
The Center for Research on Parallel Computation

Perspective on Parallel Computing

1 Introduction

Section Editor: Foster

1.1 CRPC and the National Scene (10 pages)

Author: Kennedy

This chapter will provide a historical perspective on the background for the book, discussing the political
and technical themes that pervaded the parallel computing community during the period of the CRPC's
lifetime.

At the time of the founding of the CRPC, parallel computing was dominated by the bus-based multi-
processors, although a few pioneering projects, such as the Caltech e�ort to build and program hypercubes,
had begun to experiment with more scalable designs.

In the �rst few years of the CRPC, distributed-memory computing paradigms dominated the discourse on
parallel computing. Among the machines of this era were the hypercubes from Intel and the TMC CM-2 and
CM-5. The hallmark of this era was the struggle to develop a programming paradigm and methodology for
easy-to-use portable programming. Most of these systems employed manufacturer-speci�c message passing
libraries for programming. An important contribution of the CRPC was the launching of the MPI forum to
standardize message passing for such machines. This built on work at Caltech and on PVM, the �rst defacto
standard for portable message passing.

In parallel with the development of programming models was the e�ort to develop suitable scalable
algorithms for all areas of scienti�c and engineering programming. CRPC's algorithmic endeavors were
classi�ed in three groups: linear algebra, numerical optimization, and simulation. This chapter will provide
an overview of the CRPC-related e�orts.

A third major thrust area was the development and standardization of high-level programming interfaces
for scalable machines. Among these were HPF, Concurrent C++, HPC++, and OpenMP. De�nition and
implementation of such languages, along with the development of tools to support them, became an important
part of the CRPC e�ort.

As the CRPC matured, new computing paradigms began to emerge, which gave rise to new research
challenges: hardware DSM systems such as the SGI Origin and HP/Convex Exemplar, clusters of symmetric
multiprocessors, and distributed heterogeneous collections of processors. In addition, the incorporation of
secondary storage into the memory hierarchy has become a major concern.

In retrospect, it is clear that parallel computation is a rich and diverse area, �lled with many complexities.
The CRPC has made a number of contributions to programming models and algorithms for application
development in the �eld and its work has been supplemented by extensive work by the entire community.
However, as the computing platforms become more complex, much more work on software for such systems
will be needed.

2 Overview

Section Editor: Foster

2.1 The Future of High-end Computing Applications (10 pages)

Author: White

Societal-scale Applications. Today, computers have taken over some very small fraction of our decision-
making responsibility and assist us in more|anti-lock brakes, whether to wear a raincoat or sun block to
work, information access on the Web, and
y-by-wire in aircraft are some common examples. Even so, the
scope of the decisions in which computer simulation plays a dominant role remains fairly limited.

1

However, as society's infrastructures have grown increasingly complex, interdependent and fragile, the
need for better informed, more accurate and timely decisions has grown correspondingly critical. The plight in
which we �nd ourselves is succinctly stated in the following excerpt from The Political Limits to Forecasting,

\. . . it is clear that decision aptitudes are sharply challenged. The range of alternatives is greater.
The underlying technical facts are more di�cult to comprehend because of their sophistication
and specialised jargon, and the consequences of error are more lethal and irreversible. Decision-
makers are perplexed by new levels of complexity and hyper-interdependence in our society,
accompanied by uncertainty, a heightened pace of social change, and discontinuities in utility of
past experience."

The last phrase is the most telling|decisions based on rules-of-thumb responses honed over years of trial and
error are becoming less and less likely to yield acceptable solutions. The ability to reliably project alternative
courses of action (e.g. global climate scenarios, war �ghting strategies, electrical power deregulation policies)
into the future in order to assess the impacts and consequences of each course of action may be a key to our
prosperity, even survival, in the next millennium.

The problems we face a�ect lives, security, and well being at, potentially, every level of society. Further,
the application of computing technology to the solution of these problems demands predictive modeling and
simulation at a �delity, scale, and tempo that are far beyond our current technological ability. Applications
discussed in this chapter will include:

Global environmental security: global climate prediction, with down scaling to regional scale (e.g. agri-
cultural production in mid-west), basin scale (e.g. water resources in the Southwest), and local scale (e.g.
natural hazards such as wild�re and
oods).

Emerging and re-emerging diseases: management of natural or man-made biological threats. These applica-
tions connect global epidemiology to molecular biology.

Infrastructure planning and investment: transportation, energy, health care, and telecommunications are
the basic infrastructures upon which society rests. The framework for these applications takes the form of
networks or graphs rather than the discretization of continuous phenomena.

Crisis management: training, planning, and response: wild�re, earthquakes,
oods, severe weather, volca-
noes, etc. provide a special challenge for modeling and simulation because of the time urgency and real-time
surveillance requirements.

Attacking problems at the societal level places additional requirements on the technology as well as the
fundamental theory upon which these simulations are based. Robust threat identi�cation (e.g. wild�re,
infectious disease) will require not only peta(
)ops computing, but also commensurate surveillance and I/O
capabilities. Real-time applications will require extraordinary RAS compared to today's scienti�c computing
systems. Quanti�cation of the uncertainty inherent in these simulations will be of paramount importance,
as these simulations may very well be used in life and death situations. Finally, we must understand the
decision-making process and embed these tools within it. That is, we must provide the end user, the decision-
maker, with information they require and trust, in a format, context, time-scale, and location that they can
use in support of their activities.

