Achieving Performance Measurements of Known Quality on High Performance Computers

John E. West
US Army Engineer Research and Development Center
Information Technology Laboratory

December 2, 1999
2nd Major Revision

December 12, 1999
5th Minor Revision

Abstract

High performance computing requires applications that are both computationally efficient and portable. Creating software with these characteristics is a topic of active research and adaptive, or poly-, algorithms represent one promising strategy. Adaptive algorithms automatically select – either at run time or during compilation – the algorithm used to solve a problem. The goal of deferring this selection is to improve performance over a wide range of problem sizes, architectures, and so on. The benefits achieved by this approach are inherently dependent upon the information used to guide algorithm selection. Actual performance measurements are commonly obtained and used to construct a performance database that is used to improve algorithm selection. An important factor affecting the utility of these databases is variability in performance between repeated executions of the same problem.

The amount of performance variability can fluctuate considerably over time on a single machine, and in general varies between machines. Clearly, this variability can compromise the reliability of algorithm selection decisions. Thus, a principal challenge is to understand the influence of this variability on algorithm selection. Once this influence has been satisfactorily characterized, a performance database can be optimally constructed. In this paper a dynamic sampling technique is presented that produces performance data of known quality in the presence of significant variability. The technique is flexible enough to minimize measurement costs while simultaneously yielding consistent performance results.

Keywords: high performance computing, benchmarking, polyalgorithm, adaptive algorithm, switching function
1 Introduction

An adaptive algorithm
 automatically selects the algorithm it uses to solve a problem from a set of algorithm alternatives. The choice is based upon selecting the algorithm that best meets the user’s goals for a specific problem on a specific machine. These goals are often oriented toward minimizing execution time, but other goals, such as minimizing memory or I/O, are common. The algorithm selection is made during either compilation or execution, when more detailed information about the computation environment and problem being solved are available, rather than during development. Because selection is dynamic, it is possible to run an application on several different problems and use a different algorithm each time. This differs from typical programming practice in which a single algorithm is selected during software development based on the developer’s understanding of the target hardware platform and the type of problems to be solved by the application. Adaptive algorithms can improve application performance when the developer’s understanding is incomplete or inaccurate, or when the hardware or characteristics of the problem might change over time. High performance computing requires applications that are both computationally efficient and portable, and algorithm adaptation is one promising strategy (Bilmes, et al. 1997)(Brewer 1995)(Demmel 1992)(Dongarra and Walker 1995)(Li, et al. 1997)(van de Geijn 1997)(Whaley and Dongarra 1998).

An adaptive algorithm consists of two parts: a set of algorithm alternatives, and a mechanism for automatically selecting the best algorithm for each problem from this set. The software mechanism that performs the selection is called a switching function. While the set of algorithms available in the adaptive algorithm is clearly domain specific, the selection process appears to be general. That is, it should be possible to create a general switching function methodology that will serve in many application domains.

Switching functions make their decisions based on performance models for each algorithm. Such models can be created from analytical expressions that predict performance based on machine and problem parameters. Performance models can also be constructed from data gathered during benchmarks, for example by applying statistical regression or machine learning to measured performance data. Switching functions based on measured performance (rather than on performance predicted by an analytical function) are called empirical switching functions. This research relates specifically to enabling empirical switching functions.

The accuracy of an empirical switching function depends upon the accuracy of the performance data on which it is based. In concept an empirical switching function is created by collecting performance data and then analyzing these data to create performance models. In practice, however, performance measurements can vary significantly between repeated executions of the same problem on the same machine, even on dedicated machines. This variation, which is not related to the algorithms themselves, reduces the ability of statistical and machine learning methods to accurately predict performance. Without accurate switching functions, adaptive algorithms are of no practical interest. The goal of this research is to manage variability in performance measurements during the benchmarking process to produce reliable performance databases for creating accurate switching functions.

A statistical method based upon Stein’s double sampling technique is proposed to meet this goal. Stein’s method allows the desired quality of collected performance data to be set at the time of collection, and dynamically adjusts the number of times a benchmark is repeated to meet this quality goal. We study the effectiveness of Stein’s method by collecting performance data on two HPC machines using an adaptive parallel matrix multiplication algorithm. Results in this paper indicate that this approach can maintain the quality of a performance estimate even in the face of substantial variance in repeated measurements.

The remaining sections of this paper are organized as follows. Section 2 examines a portion of the performance data collected for this work to demonstrate performance variation. We show in this section that the degree to which variance affects the reliability of performance measurements can change not only between different machines, but also with time on a single machine. The methods that have been used in the HPC community for managing performance variance in benchmark are examined in Section 3. The limitation of these approaches in the context of this research are discussed, followed by a brief introduction to statistical sampling theory and a more detailed discussion of Stein’s method. Section 4 presents the results of applying Stein’s method to performance estimation for an adaptive parallel matrix multiplication algorithm, examining both the advantages and limitations of this approach. Concluding observations and suggestions for future research are presented in Section 5.

