
The WebPDELab Server:

A Problem Solving Environment for

Partial Di�erential Equations Applications

Elias N. Houstis, Ann C. Catlin, Nitesh Dhanjani, and John R. Rice

Department of Computer Sciences

Purdue University

West Lafayette, IN 47906, USA.

January, 2000

Abstract

WebPDELab is a World Wide Web server that allows users to de�ne, solve
and analyze partial di�erential equation (PDE) problems using a comprehensive
graphical user interface from any Java-enabled browser on a wide variety of plat-
forms. The WebPDELab server is currently supported by a 16 CPU Intel clus-
ter, which allows users to solve PDE problems sequentially or in parallel on the
supporting host cluster. WebPDELab is the PELLPACK [Houstis et al., 1998]
problem solving environment implemented as an Internet-based client-server
application. It provides access to a library of PDE solvers and an interactive
graphical interface that support the pre-processing and post-processing phases
of sequential and parallel PDE computing. The PELLPACK software is imple-
mented as a system of X windows programs and libraries, compiled on an i86pc
SunOS 5.6 machine. WebPDELab displays the interface of the PELLPACK
software within a Java-capable browser using the Virtual Network Computing
(VNC) [Richardson et al., 1998] remote display system.

1 The WebPDELab Server

WebPDELab is a World Wide Web server that provides access to PELLPACK,
a sophisticated problem solving environment for Partial Di�erential Equation
(PDE) problems. Users can connect to the WebPDELab site at
http://webpellpack.cs.purdue.edu with any Java-enabled brower for infor-
mation, demonstrations, cases studies and PDE problem solving service. The
scenario illustrated in Figure 1 shows how a user on the Internet accesses
WebPDELab services.

1



Figure 1: View of the WebPDELab system operating over the Net.

A new PELLPACK session is initiated for each user that connects to the
WebPDELab server, and a unique identi�cation and private �le space for the
session are created. The �le space is available until the user disconnects from
the service, at which time the session is terminated and the user's �les are
deleted. Users may download �les generated by PELLPACK to their own ma-
chines before terminating the session, and they may upload �les to WebPDELab
at the start of subsequent server sessions. When the server invokes the PELL-
PACK system software, the entire PDE problem solving environment described
in [Houstis et al., 1998] is presented to the user. This environment is described
only brie
y in Section 1.1. For a detailed decription of the functionality and op-
eration of the PELLPACK software, all or part of the User Guide (400 pages)
[Catlin et al., 2000] can be downloaded from the web site. PELLPACK is a
comprehensive system for modeling physical objects based on PDEs, and has
been used by hundreds of students and faculty both inside and outside of Purdue
University for solving problems in physics (liquid crystal droplets, proton 
ux
propogation), thermal �eld analysis, 
uid dynamics, semiconductors, geophys-
ical research, electomagnetic �eld analysis, thermo-elasticity, structural analy-
sis, and other scienti�c and engineering applications. PELLPACK has a user
friendly interface, and even �rst time users can solve interesting problems by

2



following the fully documented, step-by-step descriptions of the problem-solving
process presented in Getting Started at the WebPDELab site.

1.1 The PELLPACK Problem Solving Environment

WebPDELab is a Internet-based client-server implementation of the PELL-
PACK software. PELLPACK is a system that allows users to specify and solve
PDE problems on a target computational platform and to visualize the solution.
PELLPACK provides a graphical user interface for de�ning the PDE model and
selecting solution methods (see Figure 2), and is supported by the MAXIMA
symbolic system and well-known numerical libraries. The graphical interface
is implemented on top of a very high level PDE language. Users can specify
their PDE problem and its solution visually using the graphical interface or
textually using the \natural" language. PELLPACK has incorporated over 100
solvers of various types which cover all the common PDE applications in 2 and
3 dimensions.