2.2 Parallel Architectures (20 pages)

Author: Stevens

1. Parallel Computer Architectures

(a) Overview and Motivation

2. Perennial Concerns for Obtaining High-Performance

(a) CPU speed

(b) Memory Bandwidth and Latency

2

(c) Degrees of Parallelism

(d) I/O Bandwidth and Latency

(e) Storage Capacity and Performance

3. Underlying Drivers

(a) Market Demand for PCs and High-end Systems

(b) Semiconductor Industry Roadmaps

(c) Changing Nature of the Dominant Commodity Applications

4. Computer Architecture Survey

(a) Primary Architectural Developments (1990-2000)

i. Microprocessor Developments

ii. Interconnect Developments

iii. Memory System Developments

iv. Overall Systems Organization

v. System Overviews

A. Intel Delta/Paragon

B. CM-2/CM-5

C. IBM SP Family

D. Cray T3D/E

E. SGI Origin2000

F. HP Exemplar

G. SMPs from Various Vendors

H. ASCI Systems

(b) Trends in Architecture (2000-2010)

i. Processors

ii. Networks

iii. Storage Devices

iv. Systems Organization

v. PetaFLOPS Studies

5. Impact of Commodity Technologies

(a) Distributed and Network Based Systems

(b) Beowulf Clusters

(c) Portable and Embedded Systems

6. Exotic Technologies and New Directions

(a) Intelligent RAM

(b) Recon�gurable Logic

(c) Superconducting Logic

(d) Quantum Computing

(e) Biological Computing

7. Conclusions

8. References

3

2.3 Computing Technologies (10 pages)

Authors: Foster, Kennedy

This chapter will provide an overview of the computing technologies for parallel systems that will be discussed
later in the book. These technologies fall generally into two categories: system software including compilers,
and parallel numerical algorithms.

In the software section are included base technologies, such as message passing libraries, run-time libraries
for parallel computing such as class libraries for HPC++, languages like HPF and HPC++, tools such as
Pablo, high-level programming systems, and problem-solving environments.

Scalable parallel algorithmic research is classi�ed in three groups: linear algebra, numerical optimization,
and simulation. This section will provide an overview of these e�orts in the CRPC.

Finally, the section will review advanced technologies for new computing paradigms such as DSM, clusters,
and distributed heterogeneous grids.

2.4 Numerical Algorithms and Libraries (10 pages)

Authors: Dongarra, Sorensen

Traditional Libraries. The ultimate development of fullymature parallel scalable libraries will necessarily
depend on breakthroughs in many other supporting technologies. Development of scalable libraries cannot
wait, however, until all of the enabling technologies are in place. The reason is twofold: (1) the need
for such libraries for existing and near-term parallel architectures is immediate, and (2) progress in all
of the supporting technologies will be critically dependent on feedback from concurrent e�orts in library
development.

The linear algebra community has long recognized that we needed something to help us in developing
our algorithms into software libraries. Several years ago, as a community e�ort, we put together a de facto

standard for identifying basic operations required in our algorithms and software. Our hope was that the
standard would be implemented on the machines by many manufacturers and that we would then be able to
draw on the power of having that implementation in a portable way. We began with those BLAS operations
designed for basic matrix computations. Since, on a parallel system, message passing is critical, we have
been involved with the development of message passing standards. Both PVM and MPI have helped in the
establishment of standards and the promotion of portable software that is critical for software library work.

User Interfaces. As computer architectures and programming paradigms become increasingly complex,
it becomes desirable to hide this complexity as much as possible from the end user. The traditional user
interface for large, general-purpose mathematical and scienti�c libraries is to have users write their own
programs (usually in Fortran) that call on library routines to solve speci�c subproblems that arise during
the course of the computation. When extended to run on parallel architectures, this approach has only
a limited ability to hide the underlying architectural and programming complexity from the user. As we
extend the conventional notion of mathematical and scienti�c libraries to scalable architectures, we must
rethink the conventional concept of user interface and devise alternate approaches that are capable of hiding
architectural, algorithmic, and data complexity from users.

One possible approach is that of a \problem solving environment," typi�ed by current packages like MAT-
LAB, which would provide an interactive, graphical interface for specifying and solving scienti�c problems,
with both algorithms and data structures hidden from the user because the package itself is responsible for
storing and retrieving the problem data in an e�cient distributed manner. Such an approach seems especially
appropriate in keeping with the trend toward graphical workstations as the primary user access to comput-
ing facilities, together with networks of computational resources that include various parallel computers and
conventional supercomputers. The ultimate hope would be to provide seamless access to such computational
engines that would be invoked selectively for di�erent parts of the user's computation according to whichever
machine is most appropriate for a particular subproblem. We envision at least two interfaces for a library
in linear algebra. One would be along conventional lines (LAPACK-style) for immediate use in conventional
programs that are being ported to novel machines, and the other would be in the form of a problem solving
environment (MATLAB-style). The two proposed interface styles are not inconsistent or incompatible: the
problem solving environment can be built on top of software that is based on a more conventional interface.

4

Heterogeneous Networking. Current trends in parallel architectures, high-speed networks, and personal
workstations suggest that the computational environment of the future for working scientists will require
the seamless integration of heterogeneous systems into a coherent problem-solving environment. Graphical
workstations will provide the standard user interface, with a variety of computational engines and data
storage devices distributed across a network. The diversity of parallel architectures means that inevitably
di�erent computational tasks will be more e�cient on some than on others, with no single architecture
uniformly superior. Thus, we expect the \problem-solving environment" envisioned above eventually to
migrate to a heterogeneous network of workstations, �le servers, and parallel computation servers. The
various computational tasks required to solve a given problem would automatically and transparently be
targeted to the most appropriate computational engine on the network. System resources would be shared
amongmany users, but in a somewhat di�erent manner than conventional timesharing computer systems. We
have already made important �rst steps toward achieving these goals with systems like PVM and MPI, which
supply the low-level services necessary to coordinate the use of multiple workstations and other computers
for individual jobs. These systems could serve as the foundation for a complete problem-solving environment
of the type we envision.

Network computing techniques such as NetSolve o�er the ability to look for computational resources on
a network for a submitted problem (which can be a single LAPACK, ScaLAPACK, or Matlab function call),
choose the best one available, solve the problem (with retry for fault tolerance), and return the answer to
the user. This system is available for Fortran, C, and Matlab users.

Software Tools and Standards. An ambitious development e�ort in scalable libraries will require a
great deal of supporting infrastructure. Moreover, the portability of any library is critically dependent on
adherence to standards. In the case of software for parallel architectures, precious few standards exist, so
new standards must evolve along with the research and development. A particularly important area for
scalable distributed-memory architectures is internode communication. The BLAS have proven to be very
e�ective in assisting portable, e�cient software for sequential computers and some of the current class of
high-performance computers. We are investigating the possibility of expanding the set of standards that have
been developed. There is a need for a light-weight interface to much of the functionality of traditional BLAS.
In addition, iterative and sparse direct methods require functionality not in traditional BLAS. Numerical
methods for dense matrices on parallel computers require high e�ciency kernels that provide functionality
similar to that in traditional BLAS on sequential machines.