2 Motivation

In this section we examine benchmark data in order to provide insight into the nature and extent of performance variance. The data in this section are extracted from benchmark results for several matrix multiplication algorithms that are presented in more detail later in this paper. Results for all three algorithms are similar, so only the first of these algorithms, algorithm variant one, is discussed in this section. The algorithms are written using the PLAPACK library (Alpatov, et al. 1997)(van de Geijn 1997), and are part of an adaptive algorithm that maximizes performance as the shape of the multiplication operands varies (Gunnels, et al. 1998). PLAPACK uses the vendor-optimized BLAS (Dongarra, et al. 1990) for computations local to a processor, and uses MPI (Message Passing Interface Forum 1994) for communication between processors.

Figure 1(a) plots the performance of one algorithm multiplying two
[image: image1.wmf]4096

4096

´

 matrices on sixteen processors of an IBM SP and a CRAY T3E (see Appendix A for machine configuration details). The figure shows the performance measured in several benchmark sessions each day for seven days in early October (the discussion in Section 4.2 details the benchmarks and execution schedule). A single session uses the same processors; different sessions were run at different times during the day, and so may (in most cases will) use different processors. The performance for each machine is summarized by a line that connects the median performance of each session, and by ticks on the y-axis that summarize the distribution of values achieved in all of the sessions.

The highest performance in Figure 1(a) is achieved on the T3E. Figure 1(b) plots the logarithm of relative variance for each session; relative variance is computed by dividing the variance (standard deviation squared) by the mean for each session. The data show that the range of performance on the T3E is a few MFLOPS, while it is over one hundred MFLOPS on the SP. This illustrates the first challenge for a general method for managing variability: the amount of variation in repeated performance measurements can be different between machines. This means that a general method will need to adapt the way it collects samples to the characteristics of the machine being measured.

[image: image2.png]
Figure 1 (a) performance in MFLOPS (b) the logarithm of relative variance.

Figure 1 also reveals that the amount of variability in repeated measurements can change on several time scales. Figure 3 shows detailed time histories of four benchmark sessions on the IBM SP. Studying individual sessions shows that some have high variability only at the beginning, others have high variability only at the end, and still other sessions have a nearly constant amount of variability. Variation within a session is on a relatively short time scale. In Figure 1(b) it is clear that some sessions have a higher variance than other sessions. This variation is on a longer time scale (hours or days) than the intra-session variations (minutes). This is the second challenge of a general method to manage variability: while the level of variation changes between machines, it can also change on different time scales for a single machine.

[image: image3.png]
Figure 3 Benchmark session time histories for four different sessions on the IBM SP.

These data were collected on machines while other user tasks were running (for this paper a machine on which multiple users are simultaneously running jobs is called a production machine; a machine with no user tasks other than the application being measured is a dedicated machine). Figure 4 shows the performance the same algorithm measured on the SP while no other user tasks were running. Both the range and maximum of the relative variance are smaller than for the production benchmarks, but they are still significant. They reveal that performance variation is not limited to benchmark measurements on production machines, but can extend to benchmark measurements on dedicated machines as well. Although potentially surprising, these results are consistent with findings on other IBM SPs for a different set of applications (Blackford, et al. 1998).
[image: image4.png]
Figure 4 Performance variation on a dedicated IBM SP.

2.1 Implications for Adaptive Algorithms

Significant variation in performance measurements can cause difficulty for switching functions and adaptive algorithms. The primary goal of the switching function is to identify crossover points – the specific combination of problem and machine parameters at which one algorithm performs better than the alternatives. If there is a significant variation in performance measurements not related to the algorithm, then the accuracy of the crossover points is reduced. This in turn will reduce the accuracy of the switching functions, resulting in sub-optimal performance for the application using the adaptive algorithm.

The key to resolving this difficulty is to collect benchmarks in a way that guarantees a specific level of quality in the performance measurements. As already shown in this section, the method must adapt to changing variance between different machines and to changing variance on several time scales on a single machines.

3 Managing Variability

Variation in repeated performance measurements on production machines is usually attributed to competition for resources between user tasks. Competition with other users can be eliminated altogether by measuring performance only on machines with no other user tasks. This is the alternative frequently taken in reporting benchmarking results in the literature
. Data from the previous section show that dedicated processing does not always reduce variation to tolerable levels, and when it does may not be the most desirable approach. It can be difficult for users of HPC centers to get dedicated access. Furthermore, performance results on dedicated machines can lead to poor algorithm choices on production machines. For example, a communication intensive algorithm may be much faster than a competing algorithm on a dedicated machine only to see its advantage eliminated when the communications network is shared with other applications.

