4.1 Introduction to Application Cluster

In chapters 1 and 23 of this book, we have described how parallel computers and large-scale simulations have and will have profound impact on many fields. Here we assume this motivation and in chapters 4 through 8 try to answer the following question:

I have an application -- can it be parallelized and if so, how should this be done and what are appropriate target hardware architectures; what is known about clever algorithms and what are recommended software technologies?

Most of the answers to these questions are implicitly described in other parts of this book and we attempt to aid the reader's identification of where to go by combining an exposition of general principles with several case studies. The latter consists of in depth discussions in chapters 6, 7 and 8 of computational fluid dynamics, energy and environmental studies and cosmology. We also present in chapter 5 a set of 20 brief discussions of applications illustrating interesting features of their computational structure. An overview of our chosen applications in Sec. 5.1 is followed by a special section 5.2 describing Poisson’s equation in detail. This is not a “real” application like the others in our selection but acts as a simple prototype for discussing general issues. So we now step through the thought processes involved in analyzing a given application and in this way illustrate certain general characteristics that are useful in classifying the issues involved in parallelizing general applications. We first review Poisson’s equation and revisit the discussions of chapter 2 from an application rather than a parallel programming perspective

4.2 Application Characteristics in a Simple Example

Simple 2D electrostatic problems can be reduced to solving Laplace's or Poisson's equation and as described in Sec. 5.2, this is often solved numerically by finite difference methods. These could involve adaptive meshes and hierarchical multigrid but in the simplest formulation are set up as a regular grid of field values where the basic iterative update links two dimensional nearest neighbors as in fig. APPL/1.

[image: image1.jpg]
Fig APPL/1: A Simple basic complex system with a set of entities with nearest neighbor linkage to at most four others.
Applications as Basic Complex Systems

It is useful to think of an application as a "complex system" or a linked set of entities and this way of thinking can relate the parallelelization strategy of seemingly very different problems. For instance, we get very similar computational structures to the Laplace or Poisson equation of the previous section in many other applications. One example is the 2D Ising Model, where the mesh of fig. APPL/1 is now not an array of discretized field values but a fixed grid of spins with a nearest neighbor connection. The Ising model has a similar geometric structure but the physics and numerical procedure show many differences from Laplace's equation. In particular the usual numerical approach uses a Monte Carlo method rather than a differential equation to express the dynamics of the system. Further the iterative process is not a perturbative solution to an exact Matrix problem. Rather it counts Monte Carlo sweeps as one accumulates integration points to decrease the statistical error, which is inversely proportional to the square root of the number of sweeps. However these differences which are so important to the underlying science do not affect very much many of the issues that come up in discussing appropriate parallelization strategies and the needed hardware and software systems. Even closer to our Poisson equation would be an application the solved a simple wave equation (or Maxwell's equations) in a two dimensional domain. Here we see an identical computational structure with the perturbative iteration in the sparse matrix solution replaced by stepping through a discretized time variable. Yet another essentially identical structure can be found in cellular automata problems.

Such problems would usually be parallelized by dividing the two dimensional grid into rectangular sub-domains and making each node of the machine responsible for a sub-domain. On a distributed memory machine, the geometrically local structure of the linked entities, leads to a classic communication structure with the communication volume proportional to surface area (in 2D this is the sides of the rectangle) of each sub-domain while computation is proportional to volume. Further one can usually "block" the communication to transmit all the needed points in one message, although in Monte Carlo and red-black partial differential equation solvers only half the points can be sent at a time. Thus we find the basic result of parallel computing that the overhead decreases (in this case like (volume of sub-domain)1/d in d dimensions) as the problem size increases. To be precise, on a machine with a fixed number of nodes Nnode, the speedup improves as the problem size increases. However in the "scaled speedup" scenario, one maintains the same ratio of Speedup to Nnode if one scales problem size proportional to Nnode so that the sub-domain size stored in each node remains of fixed size. On a hierarchical (cache) memory machine, these problems can perform poorly as number of operations performed on each word fetched into cache is proportional to number of links per entity and this is small (4 in archetypal 2D mesh) in this problem class.