Software tools are also of great importance, both for developers to use in designing and tuning the library
software, and for end-users to monitor the e�ciency of their applications.

Conclusions.

1. In spite of a lack of enabling technologies, library development cannot wait for research in programming
languages, compilers, software tools, and other areas to mature, but must be done in conjunction with
work in these areas. The the time to begin is now.

2. The user{library interface needs rethinking. It is not clear that the conventional library interface will
be adequate to hide the underlying complexity from the user.

3. Object-oriented programming will be required to develop portable libraries that allow the user to work
at an appropriate conceptual level.

4. Work on algorithms, particularly linear algebra, is important and cannot be isolated from general
library development.

5. Language standards are important. The lack of language standards is the most signi�cant obstacle to
the development of communication libraries. A language standard must emerge before a software tool
\development sweep" can begin.

These are some of the major research issues in developing scalable parallel libraries.

5

3 Applications

Section Editor: Fox

This section of the book contains 5 chapters. Chapter 1 is a general discussion; The second chapter is a
set of about 20 short case studies and chapters 3 to 5 are each long case studies. One goal is that a reader
should be able to take their favorite application and �nd a \near-match" somewhere in the �ve chapters,
and that will help them to start parallel computing.

3.1 General Application Issues (20 Pages)

Author: Fox

The �rst application chapter contains an introduction to the other four chapters followed by a discussion of
general strategies that have been found helpful in parallelizing applications. We will describe an application
as a general set of linked entities (a.k.a. a complex system) and initially contrast arti�cial systems such as
�nancial instruments with physical simulations. In the latter case, we contrast microscopic or macroscopic
entities and discuss how the di�erent states of matter (�elds, classical particle, or quantum mechanical)
lead to di�erent numerical challenges. We note that some characteristics, such as multiple physical scales
and phase transitions, are pervasive. We describe broad issues in applications and algorithms including
partial di�erential equations, particle dynamics, circuits, ordinary di�erential equations, Monte Carlo, do-
main decomposition, pleasingly parallel, metaproblems, heuristic algorithms, data analysis, preconditioning,
synchronous, loosely synchronous, regular, and irregular. We will add to this list and organize it. We discuss
di�erences between illustrative and real applications by contrasting Laplace's equation with Navier Stokes
and complex physics in climate simulations. We will discuss typical problem sizes and why tera- and peta-
(
)op machines are relevant. Typical issues governing performance are discussed. We will philosophize as
to whether computational science is a science or an art by illustrating how much experimentation is needed
to �nd reliable numerical methods and how di�erent approaches are in seemingly similar Application areas.
These general remarks should tie to the discussion in following four chapters which will be summarized in a
suitable set of tables. Note that the discussion of basic numerical methods (PDE, ODE, Monte Carlo etc.)
could go to x 5.

3.2 List of Application Overviews: (about 1.5 to 2 pages each { Total about 40 pages)

Author: Fox

1. Black holes (Matzner, Fox) - start

2. Astrophysics (Salmon) - start

3. Earthquakes (Rundle, Fox) - start

4. Climate - (LANL - White, Malone) - start

5. Computational Chemistry - (Kuppermann, Goddard, McKoy, PNL) - start

6. QCD (Fox, Rajan, Ceperley) - start

7. Accelerators (LANL - Ryne)

8. Plasma Physics (Reynders) - start

9. MDO (Fox)

10. Financial modeling (Fox)

11. Weather (CAPS, NASA)

12. Computational Biology (Keck Center, Rice) - start

13. Astronomy (Prince)

6

14. Scheduling (Bixby) - start

15. Materials (Holian, Lomdahl, Goddard)

16. Combustion (Butler, LANL - Colella)

17. Networks (LANL)

18. Structural, solid mechanics (DOD, Ortiz)

19. Forces modeling (Fox, CACR)

20. CFD (Meiron, Keller) - start

21. Energy and environment (Wheeler) - start

22. Computational Electromagnetics (DoD Modernization)

23. Signal Processing (DoD Modernization)

24. Electrical Transmission Lines (Fox)

Designation as \start" implies that one starts with this subset to give exemplars that can be used to show
others how to represent their �eld. Note that some of those areas are quite broad and could generate
several distinct summaries. For instance, \Computational Chemistry" could generate separate overviews
corresponding to applications typi�ed by Charmm, Gaussian, and Mopack.

Template for each application overview:

1. Application overview and summary|�eld discussion

2. Focused case study|what was parallelized, technology discussion and results

3. References and resources

4. Computational issues including algorithms, software, and comments on performance needs and hard-
ware dependencies

5. What has been done and what needs to be done

3.3 Parallel Computing in CFD (20 pages)

Authors: Meiron, Keller

The basic equations of
uid mechanics are presented. A brief overview is provided of some of the common
physical regimes described by these equations (e.g. steady vs. unsteady
ow, compressible vs. incompressible

ow, inviscid vs. viscous
ow) and the associated dimensionless parameters associated with these physical
regimes (e.g. Reynolds number, Mach number, etc.). The need to utilize high performance computation to
solve these equations in many cases of interest is motivated via some examples of applications.

The particular computational di�culties associated with incompressible viscous and inviscid CFD are
described and some examples of the application of high performance parallel computation are provided for
very simple geometries. For complex geometries that are of practical interest, special attention is paid to
the application of the spectral element method and its parallel implementation.

A variety of new techniques have been devised and employed to study two speci�c viscous incompressible

ows. The �rst is Taylor-Couette
ow, which has been studied theoretically, computationally, and experi-
mentally for many years; it is the
ow between two rotating coaxial cylinders. The second is Kolmogorov

ow, devised by him to study the onset of turbulence. This is a model
ow in a periodic box with a periodic
body force in one coordinate direction. Our calculations use a three-dimensional box and reveal a huge
variety of bifurcations. We have also been able to compute the spiral
ow observed by Taylor and Coles in
their experiments. In both of these
ows we have been able to employ many of the methods discussed in
the chapter on \Continuation and Bifurcation in Scienti�c Computation" (x 5.5). But, we have also devised

7

computational techniques based on a new theory of Di�erential Algebraic Equations, which is applicable to
the spatially discretized Navier-Stokes equations. We shall describe these methods and indicate how they
were employed with the aid of the Recursive Projection Method. Concurrent computing was fundamental
in being able to solve these huge three-dimensional steady and unsteady
ow problems.