When performance measurements are not reported for dedicated machines, variance is often managed by repeating performance measurements and reporting the aggregate performance. Often the average performance is reported, but median and best- or worst-case measurements are also used
.
There does not seem to be a consensus on how many measurements is sufficient, or on a process for making this decision. Many times only the aggregate performance is reported without any of the other population characteristics. This makes it impossible to assess the statistical quality of the measurements. Lack of quality information makes it difficult to evaluate decisions (such as algorithm selection) based on these data.

Aggregating an arbitrary number of repeated measurements has another distinct disadvantage: cost. While post-collection analysis may show that averaging some number, say eight, of runs may produce data of the desired quality, the user does not know whether the cost (in terms of computer time used by repeated benchmarks) for this quality is acceptable. Would four measurements have sufficed? Cost can be a significant consideration when developing a performance database for training switching functions. HPC machines are often shared among many users and are heavily used. This amortizes institutional investments, but competition a large number of active users can make computer time difficult to get for any one user. The only way to make efficient use of available resources is to take the minimum number of measurements that support the desired statistical quality.

When performance variation is observed on a dedicated system, as observed on the SP in the previous section, it becomes harder to manage. If the application is correct and deterministic, and if the amount work can be accurately measured, then the probable source of variation on dedicated computers is competition for resources between the application and the operating system. This type of variation is fundamental to the computational system, and so cannot be eliminated. We will see that it is possible to manage this variation, however, and in so doing to manage variation among performance measurements in general.

A method for managing performance variability is required that allows collection of performance data of a specified quality while minimizing the costs of collection. For this we turn to statistical sample size determination.

3.1 Statistical Sample Size Determination

When studying a population one can study either the entire population or some representative subset of the population. The subset is called a sample of the population. Sampling can be employed to reduce the costs or length of a study when the population is difficult to study completely; it can also be used when it is impossible to study the entire population. Statistical studies can be generally grouped into three categories: estimation problems, tests of hypotheses, and selection problems. Our performance measurement problem is an estimation problem. We wish to know the true, but unknown, value of the performance of an algorithm with a certain amount of confidence (Mace 1964, p. 4). Stated more formally, the goal is to know that “the performance of this algorithm is within p% of X MFLOPS.” p is called the confidence interval for the estimate. If p is not zero the population statistic (the median in this example) is an estimate of the true value. The size of the confidence interval conveys the quality of the estimate. The only way to reduce p to zero in a population with nonzero variance is to study the entire population.

The primary obstacle in estimating performance at a specific quality is variance in the measurements. Variance in experimental results in general is affected by the size of the sample, the population statistic (for example, the median is less sensitive to outliers than the mean), and the design of the experiment (Williams 1978, p. 101). The statistical design of experiments is a broad and important topic. Much of this work is focused on controlling sources of variation inherent in the experiment or materials (Mason 1989). In this work we assume, however, that appropriate timers are used and the amount of work performed can be accurately characterized, so the design of the experiment is not considered. We assume that a benchmark accurately measures performance at the time of observation. When there is significant variability between successive measurements, however, what is not known is whether any single measurement is exceptional. More than one observation is needed to determine the reliability of the performance value. Determining how many observations are needed is the focus of this section.

3.1.1 Sample Size Determination

The sample size cannot be determined without first specifying the confidence required in the results of the study. The width of the confidence interval sets the number of samples required based on the amount of variance in the population. A low variance population will achieve a small confidence interval in fewer samples than a large variance population.

Thus, sample size depends upon the population variance. It is not possible to guarantee that results based on the sample accurately approximate the true population statistic within the confidence interval without examining the entire population. No matter how many samples are taken, there is always a chance that a consistently unlucky subset has been selected which is different from the rest of the population. Thus, although the statistic may estimate the true value of the sample to within the confidence interval, the sample itself is not representative of the population, and so the answer is wrong. Another tolerance is needed to bound the likelihood of selecting this unlucky sample. This modifies our confidence statement to something such as “X is the mean performance of an algorithm within p% of the actual population mean, except for a q% chance that things have gone very wrong.”

Having set the quality parameters it is now possible to estimate the size of the sample, as long as a model of the population’s distribution is known. Thus, if a population is assumed normal
, and the finite population correction is ignored
, then the sample size, n, can be determined as follows

[image: image5.wmf]2

2

/

÷

ø

ö

ç

è

æ

=

d

t

n

s

a

,

where t is the abscissa of the normal curve that cuts off an area
[image: image6.wmf]2

/

a

 at the tails (i.e., the confidence interval),
[image: image7.wmf]s

 is the standard deviation of the population, and d is the chance of catastrophic error discussed above.

