA Conference, July 1998.

10. P. Partow and D. Cottel, “Scalable Programming Environment”, NCCOSC Technical Report 1672, Rev 1, San Diego, CA, September 1995.

11. D. R. Prabhu, “Speed-up of SADARM Scene-generation Code for Hardware-in-the-loop Simulation”, Proceedings of the Multi-spectral Scene Generation and Projection Workshop, April 1999.

12. M. Frigo and S. G. Johnson, "The Fastest Fourier Transform in the West," Technical Report, MIT-LCS-TR-728, September 1997.

13. RTExpress, http://www.rtexpress.com

14. Anne E. Trefethen, Vijay S. Menon, Chi-Chao Chang, Gregorz J. Czajkowski, Chris Meyers, and Lloyd N. Trefethen, “MultiMATLAB: MATLAB on Multiple Processors”, http://users.comlab.ox.ac.uk/nick.trefethen/multimatlab.html, 1996.

15. Parry Husbands and Charles Isbell, “The Parallel Problems Server”, Proceedings of the 1998 MIT Student Workshop on High-Performance Computing in Science and Engineering, MIT/LCS/TR-737. 1998.

16. Khoros, http://www.kri.com

17. David Schwartz, “Implementation Implications, Performance Opportunities, and Random Musings on Tisdale's "An Application Programmer's Interface to the VSIP Library for ANSI C"”, HRL Laboratories, http://www.vsipl.org, June 1997.
� EMBED Excel.Sheet.8 ��� � EMBED Excel.Sheet.8 ���

Figure 1: Computation time vs. number of CPUs for the original and parallel versions of the SADARM scene-generation code

Figure 2: Speed-up of serial optimized parallel code vs. number of CPUs. The total speed-up is relative to the original non-optimized serial code.

�PAGE \# "'Page: '#'�'" �� severe, maybe instead of serious?

_1008573842.xls
Chart9

		1		1

		4		4

		8		8

		16		16

		24		24

		32		32

Original code

Serial Optimized Parallel Code

CPUs

Computation Time, minutes

Computation Time vs. # CPUs

540

229

60

30

16

11

9

Sheet1

		CPUs		Time, minutes		Speed-up		New Time in minutes		New speed-up				Efficiency

		1		540		1.00		229		1.00		2.36		100.00

		4		142		3.80		60		3.82		9.00		95.42

		8		71		7.61		30		7.63		18.00		95.42

		16		37		14.59		16		14.31		33.75		89.45

		24		27		20.00		11		20.82		49.09		86.74

		32		22		24.55		9		25.44		60.00		79.51

		40

Sheet1

		

Original code

Serial Optimized Parallel Code

CPUs

Computation Time, minutes

Computation Time vs. # CPUs

Sheet2

		

Serial Optimized Parallel Code

Linear Reference

Total Speed-up Relative to Original Code

CPUs

Speed-up

Speed-up vs. # CPUs

Sheet3

		

		

_1008573872.xls
Chart10

		1		1		1

		4		4		4

		8		8		8

		16		16		16

		24		24		24

		32		32		32

				40

Serial Optimized Parallel Code

Linear Reference

Total Speed-up Relative to Original Code

CPUs

Speed-up

Speed-up vs. # CPUs

1

1

2.3580786026

3.8166666667

4

9

7.6333333333

8

18

14.3125

16

33.75

20.8181818182

24

49.0909090909

25.4444444444

32

60

40

Sheet1

		CPUs		Time, minutes		Speed-up		New Time in minutes		New speed-up				Efficiency

		1		540		1.00		229		1.00		2.36		100.00

		4		142		3.80		60		3.82		9.00		95.42

		8		71		7.61		30		7.63		18.00		95.42

		16		37		14.59		16		14.31		33.75		89.45

		24		27		20.00		11		20.82		49.09		86.74

		32		22		24.55		9		25.44		60.00		79.51

		40

Sheet1

		

Original code

Serial Optimized Parallel Code

CPUs

Computation Time, minutes

Computation Time vs. # CPUs

Sheet2

		

Serial Optimized Parallel Code

Linear Reference

Total Speed-up Relative to Original Code

CPUs

Speed-up

Speed-up vs. # CPUs

Sheet3

		

		