We can extend this very simple problem is several ways. For instance finite element problems have a similar mesh which can be quite irregular (compared to the uniform geometry of most finite difference problems) and this brings load balancing to the fore as an important issue. Particle dynamics problems with a short-range force can exhibit similar structure but with a dynamic irregular structure and a variable number of links per entity. The most obvious and critical generalization of this structure is to higher dimensions with three and even four-dimensional structures.

 So we have seen that is helpful to consider many problems as linked entities arranged in one two three or higher dimensional geometries. This linkage was "short-range" (a few links per entity) in the examples we discussed but one of course finds examples that span the gamut of possibilities. Particles interacting by a long-range gravitational force illustrate a case with many links per entity. This example (using the simple O(N2particle) algorithm has very different properties from the short-range case. In particular the performance of this problem is excellent on both distributed and hierarchical memory machines. There are many (of order Nparticle) computations for any point stored in cache and even though the communication appears heavy in a distributed memory machine, a careful analysis shows a low ratio of communication to computation. This type of long-range problem is found in a variety of fields (including areas like the determination of correlation functions) which are far from particle dynamics but still have the same computational structure.

The above example illustrates another important point. Namely a given physical problem can look quite different depending on the numerical formulation. As described in chapter IIIE, the natural O(N2particle) algorithm is often not the best approach and for large problems, one usually adopts the so called fast multipole method with O(NparticlelogNparticle)) behavior. A simpler application illustrating the same issue is Laplace's equation, which can often be solved by either iterative local methods such as conjugate gradient, or by the FFT (Fast Fourier Transform). In both cases the obvious approach has a simpler complex system structure while the fast algorithm has a more complicated tree structure. This emphases that a computational scientist uses their skill to convert a given application into a numerical system and it is the structure of the latter that determines the key parallel computing issues.

Above we have noted the rich spatial or geometric structure of applications. Two rather distinct simulation methods, time-stepped and event-driven, correspond to different temporal structures. Most of the examples in this book correspond to the time stepped case where the entities in a complex system are evolved together and synchronized globally either by the concept of time or something essentially equivalent like an iteration or Monte Carlo sweep. This is of course very reasonable, as it is "how nature works". In the early days of parallel computing, there were concerns that the global synchronization implied by the time-stepped approach would lead to uncontrollable overheads. This is not true, for it can be seen that for instance in the simplest nearest neighbor Laplace equation, global time synchronization is implied by the local synchronization of neighboring nodes, either by exchanging messages or the equivalent shared memory mechanism. This synchronization mechanism is itself fully parallel (with no "hotspots" in proper implementations)and so introduces no serious parallel computing overheads.

The military makes substantial use of event-driven simulations in the field of Forces Modeling. Here one tends not to simulate systems in terms of their fundamental constructs (atoms, grid-points etc.) but rather in terms of macroscopic constructs such as vehicles, mines, battalions etc, in the war gaming example. These system components are naturally formulated in terms of objects interacting with events, which are queued (often in a distributed fashion) and executed either in real time (the natural case when there is "hardware in the loop") or according to a global virtual time. Here we do see serious problems with the overhead of global synchronization and very ingenious techniques (such as variants of the Time Warp system with "optimistic" simulation and rollback) have been developed. Currently one of the most powerful parallel event-driven approaches is the SPEEDES system from Metron Corporation. The event-driven approach can also be the most effective approach to circuit simulations where linked devices can be modeled in this fashion.

Temporal Structure of Applications

It has been found useful to divide the temporal structure of numerical systems into four broad areas

· Synchronous: Here each point can be evolved in synchronous mode as is natural on a SIMD machine. The temporal synchronization is on a point by point basis. Most of the simple examples discussed above are of this type.

· Loosely Synchronous: Here the temporal synchronization is on a sub-domain basis and this is the natural form of SPMD (Single Program Multiple Data) implementations such are all HPF and most MPI programs. This is the dominant case for today's major applications as essentially any serious geometrical or other irregularity converts a problem, which is in its simplest mode synchronous to loosely synchronous form. In particular finite element problems, or finite difference codes with adaptive meshes are loosely synchronous. Domain decomposition in chapter IIID has this structure, as does the fast multipole approach to particle dynamics in chapter IIIE. The simple O(N2particle) particle dynamics algorithm is however synchronous.

· Asynchronous: Event driven simulations fall into class which include those problems which are not formulated in terms of a stepped time or iterator associated with each system entity. As discussed above, asynchronous problems can be very hard to parallelize whereas in principle loosely synchronous applications always run efficiently.