In the PELLPACK system, a problem is represented by the PDE objects in-
volved: PDE model or equations, domain, conditions on the domain boundary,
solution methods, and output requirements. The PELLPACK interface consists
of many graphical tools and supporting software to assist users in building a
problem de�nition. A textual speci�cation of these objects comprise PELL-
PACK's natural PDE language, and the language representation of each object
is generated by the object editors/tools. The language de�nition of a user's
problem (the .e �le) is automatically passed to PELLPACK's language pro-
cessor, which translates the problem into a Fortran driver program, and then
compiles and links it with numerical libraries containing the user-speci�ed solver
methods. Sequential or parallel program execution is a one-step process; the
program is executed on one or more machines in the supporting i86pc host clus-
ter. Problem solutions are passed to the PELLPACK visualization system for
solution display and analysis.

1.2 The WebPDELab Interface

The WebPDELab server is accessed from the WebPDELab web site. This web
site is an instructional source for anyone interested in solving PDE applications.
It provides information about PDE problem solving in general, and about the
process of solving PDE problems with PELLPACK in particular. A collection
of fully documented case studies is available at the site (Figure 3), present-
ing step-by-step solutions of common PDE applications (
ow, heat transfer,
electo-magnetism, conduction), with every user action and PELLPACK result
described with images and detailed text.

Users who request the PDELab problem solving service must �rst regis-
ter with WebPDELab (Figure 4). After the user registration information is
validated and the server connects to a host machine, WebPDELab presents a
framed HTML page, with a control panel in the top frame (Figure 5) consist-
ing of four buttons: Upload Files, Download Files, Start Server and Exit

3



Figure 2: Graphical tools available in the PELLPACK problem solving environ-
ment.

4



Figure 3: Sample case study from Getting Started at the web site.

Figure 4: WebPDELab registration.

Server. The bottom frame contains the user identi�cation number, host con-
nection information, and instructions for using the buttons of the control panel
in the top frame. At this point, the WebPDELab server has already created
the user's directory space, so users can upload �les to their directory using the
Upload button. Generally users upload PELLPACK problem de�nition �les
from previous WebPDELab sessions, such as .e �les, mesh �les and solution
�les. Users can upload up to 24 �les to their assigned directory space, and �les
may no longer be uploaded once a user clicks on the Start Server button.

The Download button returns a listing of the user's directory contents. Files
in this directory can be viewed or dowloaded from the listing, but since users'
directories are password protected, no other directories can be viewed or entered.

5



Figure 5: WebPDELab server with control panel in the top frame and panel
instructions and connection information in the bottom frame.

The Download button is available throughout the user's PELLPACK session.
Users should look here frequently during the session to check on PELLPACK
generated problem, solution and trace �les. The Start Server button invokes the
password protected PELLPACK software. After the password is entered and
veri�ed (Figure 6), the top level window of the PELLPACK system appears in
the bottom frame of the browser window as shown in Figure 7. A collection
of sample problems has been placed in the user's directory, so users can load
an example into the PELLACK session or begin their own problem de�nition.
The PELLPACK session in Figure 8 is in the bottom frame of the WebPDELab
server. The buttons of the control panel are still available in the top frame, but
only the Download and Exit Server buttons are enabled. The Upload and Start
Server buttons remain disabled while the PELLPACK software is running in
the bottom frame.

During the PELLPACK session, WebPDELab is passing the display of the
remotely executing PELLPACK environment to the users browser window. The
graphical interface displayed on the user's screen belongs to PELLPACK and is
not described in this paper. When users click on Exit Server, the PELLPACK
session is terminated and the user's directory is removed.

WebPDELab traces all user activities from the start of the server session
until its termination. Users �les are secure from other users, but WebPDELab
'looks at' the contents of every �le uploaded to WebPDELab or created by the
user from within the PELLPACK system. WebPDELab protective mechanisms
implemented for the security of the WebPDELab server and host cluster are
discussed in Section1.4

6



Figure 6: Password entry for the PELLPACK system, showing the control panel
in the top frame.

Figure 7: The PELLPACK top level window appears in the bottom frame of
the WebPDELab browser window. It is ready for user interaction.