A brief overview is presented of approaches to the numerical simulation of compressible CFD. It is argued
that the need to resolve �ne-scale features such as shock waves makes the use of adaptive mesh re�nement
essential especially in three dimensions. The di�culty of establishing load balancing and scalability for
such calculations is discussed. The chapter concludes with a brief discussion of some future computational
challenges for CFD and an assessment of the computational resources required to overcome these challenges.

3.4 Parallel Computing in Environment and Energy (20 pages)

Author: Wheeler

We describe the relevance of and computational issues found in real-world problems in the environment
and energy �elds. These include simulation of the circulation patterns in bays and estuaries, groundwater
contamination, reservoir management, remediation of polluted soils and aquifers, as well as estimating the
productivity of oil and gas wells diagenesis and related geological processes. These are posed numerically as
large sets of coupled di�erential equations and require parallel computing to be able to achieve results that
are meaningful for either industry or societal applications.

The general approach requires a multicomponent, multiphase
ow and transport simulator. E�cient
results need domain decomposition, whose use on parallel machines is described in detail and compared with
multigrid. Other important algorithmic issues discussed are di�erent time-stepping methods, linear and non-
linear solution techniques, and the need for mixed methods (�nite element and cell-centered �nite di�erence
methods) for di�usive processes and velocity computations. We note that locally adaptive, nonmatching
multiblock logically rectangular grids are able to resolve geologic features such as pinch-outs and faults.

We give results using codes developed as part of the CRPC and other activities. These include UTCHEM
and UTCOMP, which have been e�ciently parallelized from sequential
ood simulation codes developed
at the University of Texas. The Parallel Subsurface Simulator Parssim has been developed in our group
embodying our experience on algorithms and parallel systems.We discuss the parallel speedups associated
with various domain decomposition and multigrid techniques. One needs to carefully address load balancing,
especially for locally intensive computations such as those arising from wells, phase behavior, chemical
reactions, and general geometry.

3.5 Computational Cosmology (20 pages)

Author: Salmon

A very brief review of the problem domain emphasizes the di�erent length scales and relevant physics. Length
scales encompass stars, galaxies, clusters, �laments, sheets, and voids. Observations provide redshifts, ages,
masses, and correlations in position and velocity. The \missing mass" implies a dominant dark matter
component. Theory allows for a density parameter, a cosmological constant and various
avors of dark
matter in addition to \normal" baryonic matter. At the largest scales, Newtonian gravity dominates and
numerical methods that follow gravitating particles are good models of the real Universe. Analytic approaches
are hampered by the nonlinearity, positive feedback and negative heat-capacity of gravitating systems.

Supercomputers have played a signi�cant role for at least the last 30 years in understanding the large scale
structure of the Universe. Computational methods include Poisson solvers, O(N2), and \Fast" (O(NlgN)
and O(N)) methods. Parallel implementations exist for each of these algorithmic approaches. Poisson solvers
can use FFT methods or multi-grid (both of which exist in parallel). O(N2) methods have perhaps the best
parallel e�ciency of any non-trivial parallel application (Tcomm/Tcalc is proportional to P/N). At least
two approaches to Fast methods have been shown to be workable. Orthogonal Recursive Bisection with
explicit assembly of \locally essential" data works when the locally essential data is predictable in advance.
It has di�culty supporting improved sequential algorithms with dynamic \acceptability criteria", however.
A new approach based on space-�lling curves is required. It has the additional bene�t of being \cache
friendly". It also naturally supports both out-of-core and parallel computations, which is important because
one consequence of \Fast"ness is that one tends to run out of memory before one runs out of patience.

8

Computation has allowed us to understand the implications of di�erent scenarios and parameter sets,
including the e�ects of the input power spectrum of
uctuations, the evolution of non-linear clustering and
correlation functions, and the e�ects of the density parameter and the cosmological constant on observational
data. Computations continue to be challenged by ever improving observations, but they are important tools
for understanding and e�ectively rule out many scenarios by demonstrating them to be inconsistent with
observation.

Similar numerical methods (indeed the �rst \Fast" method) apply to potential and scattering problems
for the Poisson, Helmholz, and Maxwell equations. Other application areas include electrostatic interactions
in chemical dynamics, stress-strain interactions in solid mechanics/geophysics and vortex dynamics from
incompressible CFD.

4 Computing Technologies

Section Editor: Kennedy

4.1 Base Technologies (20 pages)

Authors: Kesselman, Foster

This chapter will cover the basic software technologies that are used to support the design and implementation
of parallel programs. We will focus on the middle layer of abstractions that sit between the low-level
mechanisms provided by the underlying parallel hardware, covered in previous chapters, and the high-level
abstractions provided by application-speci�c libraries and tools, which are discussed in the following chapters.

We will conclude with an overview of the technology that is emerging to support the Grid.

Programming Models. This section is an overview of the parallel programming models which the basic
technologies must support. This will include SIMD, SPMD, BSP, pipelines, object parallelism, general task
parallelism, message passing, and shared memory.

Low-Level Tools. This section will discuss low-level infrastructure that has been developed to support
very high performance applications. Focus is on low-latency and high-bandwidth. Tools covered will include
the Reactive Kernal, Active Messages, and Fast Messages. Discussion will also cover one-sided communica-
tion primitives, such as the SHMEM primitives provided on the Cray T3E.

Message Passing. This section provides an overview of message passing libraries, with a focus on PVM
and MPI.

Shared Memory Tools. This section is an overview of support for programming in the shared memory
model. It will cover two main topics: control primitives and memory models.

The discussion of control primitives will consider how threads of control are created and how they interact
with one another. Systems to be covered will include the POSIX threads model, SGI sproc and arenas, and
Nexus.

The memory model discussion will review the various consistency models that have been proposed and
how those models have been supported, with a focus on the distributed shared memory systems.

Task Parallel Systems. This section will cover the infrastructure that has been developed to support
explicitly task parallel applications. Topics covered will include Nexus and parallel object-oriented systems.