Here is the main difficulty in sample size estimation (Cochran 1953, 51). The size of sample depends upon the variance (represented by the standard deviation squared term in the formula) of the population to be sampled, but the variance is not known until the population is sampled. This problem is overcome by estimating the unknown variance, and using this estimate to approximate the sample size. This estimate can be based upon guesswork, previous studies, or a pilot study. But these variance estimates are not sufficient for performance evaluation because, as shown above, the level of variance in repeated performance measurements changes between machines and over time on a single machine. Thus, even if the estimated variance is based upon detailed performance measurements conducted in the past, the calculation for n in the present does not provide any assurance that the desired confidence level has been achieved. If the variance has increased then more samples are required, while if the variance has decreased the costs of the sample may be too high.

Thus, we need a method that does not require an historical estimate of variance and that can adapt to changing variance over time.

3.1.2 Stein’s Method

Stein has developed a method for estimating the mean of continuous normal data that does not require historical estimates of the variance (Stein 1945). The sample is collected in two parts. The first part provides an estimate of the variance, and the second part adds enough data to assure that the population statistic meets the specified quality. Stein’s technique assumes that the population being sampled is normal, so strictly speaking its application is limited to situations in which this condition is at least approximately satisfied. The method is of interest to this research because it provides a recipe for sampling that can adapt to the dynamic nature of underlying processes governing performance on production machines. The performance data presented in this paper are only approximately normal, but as shown later the method still provides good results.

To apply Stein’s method, the margin of error and confidence interval are set. The margin of error,
[image: image8.wmf]a

, is the probability that we have selected an unlucky sample whose members bear little resemblance to the population as a whole. The confidence interval, d, is the amount of acceptable deviation from the true population value, stated as a percentage. Note that the confidence interval is specified as half of the total variation, which is assumed to be symmetric (
[image: image9.wmf]%

p

±

).

The first part of the sample, with n1 data values, supplies an estimate of the variance of the population. Confidence in the population statistic based only on the first part of the sample can be calculated as
[image: image10.wmf]1

'

1

n

t

d

s

=

.

This formula relates confidence to the sample standard deviation (the square root of variance) and the number of samples.
[image: image11.wmf]1

t

denotes the t-value for n1-1 degrees of freedom and probability
[image: image12.wmf]a

-

1

, and
[image: image13.wmf]s

 is the standard deviation of the n1 samples. If
[image: image14.wmf]'

d

is less than d then n1 was a sufficiently large sample size for this population and no further sampling is required. If, however,
[image: image15.wmf]d

d

>

'

, then at least

[image: image16.wmf]1

2

2

2

2

1

n

d

t

n

-

=

s

additional samples must be taken. If the population variance changes over time, as it does for HPC performance measurements, then the time between samples n1 and n2 must be sufficiently small to assure that no fundamental changes in the underlying processes occur.

The advantage of Stein’s method is that the estimate of population variance is made at the time the sample is taken, and so only the number of samples needed at that time need be collected. This means that as variance in repeated measurements changes over time the collection process can adapt, minimizing costs (in terms of benchmark executions) while maintaining a fixed level of quality.

4 Experiments

This section presents the results of applying Stein’s method for collecting reliable performance data from three matrix multiplication algorithms. These algorithms were measured on a CRAY T3E and an IBM SP over a three-month period.

4.1 Benchmark application

As discussed earlier, the benchmark application performs distributed matrix multiplication using PLAPACK. The matrix multiplication is implemented in PLAPACK as an adaptive algorithm with three variants. These variants are constructed to maximize performance according to the shape of the operands:

· both matrices square (variant 1)

· one matrix square, one tall and thin (variant 2)

· one matrix short and wide, one matrix square (variant 3)

Details of the algorithms and their formulation may be found in (Gunnels, et al. 1998).
The performance of three different matrix sizes was measured for each algorithm variant. Two matrices each of size
[image: image17.wmf]128

128

´

,
[image: image18.wmf]512

512

´

, or
[image: image19.wmf]1024

1024

´

 elements per processor were multiplied on 16 processors. In the text that follows the sizes are referred to adjectivally as small, medium, and large problems, respectively. The processors were organized in a
[image: image20.wmf]4

4

´

virtual topology (Alpatov, et al. 1997)(van de Geijn 1997)(Message Passing Interface Forum 1994). Since the matrix sizes are per processor, the size of the large problem on sixteen processors is
[image: image21.wmf])

1024

4

(

)

1024

4

(

×

´

×

 elements per matrix. The matrices were initialized with double precision uniformly distributed random values in the open interval (0.0, 1.0).