· Pleasingly Parallel: The time or iteration evolution structure of a problem can impact greatly the appropriate software and hardware architecture. However there is one important special case where this is not true -- namely cases where the entities in the system are essentially disconnected. Then each entity can be evolved more or less separately and there is no significant synchronization overhead whatever the differences between the entities. One typically uses a "farm" architecture with worker nodes somehow getting given chunks of the simulation (entities) to do as they finish their previous assignment. This has very non-trivial application dependent implementation issues but such problems will always parallelize well if the problem is large enough. Good examples of this problem class come from the Internet where both large web servers and the backend of database search engines such as Inktomi are of this type. Note this problem class was more crudely termed "embarrassingly parallel" in the past.

Parallelization of Basic Complex Systems

So let us take stock of where we are. Problems are set up as computational or numerical systems and we have discussed one set of such systems, which consist of a space of linked entities. These we termed "basic complex systems" and characterized them by their possibly dynamic spatial (geometric) and temporal structure. We have noted the difference between the structure of the original problem and that of computational system derived from it. We can summarize much of the past experience in parallelizing applications by the conclusion

Synchronous and Loosely Synchronous problems perform well on large parallel machines as long as the problem is large enough. For a given machine, there is a typical sub-domain size (i.e. the grain size or size of that part of the problem stored on each node) above which one can expect to get good performance. There will be a roughly constant ratio of parallel speedup to Nnode if one scales the problem with fixed sub-domain size and total size proportional to Nnode.

Unfortunately although this assertion is probably true in most important cases, it has proven very difficult to design and implement productive programming environments that allow the user to realize this goal. That is why we need to write this book even though in principle success is guaranteed …….

Metaproblems

Several applications can be solely discussed in terms of computational systems, which fall into the basic complex system type discussed above. However this description is often incomplete although it does properly describe key computational modules that are part if not all of the complete application. More generally, one finds metaproblems, which are built up from multiple modules that each can be classified as basic complex systems. Such metaproblems are particularly interesting today, as many of them are the natural applications for computational grids. One tends to run basic complex systems on classic shared or distributed memory machines as these have the required low latency and high bandwidth communication. Separate modules in a metaproblem can often be run on geographically separated machines, as they tend to have much less stringent communication requirements that those needed in the simulation of basic complex systems. Important examples of metaproblems are:

· The 3-way linkage of data store, simulation and visualization subsystems forms one of the most generic metaproblems, which is seen in many different disciplines.

· Multidisciplinary Applications: As discussed in chapter IIIF, there is a growing trend in modern engineering to sophisticated system-wide optimization. For aircraft design, one might simultaneously optimize over fluid flow, structural, acoustic and electromagnetic properties. Each of these corresponds to a separate module in the discussion above. The new DoD initiative in SBA (Simulation Based Acquisition) would need such metaproblems and we illustrate this type of application in fig. APPL/2.

· An early success of the CASA gigabit network was the simulation of a coupled ocean-atmosphere metaproblem and there is general understanding that such approaches are essential for reliable long-range climate forecasts.

· The forces modeling community often builds such metaproblems where each component is a separate focussed simulation. For example in one example where Syracuse University is involved, one simulation engine is used to describe mine fields and another describes squads of vehicles. You can imagine that these simulations have interesting interactions. In this field, metaproblems are called federations and the basic simulations are termed federates. They have built sophisticated software (RTI for Run Time Infrastructure and HLA for High Level (object) Architecture) to support the federation of multiple event driven simulations.

[image: image2.jpg]
Fig APPL/2. The linked modules in a typical metaproblem. We show three large-scale parallel modules which can be expected to execute on massively parallel systems. The control module is logically separate and may not need high performance computing.
Note that basic complex systems often have huge potential for parallelism with a complex 3D simulation perhaps exhibiting a billion independent degrees of freedom which are candidates for data parallel systems. Metaproblems are different as one typically has but a few independent modules and further the linkage of these modules is often timed asynchronously and so naturally supported by different software concepts than the data parallel sub components. So this way one finds a metaproblem with each module using internally MPI, OpenMP, HPF or equivalent while the modules are linked together thorough channels using perhaps IIOP (CORBA) or RMI (Java). We discuss these different software models more completely in chapter IVF.