Parallel I/O. In this section, we will provide an overview of the various systems that have been proposed
to support input and output in parallel systems. The discussion will provide a historical review and cover
commercial and research systems, including PIOFS, PPIO, Passion, etc. This section will also include a
discussion of HPSS, and MPI-IO.

This section will include a brief discussion of checkpointing libraries, as a special case of parallel I/O.

Resource Management. In this section, we will provide an overview of how resources in parallel systems
have been managed. We will provide a brief overview of queuing systems, and then focus on the use of
space-sharing and time-sharing resource models to parallel machines.

9

Grid Infrastructure. We conclude the chapter with a discussion of emerging Grid technologies, with the
focus on integrating high-performance resources into a distributed environment. Topics covered will include
Globus, CORBA, and Legion.

4.2 Libraries (20 pages)

Authors: Reynders, Gannon

In the chapter on \Numerical Algorithms and Libraries," Dongarra and Sorensen described the challenges
and progress that has been made on scalable, parallel numerical libraries. In this chapter we approach the
design of libraries for parallel, scienti�c computation from a di�erent, but complementary perspective. These
libraries are based on object-oriented and generic programming, and are strongly related to the design of
application-speci�c programming languages.

Object-oriented programming taught us the power of abstraction through encapsulation of data and
function. By learning to organize software in ways that exploit inheritance and polymorphism, we gain in
our ability to maintain and reuse important code. This is because we can separate the interface of an object
from its implementation. It also gives us a more powerful tool for factoring a computation into multiple levels
of functionality. Generic programming takes us in a seemingly di�erent direction. It encourages us to think
about algorithms in a manner that is independent of the data structure we use to represent information.
In scienti�c computing, this concept is re
ected in the numerical templates approach where one is shown
the \generic" design of an algorithm, such as conjugate gradient, in a manner that is independent of the
implementation of the matrices and vectors. It is also re
ected in the work of Chandy on archetypes. But
it was the work of Alexander Stepanov that pioneered the use of generic programming in C++ with the
introduction of the standard template library (STL). And it was the work of Todd Veldhuizen that showed
us how to use the C++ template library to write \template expressions" that could run as fast as optimized
Fortran.

The libraries described here borrow from both object-oriented and generic programming principles and
evolved over the life of the CRPC to be used in a number of applications. POOMA (Parallel Object-Oriented
Methods and Applications) is an object-oriented framework for applications in computational science requir-
ing high-performance parallel computers. It is a library of C++ classes designed to represent common
abstractions in �eld simulation and other applications. POOMA provides a data-parallel programming
model, but it runs on both distributed memory and shared memory multiprocessors through multi-threaded
execution. POOMA hides the details of parallel computation in a
exible \Evaluator" architecture. For the
user, this means that a program can be written in a highly-abstract data-parallel form, tested and debugged
in serial mode, and then run in parallel with very little e�ort.

The other library we describe is called HPC++. HPC++ was originally a programming languages project
funded by DARPA to design a parallel programming extension to C++. However, as the C++ language
evolved with the introduction of templates, it was realized that many of the HPC++ goals could be achieved
by an approach similar to that of POOMA. That is, provide core functionality as generic parallel algorithms
expressed as C++ templates. This included a parallel version of the STL. In addition, HPC++ became
heavily in
uenced by the design of Compositional C++ and Java, so templated class libraries were added
to the language to support CC++ and Java style programming.

In this chapter, we describe the core feature of the POOMA architecture and HPC++ in its current
version, and describe the way in which each are in use today. The chapter concludes with a discussion of the
limitations of this approach and some research problems that must be solved in order to move this approach
to the next level of scalable parallel performance.

4.3 Languages (20 pages)

Authors: Kennedy, Chandy

This chapter will discuss the progress made on languages and compilers for high performance computing
systems during the lifetime of the CRPC, with a special emphasis on work sponsored by the CRPC. The
principal foci of this discussion will be on Fortran and C++, with some discussion of Java and compositional
languages such as PCN and Strand.

10

In the Fortran section, topics will include:

� Automatic Parallelization. Continued progress on the parallelization of plain Fortran applications,
especially for symmetric multiprocessors.

� Data Parallel Languages. This will focus primarily on High Performance Fortran and other distribution-
based languages.

� Task Parallel Languages. This will discuss a number of strategies for representing task parallelism in
Fortran, including pthreads and OpenMP, a derivative of the original PCF Fortran, and a discussion
of Fortran M (Ian Foster).

The discussion will conclude with an assessment of the impact of these models on practice and a discussion
of which models work well in various cases.

In the C++ arena, the principal focus will be on Compositional C++ and HPC++. The latter emphasis
will concentrate on the part of the language e�orts which were not based on libraries (which will be expanded
in x 4.2. The topics will include:

� Concurrent Objects: From C++ to CC++ (Carl Kesselman, from Carl's paper in book)

� Data-Parallel Objects and Extensions: HPC++ (Dennis Gannon)

� Compositional Concurrent Languages (Ian Foster from Ian's ACM paper)

� Java for Distributed Scienti�c Applications: Issues (Geo�rey Fox, Mani Chandy)

The goal of this chapter is to provide a survey of progress with hints to the user that will help in selecting
the right high-level programming model for a given application.

4.4 Programming Environments (20 pages)

Authors: Dongarra, Fox

Parallel computers or more generally distributed resources will be little used if they are not easily accessible
to ordinary users. In this chapter, we examine how the complexities of programming can be reduced through
the use of application-speci�c tools and toolkits comprising what is commonly called a Problem Solving
Environment (PSE). These toolkits enable a programmer to specify their problems at a high level, frequently
using abstractions tailored to a speci�c application domain. The details of mapping this high-level description
onto back end compute resources are left to the application tool. For example, issues of resource discovery
(both hardware and software), problem decomposition, scheduling, application code locate, etc. can all be
managed by the application-speci�c tool without user intervention.

This chapter is divided into three parts. First we describe general issues in PSEs|discussing two types
of activities, building the components from which many di�erent PSEs can be constructed, and using these
components in particular application domains. Then we illustrate these general ideas by two particular
examples, Netsolve and WebFlow, which have been successfully applied in several application areas.