4.2 Measurement process

Two HPC machines were used for this study: a 544-node CRAY T3E and a 125-node IBM SP. Table 2 to Table 5 in Appendix A summarize the configuration of these machines when the measurements were taken.

The benchmarks were organized in sessions, with sessions repeated several times a day over several weeks. Each session consists of 25 performance measurements for each algorithm on each problem size. Performance is reported MFLOPS per processor, and is computed as
[image: image22.wmf]6

3

10

)

(

2

×

×

×

×

=

time

nCpus

size

nCpus

MFLOPS

: size equals 128, 512, or 1024, nCpus equals 16, and time is expressed in seconds. The longest time reported by any processor for each multiplication is used to compute performance. The matrices are square with powers of two elements and uniform blocking, so there is no load imbalance. The application has each of the three multiplication algorithms in a loop; a single loop iteration uses each algorithm in turn for a single problem size. Each loop is repeated 25 times in a single execution. Jobs were executed using the batch system on each machine, and each job used processors from the production pool in normal competition with other user tasks.

Studying performance variation between the measurements in a single session provides an indication of short-term performance variability. To measure the medium-term variance, sessions were repeated four times each day according to the scheme in Table 1. Each session starts at a time based on random perturbations of fixed “seed” times for each day. Execution times were staged this way to ensure that benchmarks were run close together but not at the same time each day, avoiding biases from recurring system processes. The benchmarks were also repeated in different weeks to evaluate longer-term performance variability. Thus, the benchmarking schedule in Table 1 was repeated for the ten workdays in the two weeks spanning the end of August and the beginning of September, and in the first two weeks of October.

Table 1 Benchmark times.

Times (24-hour clock)

Day
Session 1
Session 2
Session 3
Session 4

Monday
1142
1226
1345
1413

Tuesday
1144
1218
1340
1415

Wednesday
1115
1211
1330
1430

Thursday
1152
1248
1359
1403

Friday
1131
1225
1309
1442

The timing of the benchmark sessions was accomplished using the “run no earlier than” feature of the batch schedulers. Although these jobs could usually run close to the scheduled time (within minutes), this is by no means guaranteed. There were a few sessions delayed by significant amounts of time due to system load. Overall, however, this was not a problem.

4.2.1 Collected Data

Analyzing the variance of each algorithm for fixed problem sizes reveals that the algorithms have roughly the same variances (although the absolute performance of algorithms two and three are lower than algorithm one). Because we are primarily interested in variance, only the results from one algorithm (V1) are shown in this section to conserve space, though all results are used in the analysis that follows. Figure 5 and Figure 6 plot the performance of algorithm one (V1) over the sampling period for all three problem sizes. The data are presented in the same format used for Figure 1; as before, T3E performance is summarized by the highest line in the figures. Missing data for the SP in these figures corresponds to sessions that were not completed due to heavy system demand or to system problems. The original measurement plan sampled each algorithm twenty-five times for each problem, but Figure 1 reports the results of only twenty-four of these. For the small and medium problems the first measurement was uniformly low and so was eliminated from consideration in all cases.

While the variance between algorithms for the same problem size is similar, the variance between problem sizes is different. On the T3E the problem sizes are ranked by increasing variance in the order large, medium, and small; the same ranking on the SP leads to the ordering large, small, and medium. In each case, variances for the small and medium problems are closer to each other than to the variance of the large problem.

Analysis of the data show that the performance measurements are generally normally distributed in both cases, though this trend is stronger on the T3E than the SP. 95% of the T3E benchmark sessions pass the Kolmogorov-Smirnov one-sample test for normality at 95% confidence; 65% of the SP benchmark sessions meet the same criteria.

[image: image23.png]
Figure 5 Performance (MFLOPS) for algorithm variant 1, IBM SP and CRAY T3E (highest performer), August and September.

[image: image24.png]
Figure 6 Performance (MFLOPS) for algorithm variant 1, IBM SP and CRAY T3E (highest performer), October.

4.3 Effectiveness of Stein’s Method

These data were used to study the effectiveness of Stein’s method for robust performance estimation. We have chosen to estimate algorithm performance based on the median rather than the mean. The median is more robust in the presence of outliers than the mean. Although Stein’s method was developed for estimating the mean, experiments with these data show it is also effective when the median is the population statistic. The data quality goal for this experiment is to determine performance within 95% of the actual median of the benchmark session at least 97% of the time.