1.3 WebPDELab Implementation

WebPDELab is the PELLPACK problem solving environment implemented as a
web server using Virtual Network Computing (VNC) [Richardson et al., 1998].
VNC is a remote display system which allows users to view a computing \desk-
top" environment from anywhere on the Internet using a wide variety of machine

7



Figure 8: PELLPACK session running inside the WebPDELab browser window.

architectures. VNC consists of a server which runs the applications and gener-
ates the display, a viewer which draws the display on the client screen, and a
TCP/IP connection between them. The server is started on the machine where
the desktop resides, after which any number of viewers can then be started and
connected to the server. This allows the client user to access the applications,
data, and entire desktop environment provided by the server. The viewer is a
small, sharable, platform-independent, and stateless system which runs on the
client machine.

In the WebPDELab implementation, a new VNC Unix server is started for
each user who accesses the WebPELab web server from a Java-enabled browser
(see Figure 9). The VNC Java viewer is started from the user's browser, allow-
ing the user to display and interact with the PELLPACK environment, which
consists of X windows programs and libraries compiled and running on the i86pc
SunOS 5.6 host machines. Within this framework, any user world-wide who is
connected to the Internet and has access to a Java-capable browser can run
WebPDELab.

The WebPDELab manager is the collection of CGI scripts (Common Gate-
way Interface protocol for browser to server communication) which control all
user activity once the PDELab Server button at the WebPDELab web site is
pressed. When a user accesses the server, the manager collects information

8



on all currently running VNC servers from the host machines. The manager
then asks the potential user to enter registration information, including a valid
e-mail address. After the email address is validated, a unique user id is gener-
ated for the new user, and a log �le is set up to track registration information,
user access/exit times, and user activities while running the PELLPACK soft-
ware. The host machine with lightest traÆc is selected by the manager for
running the VNC server and subsequently the PELLPACK software. A protec-
tive client-server application is used to launch the VNC server, so that users are
never logged in to any machine in the host cluster. The VNC server startup
invokes the PELLPACK system, and the manager creates the user directory,
sends the control panel to the user, and monitors the user's interaction with
the control panel buttons (Upload Files, Download Files, Start Server and Exit
Server).

Upload Files is implemented using copyrighted public domain code at
http://stein.cshl.org/WWW/software/CGI (Lincoln D. Stein, 1998). The
code has been modi�ed to operate with the WebPDELab/VNC user directory
privacy restrictions. The Download Files button is implemented as a standard
link to the user's �le space, but additional password security protects a user's
assigned directory from all other users on the Internet. Start Server connects
the VNC client user to the VNC server which has been instantiated for the
caller on the selected host for a speci�c VNC server.

After control has passed to the VNC client, the manager waits for a VNC
disconnect or an Exit Server button click. When signalled to start exit pro-
cessing, the manager saves the trace of user activities to the log data base, kills
the VNC server, and removes the user's directory. The manager also checks all
executing VNC servers periodically for sessions running longer than 10 hours,
and these sessions are terminated. When the manager has �nished exit process-
ing, control is returned to the WebPDELab home page.

1.4 WebPDELab Security Issues

All internet based services must be concerned with security issues and strive to
protect their network and host environment from unauthorized access. WebPDE-
Lab implements measures to provide such a secure environment by enforcing
common rules of best practices which are used to secure Unix machines, tak-
ing advantage of the strength and 
exibility of the Unix operating system.
WebPDELab maintains several levels of security provided by the operating sys-
tem, the WebPDELab and VNC servers, and protective language processing
software built on top of the PELLPACK system. These security measures are
described in this section.