We note that the remote resources harnessed by network-enabled application-speci�c toolkits are just as
likely to be software as hardware. Numerical libraries, software development systems, and problem solving
systems have become increasingly sophisticated. Users normally do not know where these resources are
and, once located, they are tedious to obtain and/or use. Hence, techniques are required for identifying
and locating appropriate software, delivering that software to the user, identifying an appropriate compute
server, and testing and evaluating software. This is one example of the many services a PSE must o�er. We
discuss these in terms of a middleware of networked servers accessed directly or via agents, as in NetSolve
from the client. Some of the ideas of current distributed object technology (such as CORBA and RMI) are
relevant and we illustrate this in the discussion of the WebFlow architecture.

11

4.5 Tools (20 pages)

Authors: Reed, Aydt

As parallel applications become more complex, they grow more irregular, with data-dependent execution
behavior, and more dynamic, with time-varying resource demands. Consequently, even small changes in
application structure can lead to large changes in observed performance. This performance sensitivity is a
direct consequence of resource interaction complexity and growing hardware complexity (e.g., deep memory
hierarchies, and complex communication networks). To support creation of high-performance applications,
we believe one must tightly integrate compilers, languages, libraries, algorithms, problem-solving environ-
ments, runtime systems, schedulers, and performance tools. With this deep integration, one can measure,
analyze, visualize, and tune all aspects of application code, compilation strategies, and resource management.

5 Numerical Algorithms and Libraries

Section Editor: Dongarra

5.1 Templates and Linear Algebra (20 pages)

Authors: Dongarra, Sorensen

The increasing availability of advanced-architecture computers has had a signi�cant e�ect on all spheres of
scienti�c computation, including algorithm research and software development in numerical linear algebra.
Linear algebra|in particular, the solution of linear systems of equations|lies at the heart of most calcu-
lations in scienti�c computing. This chapter discusses some of the recent developments in linear algebra
designed to exploit these advanced-architecture computers. We discuss two broad classes of algorithms:
those for dense matrices and those for sparse matrices. A matrix is called sparse if it has a substantial
number of zero elements, making specialized storage and algorithms necessary.

Much of the work in developing linear algebra software for advanced-architecture computers is motivated
by the need to solve large problems on the fastest computers available. In this chapter, we focus on four
basic issues: (1) the motivation for the work; (2) the development of standards for use in linear algebra and
the building blocks for libraries; (3) aspects of algorithm design and parallel implementation; and (4) future
directions for research.

As representative examples of dense matrix routines, we will consider the Cholesky and LU factorizations.
These factorization routines will be used to highlight the most important factors that must be considered in
designing linear algebra software for advanced-architecture computers. We use these factorization routines
for illustrative purposes not only because they are relatively simple, but also because of their importance in
several scienti�c and engineering applications that make use of boundary element methods. These applica-
tions include electromagnetic scattering and computational
uid dynamics problems.

For the past 15 years or so, there has been a great deal of activity in the area of algorithms and software
for solving linear algebra problems. The goal of achieving high performance on codes that are portable across
platforms has largely been realized by the identi�cation of linear algebra kernels, the Basic Linear Algebra
Subprograms (BLAS). We will discuss the EISPACK, LINPACK, LAPACK, and ScaLAPACK libraries which
are expressed in successive levels of the BLAS.

The key insight of our approach to designing linear algebra algorithms for advanced architecture comput-
ers is that the frequency with which data are moved between di�erent levels of the memory hierarchy must
be minimized in order to attain high performance. Thus, our main algorithmic approach for exploiting both
vectorization and parallelism in our implementations is the use of block-partitioned algorithms, particularly
in conjunction with highly-tuned kernels for performing matrix-vector and matrix-matrix operations (the
Level 2 and 3 BLAS). In general, the use of block-partitioned algorithms requires data to be moved as blocks,
rather than as vectors or scalars, so that although the total amount of data moved is unchanged, the latency
(or startup cost) associated with the movement is greatly reduced because fewer messages are needed to
move the data.

A second key idea is that the performance of an algorithm can be tuned by a user by varying the
parameters that specify the data layout. On shared memory machines, this is controlled by block size; on
distributed memory machines it is controlled by block size and the con�guration of the logical process mesh.

12

The sparse linear systems that result from partial di�erential equations need very di�erent techniques
from those used for dense matrices. While direct methods have the virtue of reliability, they also take copious
amounts of space and time. Iterative methods, of one type or another, are considerably more frugal in their
space demands, but on di�cult problems their convergence may be slow, and is not even guaranteed.

5.2 Parallel Continuous Optimization (20 pages)

Authors: Dennis, Wu

Abstract. We discuss parallel computation methods for continuous optimization and their application in
science and engineering. We describe optimization problems and algorithms and their associated parallelism
at di�erent computational levels. In particular, we review parallel methods for local and global optimization,
and compare strategies for large, sparse versus small-but-expensive problems. We introduce special tech-
niques for parallel optimization including direct search, domain decomposition, and variable and constraint
distribution. We survey application areas where parallel optimization is key to the solution of the problems.
We conclude with comments and suggestions for future research directions.

Introduction. Optimization has broad applications in engineering, science, and management. Many of
these applications either have large numbers of variables or require expensive function evaluations. In
some cases, there are also many local minimizers while a global or nearly global minimum is demanded.
As a result, the optimization problems arising in these applications require intensive computation which
traditional architectures often cannot a�ord. On the other hand, parallel high-performance computing has
provided unique powerful tools for solving these problems to signi�cant degrees of di�culty, which would
otherwise be impossible.

Example applications where parallel optimization plays an important role include aircraft shape design
(Cramer, Dennis), macromolecularmodeling (Coleman, Schnabel, Mor�e and Wu), and airline crew scheduling
(Schneider and Wise). In aircraft shape design, certain design features such as the pressure distribution
need to be optimized with respect to the shape variables. The number of shape variables is in the order
of hundreds, but they are constrained by two systems of PDEs. In order to obtain a feasible solution, the
two systems need to be solved alternatively to their equilibrium, while both systems require expensive PDE
solves for millions of grid points, one for the air
ow and the other for the structural change. Clearly,
the problem is computationally very intensive, and the performance of the optimization procedure will be
improved dramatically if parallel computation is employed. In macromolecular modeling, molecular structure
is determined by minimizing a given potential energy function. One of the most important applications is the
determination of protein structures in structural molecular biology. The challenge for solving this problem
is that the potential energy function has many local minimizers, while the structure to be determined
corresponds to a global or nearly global optimal solution to the minimization problem. Global optimization
algorithms have been developed to solve the problem. However, the algorithms require substantial computing
resources, which only parallel high-performance architectures can provide. The �nal example for airline crew
scheduling is where parallel linear programming becomes necessary. Applications in this area typically have
hundreds of thousands of variables and thousands of constraints. Linear programming is employed to obtain
an approximate solution to the scheduling problem, which is already very costly in terms of computing
resources. E�orts have been made to implement various linear programming codes on vector and shared-
memory machines to speed up the time consuming scheduling routine in airline industry.