To expand the amount of data available for the evaluation, the order of performance values from each sample session were randomly permuted one hundred times. This expands the amount of data available for the evaluation. The permutation is valid because no patterns are present in the performance values observed within each session (following removal of the first sample point, as discussed above). This permutation leads to the creation of 5000 benchmark sessions for the SP and 6800 sessions for the T3E.

After permutation, the expanded number of sessions was sampled using Stein’s method. The effectiveness of this method is assessed by comparing the sample median to the median computed using all samples from the session, the “true” median in this case. The true median is also compared to the median calculated by uniformly sampling the first m members of each permuted population. This approximates the uniform sampling approach often employed in benchmarking production HPC systems.

On the SP, Stein’s method meets the quality goal by taking an average of 6.9 samples (n1+n2) over the database of all algorithms and problem sizes. The uniform sampling method requires m=9 samples to reach this level of quality on the same database. Thus, Stein’s method costs 2 iterations less on average, saving roughly 100,000 benchmark iterations over the entire sample population. When the uniform method is used with m=7, the average cost of Stein’s method on this database, it meets the quality goal 95% of the time, and with m=n1=3, only 92% of the time.

As discussed earlier there are differences in performance variance by problem size. This suggests it might be interesting to study the performance of Stein’s method on each problem size individually, rather than just in aggregate. The medium and large problems are the worst and best cases, respectively. Stein’s method meets the quality goal for the medium problem on the SP in an average of 6.9 samples; the uniform method requires 14 samples. However for the large problem, the average cost of Stein’s method is 4.6 samples; the uniform method meets the quality goal with m=3. Stein’s method has a higher average cost in this case than the uniform method in the face of lower variance, relative to quality goals. This reveals that the method is slightly pessimistic. If quality goals are raised to 98% accuracy 97% of the time, however, Stein’s method has a lower average cost at 7.7 samples compared to 10 for the uniform method.

On the T3E, Stein’s method leads to performance estimates that meet the quality target with an average cost of 2.85 samples (n1+n2) over the database of all algorithms and problem sizes. The uniform sampling method requires fewer samples, m=2, to reach the same level of quality. Once again the average cost is higher than the uniform method for the same level of quality in a relatively low variance environment. As noted for the SP the advantage of the uniform method can depend on how stringent the quality goals are relative to the variance in repeated measurements. However, on the T3E these quality goals have to be raised to unrealistic levels (greater than 99% accuracy 99% of the time) before Stein’s method has a cost advantage.

The quality goals for these experiments allow performance estimates to be wrong by 2.5% either way in 97% of the benchmark sessions, and wrong by an arbitrary amount in the remaining 3% of sessions. Is there a pattern is these errors – are these errors consistently too high or too low? Consistency in the sign of errors from a predictive process is called bias. Bias can be measured by computing the mean of all deviations of performance estimates from the actual performance for each session. A method with no bias has a random distribution of the sign of errors, and so will have zero average deviation. On the SP, Stein’s method has a positive bias of .3 MFLOPS, and the uniform approach has a bias of 1.2 MFLOPS. On the T3E the mean deviation in both cases is roughly 0.02 MFLOPS. None of these biases is considered substantial –all are less than .3% of the median performance on both machines.

Stein’s method does not always meet quality goals with the lowest possible average cost. When repeated measurements have low variance, uniform sampling can achieve the same quality with lower cost in some cases. As seen in these results, however, the cost difference is not necessarily high, and Stein’s method does confer several advantages not possible with uniform sampling. In order to use uniform sampling, the user must determine that the machine and application being measured have a “sufficiently low” variance. This requires experimentation before the benchmarking process can even begin. Also, the level of variance that qualifies as “sufficiently low” depends upon the quality goals of the user. This was shown earlier for the large problem on the SP. Thus, if one is using uniform sampling and the quality goals change, more experiments will be required to re-determine the number of samples. Stein’s method does not require any experiments to bootstrap the benchmarking process, and can adapt to changing quality goals automatically. Perhaps more importantly, Stein’s method can automatically adapt if the variance of the machine or application being measured changes during the measurement process. Variance can change due to modifications in the characteristics of the problem or the machine (either from changes in load or changes to the operating environment resulting from software upgrades). With uniform sampling the user is required to periodically re-assess whether the number of samples being taken was still sufficient to meet quality goals. This would be required at least every time the characteristics of the machine or problem changed. Finally, Stein’s method produces performance measurements of known quality as part the benchmark process. With uniform sampling, analysis after the benchmark is complete is required to test for data quality. If quality goals are not met it is possible the entire process would need to be repeated.