When a user logs into the WebPDELab server, a CGI script is executed which
generates a unique UID (user identi�cation) for that user and requests one of the
cluster host machines to invoke a VNC X-server. The WebPDELab CGI scripts
reside on an isolated machine dedicated to serving CGI requests. This machine
does not have any NFS-mounted disks, therefore an attacker attempting to
take advantage of vulnerable CGI scripts is locked into the cgi-bin directory

9



and cannot gain access to any other machines or disks. All parameters passed
to WebPDELab CGI scripts are scanned to ensure they contain precisely the
expected values (argument number,length and contents), else the request is
terminated,

The cluster machines listen on a �xed port for startup requests from the
CGI machine. In case an attempt is made to connect to this port which does
not originate from the CGI host, the connection is immediately terminated. All
cluster machines run a daemon which listens for socket connections on a speci�ed
port and spawn a child process to serve the request, while the parent continues
to listen for other connections so that requests can be served simultaneously.
A client program is invoked by the CGI script to contact the cluster machine
and request that a new VNC X-server be launched. The client may only specify
the VNC X-server startup parameters, since the launching of the VNC X-server
binary is hard-coded in the con�guration �le of the daemon serving requests
originating from the CGI host. The VNC server itself is protected by a challenge-
response password scheme.

The cluster machines run the VNC X-server as owned by a dedicated account
whose root directory is the account's home directory (using the Unix mainte-
nance chroot command). All the required binaries are located in this directory.
If a user discovers vulnerabilities in one of the cluster machines, the user is
locked into the home directory of the account, and is unable to cause harm to
other accounts or disks.

In order to protect the machine from unauthorized fortran code inserted
by a user into the PELLPACK .e �le, specialized �lters have been built into
the original PELLPACK system. The original PELLPACK language processor
already restricted the location of Fortran code to specialized segments within
the PELLPACK problem de�nition �le; these segments are now re-parsed by
�lters that identify inserted Fortran statements for unauthorized code.

Every user is provided with a unique directory for uploading and download-
ing �les, thus facilitating the option of saving and retrieving material. This
directory is created by the CGI script after the registration information is en-
tered and validated. User's directories are password protected, securing each
user from all other users. Every user �le, however, is opened and checked by
WebPDELab for legal content as it is uploaded or saved by the user from inside
PELLPACK.

2 WebPDELab Features and Issues

In this section, we list the signi�cant bene�ts resulting from the implementation
of the WebPDELab server described in Section 1:

� Generality. Any machine connected to the Internet can use the PELL-
PACK environment without concerns about language or machine compat-
ibility.

10



Figure 9: Implementation of the WebPDELab server.

� Interaction. Users can specify the PDE with normal interaction speeds for
the client machine, since data entry is done locally. The amount of code
exported to support the user interface is substantial (several megabytes),
but it is only a fraction of the PELLPACK system. If the user has no
graphics capability, then the text based interface tools must be used; these
are less convenient but still practical to use.

As the PDE problem is being speci�ed, information is sent to the server.
The server might request additional information but once the problem is
completely speci�ed, it is solved on the server's host machines. After the
PDE is solved, the user can either view output generated by the server or
request that the solution (normally a large data set) be sent for local use.

� Access to High Performance Computers. Any user can access machines
with suÆcient power to solve the PDE problem. Even if the solution is
too large to be sent to the user (or if there are no local visualization tools),
the solution can be explored over the net.

� No Code Portability Problems. User do not need to have the code in the
local machine language, since the software infrastructure operates only on
the server's host machines.

There are several concerns and technical issues involved in the service pro-
vided by WebPDELab which we now discuss:

� Performance of the user interface. There is a clear trade o� in user in-
terface performance between exporting code to the user's machine and
executing code on the server. Our existing prototype shows that commu-
nicating each mouse click back to the server for processing provides un-
satisfactory interactive performance due to network delays. Our analysis

11



indicates that almost all of the interaction can be run locally by export-
ing a moderate amount of code. The user interface does use tools that
are both time consuming to execute and which are too large to export.
Examples are MAXIMA (used to transform mathematical equations) and
domain processors (used to create meshes or grids in geometric domains).
These tools usually require pauses in response even without a network and
the added delay due to networks is unlikely to be signi�cant.