Substantial research e�orts on parallel optimization have been undertaken in the past ten years, some
focusing on special applications and some exploring more general parallel schemes. Optimization has close
relationships with numerical linear algebra and partial di�erential equations. For example, a typical opti-
mization procedure requires solving a linear system to obtain a search direction in every iteration; function
or constraint evaluation often requires a solution for a partial di�erential equation. Development of parallel
optimization algorithms and software certainly bene�ts from great advances in parallel numerical linear al-
gebra and partial di�erential equations. However, there are also structures speci�c to optimization that can
be exploited for design of parallel optimization algorithms and software. Work along this line includes par-
allel function evaluation (Averrick and Mor�e), parallel gradient and Hessian estimate (Byrd and Schnabel),
parallel multiple line search (Nash and Sofer), parallel inexact Newton step computation (Nash and Sofer),
etc. General algorithms have also been developed such as parallel direct search methods by Dennis and Tor-

13

czon, domain decomposition methods for parallel parameter identi�cation by Dennis, Li, and Williamson,
and variable and constraint distribution schemes by Ferris and Mangasarian. An even more active research
area is parallel global optimization, which has extensive applications in chemical and biological disciplines
such as cluster simulation and protein modeling. Algorithms and software developed in recent years include
parallel stochastic global optimization algorithms for molecular conformation and protein folding by Byrd
and Schnabel, parallel global continuation software DGSOL for protein structure determination with NMR
distance data by Mor�e and Wu, and parallel e�ective energy simulated annealing for protein potential energy
minimization by Coleman, Shalloway, and Wu.

Optimization problems have many di�erent forms depending on applications. They can be linear or
nonlinear, constrained or unconstrained, and local or global. For those concerned with parallel computation,
they can also be either large, sparse or small but very expensive. For di�erent types of optimization problems
or applications, di�erent parallel algorithms may be required, even with or without using existing parallel
linear algebra and PDE software. For some situations, the choice of architecture is also important aspect
to achieve high parallel performance. For example, if the problem is large but sparse, in order to exploit
the sparsity, a shared-memory system may be a better choice, for otherwise the distribution of a sparse,
irregular structure over multiprocessors may cause load imbalance and severe communication overheads. On
the other hand, most of global optimization algorithms are coarsely parallel. They can be implemented
on distributed-memory architectures or even loosely connected networks of workstations, and still maintain
scalability.

In this chapter, we will discuss various parallel optimization methods in greater detail. We describe opti-
mization problems and algorithms and their associated parallelism at di�erent computational levels: function
evaluation, algebraic calculation, and optimization. In particular, we review parallel methods for local and
global optimization, and compare strategies for large, sparse versus small but expensive problems. Parallel
techniques including parallel direct search, domain decomposition, and variable and constraint distribution
are introduced. Application areas where parallel optimization is critical to the solution of the problems are
surveyed. Comments and suggestions for future research development are given.

5.3 The Traveling Salesman Problem: A Case Study in Parallel Discrete Optimization (20
pages)

Authors: Applegate, Bixby, Chvatal, & Cook

Abstract. The traveling salesman problem (TSP) consists of �nding a cheapest way to visit each of a �nite
number of cities and return to the starting point. We will use the TSP to discuss the application of parallel
computing techniques in discrete optimization.

Estimated Length. 10 to 20 pages.

Outline.

1. Introduction

TSP, Mixed Integer Programming, Parallel Computation

2. Heuristics

Local Search (Lin-Kernighan), Subproblems (Rohe), Branchwidth, Numerical Results (link-
ern and branchwidth)

3. Cutting-plane Methods

Small Polytopes (Christof and Reinelt), ABCC's \subtour" code, ABCC's \concorde" code,
Vehicle Routing (Jennifer Rich, Ted Ralphs)

4. Branch and Bound

Combinatorial and Held-Karp (German group, CMU group), Juenger's code, Networks of
Desktops (\subtour"), Concorde and Parallel Cutpool, Jen's VRP work with Treadmarks

14

5.4 Automatic Di�erentiation (20 pages)

Author: Carle

The goal of scienti�c computing is the development of e�cient computer simulations that accurately pre-
dict complex physical and non-physical phenomenon. Derivatives play key roles in the development and
subsequent use of simulations:

� Derivatives are used in the solution of inverse problems to calibrate the initial state of a computer
model to match experimentally observed data.

� Derivatives are used in sensitivity analysis studies to verify robustness of the simulation with respect
to small changes to the input parameters and to verify that the model behaves as suggested by exper-
imental data.

� Derivatives are used in uncertainty analysis studies to identify the primary sources of uncertainty in
the results of the simulation.

� Derivatives are used in design optimization activities to identify optimal settings of design parameters
to minimize a cost function.

Unfortunately, few simulations provide derivatives, forcing users to rely on �nite di�erence approximations
to derivatives (approximate the derivative of the function f at x, evaluate f(x) and f(x�h) for some small h,
and then compute (f(x)� f(x� h))=h). Unless used with extreme caution, �nite di�erence approximations
can be quite poor.

This chapter examines a maturing technology for computing derivatives of simulations that is known
as Automatic Di�erentiation. Automatic di�erentiation \augments" computer codes with derivative com-
putations by: (1) applying compiler-based techniques to transform a computer code into a new code that
incorporates explicit statements to compute the required derivatives, or (2) using operator overloading to
extend elementary operations (such as multiply and divide) and elementary functions (such as sine and co-
sine) to compute the required derivatives. In either case, derivatives are computed by mechanically applying
the familiar rules of calculus.