Stein’s method is a general solution to the problem of reliable performance estimation. As with most general solutions, it is not optimal in every case – it is possible to find instances in which a specific solution is less expensive on a given problem. The advantage of general solutions is that they are more efficient over the long term if one has to solve many problems in many environments. Specific solutions are often only optimal if the global costs of development are not considered. We have proposed using Stein’s method to generate reliable performance databases for use in training switching functions for adaptive algorithms. These databases require performance data for each algorithm in the adaptive algorithm over a wide range of problem characteristics, and new switching functions will need to be developed for each new platform. In order to manage the costs of taking this many measurements the process of building these databases must be as automatic as possible. This requires generality, and Stein’s method appears to be one reasonable solution.

5 Summary

Variability in repeated performance measurements reduces the reliability of the performance data used by adaptive algorithms for making algorithm selection decisions. This, in turn, reduces the accuracy of switching functions and the potential practical value of adaptive algorithms. Thus it is important to ensure that performance data are accurate and reliable. Stein’s method provides one technique for achieving this by dynamically determining the number of times a measurement must be repeated before the aggregate performance estimate meets the quality goals. The procedure is general in that it can be applied to different algorithms, machines, and problem characteristics without modification, adapting automatically to the changing needs of the measurement environment in order to preserve data quality. Repeated application of Stein’s method can be used to manage variance on several time scales.

Although Stein’s method was developed for estimating the mean of normal data, the results of this project indicate that the method remains accurate when estimating the median of the approximately normal performance data studied in this project. This may be not true in every case, however, and so caution is recommended when applying these results. Of particular concern is the degree to which the data fit a normal distribution. More research is needed on this topic.

One aspect of the sampling process that was not automated in this project is the selection of n1, the initial sample size. If n1 is too large the quality goals will be met without requiring further measurements (i.e., n2=0), but at a higher cost – in terms of benchmark iterations – than necessary. This was avoided in this project by adjusting n1 coarsely based upon the machine being measured – higher for the SP, lower for the T3E. An attempt was made to adapt n1 automatically over time, based on the final sample size required in each benchmark session to meet quality goals. This worked well at reducing n1 on the T3E, but it did not work well on the SP. The concept is interesting, however, and further investigation is warranted.

6 Acknowledgements

I would like to thank Dr. Louis H. Turcotte and Prof. Geoffrey C. Fox for their generous investments of time, effort, and imagination during the course of this work. Their comments during reviews have been invaluable. I would also like to thank Dr. Anthony Skjellum for early conversations that helped shape the general direction of this research.

The research and the resulting data presented herein, unless otherwise noted were obtained from research conducted under the Military Research Development Test and Evaluation (RDT&E) Program of the United States Army Engineer Research and Development Center (ERDC), Vicksburg, MS. Permission is granted by the Chief of Engineers for publication of this paper. This work was supported in part by a grant of HPC time from the DoD HPC Modernization Program and the ERDC Major Shared Resource Center.

7 References

Alpatov, P., G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, and R. van de Geijn. "PLAPACK: Parallel Linear Algebra Package." Proceedings of the SIAM Parallel Processing Conference, 1997.

Bilmes, J., K. Asanovic, C. W. Chin, and J. Demmel. "Optimizing Matrix Multiply Using PHiPAC: a Portable, High-Performance, ANSI C Coding Methodology." Proceedings of the International Conference on Supercomputing, Vienna, Austria, ACM SIGARC. July 1997.

Blackford, L. S., and R. C. Whaley. ScaLAPACK Evaluation and Performance at the DoD MSRCs, DOD CEWES Major Shared Resource Center, 1998. PET Technical Report 98-33.

Brewer, E. A. "High-Level Optimization Via Automated Statistical Modeling." Proceedings of Principles and Practice of Parallel Programming, 1995. Pages 80-91.

Cochran, Willam G. Sampling Techniques. New York: John Wiley and Sons, 1953.

Demmel, J. Trading Off Parallelism and Numerical Stability, University of Tennessee, 1992. Technical Report UT-CS-92-179; LAPACK Working Note 52.

Dongarra, J., and D. Walker. "Software Libraries for Linear Algebra Computations on High Performance Computers." SIAM Review 37, 2 (June 1995): 151-180.

Dongarra, J., Du Croz, J., S. Hammarling, and R. Hanson. "A Set of Level 3 Basic Linear Algebra Subprograms." Transactions on Mathematical Software 16, 1 (1990): 1-16.

Gunnels, J., C. Lin, G. Morrow, and R. van de Geijn. "Analysis of a Class of Parallel Matrix Multiplication Algorithms." Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing (1998 IPPS/SPDP '98), 1998. Pages 110-116.

Mace, Arthur E. Sample-Size Determination. New York: Reinhold Publishing Corporation, 1964.