� Security for the server. While we control the material received from a
user, the server is clearly subject to attack. We place the server on a
separate subnet and access licensed software through a gateway. Since we
know exactly what is to be sent via an RPC, it is possible to protect this
licensed software. Even if a user succeeds in becoming \root", access to
other machines is not possible. Of course, network �le systems and similar
tools are not used. Our process of \registering" users when we give them
accounts provides us with a chance to screen users before providing them
access to WebPDELab.

� Security for the user. This requires each user to be completely isolated
from all others. Each user on the server runs in a virtual �le system using a
login with no access privileges. Thus, each user appears to have the entire
machine, and the protection mechanisms between machines protects users
from one another. This approach provides security at the cost of using
much more memory than normally necessary.

� Software ownership and fair use. We prevent the copying of software by
placing, if necessary, source code on another machine or another network
and using secure RPC.

� Payment for computing services. The WebPDELab server is provided free
to users as well as time on associated servers used for security purposes.
We do not foresee a need to charge users for time on these machines. If
large numbers of users contend for service then they will be queued and
the cost of the servers is clearly limited. However, there is a real problem
when we access parallel machines which act as compute servers. Initially,
WebPDELab uses local machines (a 140 processor Paragon, a 64 processor
SP-2, a PC cluster with 32 PCs, an SGI Origin 2000 with 32 processors)
and a user can easily pose a problem that uses several hours on one of these
machines. We intend to access o� site machines in the future. When the
usage of these compute servers becomes a problem, we will require users
to obtain accounts on them. This is a nuisance now but we believe the Net
infrastructure will evolve soon to simplify such administrative problems.

There are three technical issues considered in the deployment of WebPDE-
Lab as a successful server. First, the user interface must be clearly separated
from the rest of the system. Our system is very modular in nature and we
have already essentially completed this task. Second, we must create an eÆ-
cient, exportable user interface. We have already made a prototype exportable

12



user interface which is neither eÆcient nor general. It assumes the user has an
X-windows server and it requires excessive network communication. We have
studied Java implementation, and believe we can use it to obtain both eÆciency
and generality on the network.

Third, it is the problem of dealing with the visualization of very large data
sets over the network. Using WebPDELab, a person with a simple PC can
generate a PDE solution consisting of millions of data points in 3-D. In our own
group we have 155 Mbit/sec ATM networks and expensive graphics workstations
to visualize such solutions. We see two ways to provide visualization service to
the user neither of which is always satisfactory. (1) We have visualization tools
to slice, rotate, color, etc., data for viewing. We can send these images back
over the Net. But the user might have a slow network connection or a black and
white display, and in this case the viewing process would be painfully slow. (2)
We can send the data set to the user. A two million point solution is not rare
and its data set would be at least 25{50 Mbytes. The transmission time could
be prohibitive if the user has slow network connections. In addition, the user
might not have space to store the solution, or might not have any visualization
tools that can handle the data. We believe that visualization over the Net will
be a serious problem for some users, and it is one we currently have no solution
for. We believe that this is a common problem and that the Net infrastructure
will provide solutions in a few years.

3 Summary

In summary, we have an operational prototype of WebPDELab and a plan
providing a very useful and innovative network service using it. The implemen-
tation of the plan does not require new science or technology and it can be
accomplished with reasonable cost and time.

References

[Catlin et al., 2000] Catlin, A. C., Weerawarana, S., Houstis, E., and Gaitatzes,
M. (2000). The PELLPACK User Guide . Technical Report, Dept. of Com-

puter Sciences, Purdue University, page to appear.

[Houstis et al., 1998] Houstis, E., Rice, J., Weerawarana, S., Catlin, A., Gai-
tatzes, M., Wang, K., and Papachiou, P. (1998). PELLPACK: A Problem
Solving Environment for PDE-based Applications on Multicomputer Plat-
forms. ACM Trans. on Math. Soft., 24, No. 1:30{73.

[Richardson et al., 1998] Richardson, T., Sta�ord-Fraser, Q., Wood, K. R., and
Hopper, A. (1998). Virtual Network Computing . IEEE Internet Computing,
2, No. 1:33{38.

13