Topics covered in this chapter will include:

� Overview of Automatic Di�erentiation. This will outline the forward and reverse modes of automatic
di�erentiation and describe the challenges that arise in implementing robust automatic di�erentiation
software.

� Parallelism in Automatic Di�erentiation. Two subtopics will be covered: (1) use of parallelism in the
computation of derivatives for sequential simulation codes, and (2) issues that arise in the application
of automatic di�erentiation to explicitly parallel codes.

� Applications of Automatic Di�erentiation. Two applications of automatic di�erentiation will be high-
lighted: (1) the NEOS Network-Enabled Optimization System, and (2) a NASA Langley/Boeing/Rice
collaboration to develop a derivative-enhanced version of the MPI-based CFL3D computational
uid
dynamics code for use in aerodynamic shape optimization.

� Software for Automatic Di�erentiation. Available automatic di�erentiation software will be described.

5.5 Continuation and Bifurcations in Scienti�c Computing (20 pages)

Author: Keller

The discretization of most problems in science and technology leads to large systems of nonlinear equations
containing one or more parameters. Solutions are desired for some range of the parameters. Thus if u 2 RI N

represents the values of all the unknowns which satisfy the discretized problem, say

G(u; �) = 0 ;

15

and � is a scalar parameter, then u = u(�) traces out a path in RI N as � varies over some interval, I. Powerful
methods have been devised to compute such paths for broad ranges of problems in which the dimension of
the unknowns may be of the order of N = 106 or larger. Parallel processors are imperative for these very
large problems.

Of course, as the path � : fu = u(�); � 2 Ig is traversed, di�culties may arise due to some singular
behavior. There are numerous di�erent kinds of singularities that can occur and methods to circumvent or
explore the singular phenomena have been devised. Indeed, it is frequently the case that the location and
nature of the singular points on a solution path are the most important aspects to the scientist or engineer.

We shall describe some of the basic methods for following paths and for treating the singular points that
arise. These include folds, bifurcations, and Hopf bifurcations. A powerful set of software known as AUTO,
which employs most of these techniques, has been developed by E. Doedel and his co-workers. The latest
versions of this code were developed by CRPC researchers at Caltech and have been parallelized. They also
include methods for the analysis of dynamical systems containing heteroclinic and homoclinic orbits.

6 Bringing It All Together and Futures (20 pages)

Section Editor: White

This chapter will �rst discuss the state of computational science in the mid-1980s: both the heyday and
beginning-of-the-end for traditional vector architectures. This time period began with small parallel sym-
metric multiprocessors, employing a few tens of processors for the most part. The CRPC's initial focus was
here. Large-scale scienti�c computing was the purview of highly integrated,
at-memory vector computers
such as Cray YMPs, which appeared on the stage about the same time as the CRPC. This was the third
generation of this successful line of computers from Cray Research, Inc.; OS, compilers, tools, and utilities
were is pretty good shape; the NSF Supercomputer Centers were on-line and many science and engineering
groups around the country were making very signi�cant progress using these impressive tools.

Enthusiasm for computational science grew with each success. Scientists in chemistry, high-energy
physics, astrophysics, numerical weather prediction, the oil and gas industry, aerospace, and many other
�elds were realizing the possibilities and wanted more computational power. Algorithms often provided an
e�ective increase in resources at least equal to gains in hardware performance. CRPC principals played
a leadership role in many areas, such as solving linear and non-linear systems of equations, optimization
problems, and discretization techniques. Unfortunately, neither algorithms nor hardware appeared likely to
satisfy the demand.

Next, we will discuss Massively Parallel Processors (MPPs) and the work over the next decade that
proved that this could be an e�ective dimension in which to grow computing resources. Machines such as the
Intel iPSC and TMC CM-2 provided an initial testbed upon which to examine the potential for tremendous
increases in computing power, if only this power could be made accessible to scientists and engineers. Parallel
algorithms and algorithm templates were a critical development over this time period; these e�orts provided
foundational capabilities, e.g. Level 2 and Level 3 BLAS, and developed new capabilities required for parallel
computers, e.g. domain decomposition. Data movement and data locality mechanisms (e.g. MPI and HPF),
key ingredients in e�ectively using MPPs, were pioneered by the CRPC. We will recap (from x 3) some
of the principal applications successes that occurred over this time period. In particular, we will look at
astrophysics, weather prediction, and statistical mechanics to provide metrics for how much progress was
actually made in some �elds.

Predictably, as the resources grew, the complexities of the architectures themselves, of the memory
hierarchies, of the programming models, and of the algorithms grew even faster. Another pioneering e�ort
over this period was in the use of high-level languages, toolkits, and problem-solving environments to help
manage the di�culties of developing and maintaining applications. In addition, much progress was made on
meta-algorithms whose development, through the CRPC, was directly integrated with parallel computation.
We will discuss optimization and continuation methods.

Unfortunately, the market for high-end supercomputers began a precipitous slide downhill in 1991 and
MPPs were doomed. The strategy of providing small-scale versions of machines speci�cally designed for the
high-end technical market never took
ight. Today, none of the leaders from the early part of the decade|
Cray Research, Thinking Machines, Intel, Convex|compete in this market. However, rather than an end

16

to the vision of thousands of processors cooperating on a single problem, this extinction marked the real
beginning. Now, many companies sell powerful, parallel servers, which range from tens to a few hundreds of
processors each. These servers are the switch-based successors of the SMPs upon which CRPC was initially
focused. These SMPs exist in a marketspace that is predicted to double in size over the next �ve years.
Clusters of these servers (SMPs) at NCSA, NPACI, Los Alamos, and Livermore have taken up where MPPs
left o�, reaching into the terascale regime. And the beauty of it all is that much of the work by the CRPC, its
a�liates, and others|application templates, parallel algorithms, C++ frameworks, message-passing, F90,
domain decomposition|provides an �rm foundation for computing on clusters of SMPs.

Looking into the future we will examine

� computational science as a tool of discovery in science and engineering,

� predictive modeling and simulation as a tool for decision and policy makers, and

� the intersection of computational science and information technology.

In addition, we will look at the algorithms, tools, frameworks, and problem-solving environments that will
enable these applications.

17