Mason, Robert L., Gunst, Richard F., Hess, James L. Statistical Design and Analysis of Experiments. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley and Sons, 1989.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Computer Science Department, University of Tennessee, Knoxville, TN, May 5, 1994. Technical Report CS-94-230. Also appears in the International Journal of Supercomputing Applications, Volume 8, Number 3/4, 1994.

Rice, J. R. "On the Construction of Poly-Algorithms for Automatic Numerical Analysis." In Interactive Systems for Experimental Applied Mathematics, M. Klerer and J. Reinfelds. 301-313. Academic Press, 1968.

Li, J., A. Skjellum, and R. Falgout. "A Poly-Algorithm for Parallel Dense Matrix Multiplication on Two-Dimensional Process Grid Topologies." Concurrency: Practice and Experience 9, 5 (1997).

Stein, C. "A Two-Sample Test for a Linear Hypothesis Whose Power is Independent of the Variance." Annals of Mathematical Statistics 16 (1945): 243-258.

van de Geijn, R. Using PLAPACK. MIT Press, 1997.

Whaley, R. C., and J. Dongarra. "Automatically Tuned Linear Algebra Software." Proccedings of Supercomputing '98, Orlando, FL, IEEE Computer Society Press. November 7-13, 1998.

Williams, Bill. A Sampler on Sampling. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley and Sons, 1978.

Appendix A

Table 2 CRAY T3E hardware configuration.

Machine
CRAY T3E

Processors
544 DEC Alpha 21164 CPUs
(520 compute)

600 MHz

Memory
256 MB/node

Table 3 CRAY T3E software configuration.

Software
Version

Operating System
UNICOS/mk 2.0.3.18

IMSL
3.0

CRAYlibs
3.1.0.2

NQS
3.3.0.5

MPT
1.2.1.3

PLAPACK
1.2

Compilers

C
6.1.0.2

FORTRAN
3.1.0.3

Table 4 IBM SP hardware configuration.

Machine
IBM SP

Processors
125 P2SC CPUs
(122 compute)

135 MHz

Memory
512 MB/node

Table 5 IBM SP software configuration.

Software
Version

Operating System
AIX 4.3.2.x

ESSL
3.1.0.0

Parallel ESSL
2.1.0.0

PBS
CM 1.1.x

POE
2.3.0.9

PLAPACK
1.2

Compilers

C
3.1.4

FORTRAN
5.1.1

� Adaptive algorithms are also sometimes referred to as polyalgorithms (Rice, 1968) or poly-algorithms (Li, et al. 1997).

� Much of sampling theory is derived for normal populations.

� This assumption appears valid in performance evaluation where the population – all possible measurements of performance – is assumed infinite.

�PAGE \# "'Page: '#'�'" ��Properly summarize the paper without being too vague.

�PAGE \# "'Page: '#'�'" ��Sets up the problem and outlines the paper.

�PAGE \# "'Page: '#'�'" ��Paragraph describes general topic area and sets stage for the research.

�PAGE \# "'Page: '#'�'" ��This is basically my thesis statement.

�PAGE \# "'Page: '#'�'" ��Paragraph describes the topic area for this research.

�PAGE \# "'Page: '#'�'" ��These sentences detail the sub topic area and specific focus of this research.

�PAGE \# "'Page: '#'�'" ��The punch line; what progress has been made (and should I read the paper further?).

�PAGE \# "'Page: '#'�'" ��The solutions section expands upon the current practice and proposed solution introduced in the introduction, but with much more detail.

�PAGE \# "'Page: '#'�'" ��For example, the HPC Top 500 list assembled by the University of Tennessee and Mannheim University is compiled based on dedicated LINPACK results (UT 1999); (D'Azevedo, et al. 1997) (Karavanic, et al. 1999) (Wong, et al. 1999) among many other references, also report performance on dedicated computers.

�PAGE \# "'Page: '#'�'" ��For example, Skjellum reports the average of eight measurements (Li, et al. 1997), while XX reports the average of N and YY reports the median of M measurements.

�PAGE \# "'Page: '#'�'" ��Citations here should be recent journal quality citations to make a strong case.

�PAGE \# "'Page: '#'�'" ��Relates current work to contemporary research in the field.

�PAGE \# "'Page: '#'�'" ��Bridge to the next section.

_1000991079.unknown

_1000991533.unknown

_1000991614.unknown

_1005818823.unknown

_1005568129.unknown

_1000991545.unknown

_1000991241.unknown

_1000991338.unknown

_1000991301.unknown

_1000991152.unknown

_1000989567.unknown

_1000989610.unknown

_1000991039.unknown

_1000988159.unknown

_1000988229.unknown

_1000989430.unknown

_1000988173.unknown

_1000988119.unknown

_1000988011.unknown

