Chapter 1

Software Technologies

Ian Foster & Ken Kennedy

1.1 Introduction

While parallel computing is defined by hardware technology, it is software
that renders a parallel computer usable. Parallel software is the topic of both
this overview chapter and the ten more comprehensive chapters that comprise
Part IV of this book.

The concerns of the parallel programmer are those of any programmer: al-
gorithm design, convenience of expression, efficiency of execution, ease of de-
bugging, component reuse, and lifecycle issues. Hence, we should not be sur-
prised to find that the software technologies required to support parallel pro-
gram development are familiar in terms of their basic function. In particular,
the parallel programmer, like any programmer, requires: languages and/or ap-
plication programming interfaces (APIs) that allow for the succinct expression
of complex algorithms, hiding unimportant details while providing control over
performance-critical issues; associated tools (e.g., performance profilers) that
allow them to diagnose and correct errors and performance problems; and con-
venient formulations of efficient algorithms for solving key problems, ideally
packaged so that they can easily be integrated into an application program.

However, despite these commonalities, the particular characteristics of par-
allel computers and of parallel computing introduce additional concerns that
tend to complicate both parallel programming and the development of parallel
programming tools. In particular, we must be concerned with the following
three challenges

1. Concurrency and communication. Parallel programs may involve the cre-
ation, coordination, and management of potentially thousands of inde-
pendent threads of control. Interactions between concurrent threads of
control may result in nondeterminism. These issues introduce unique con-

CHAPTER 1. SOFTWARE TECHNOLOGIES 2

cerns that have profound implications for every aspect of the program
development process.

2. Need for high performance. In sequential programming, ease of expression
may be as important or even more important than program performance.
In contrast, the motivation for using parallel computation is almost al-
ways a desire for high performance. This requirement places stringent
constraints on the programming models and tools that can reasonably be
used for parallel programming.

3. Diversity of architecture. The considerable diversity seen in parallel com-
puter architectures makes the development of standard tools and portable
programs more difficult than is the case in sequential computing, where
we find remarkable uniformity in basic architecture.

The role of parallel software is thus to satisfy the requirements listed at the
beginning of this section, while simultaneously addressing in some fashion the
three challenges of concurrency and communication, performance demands, and
architectural diversity. This is a difficult task, and so in practice we find a variety
of approaches to parallel software, each making different tradeoffs between these
requirements.

In the rest of this chapter, we provide an overview of the major software
and algorithmic technologies that we can call upon when developing parallel
programs. We structure the presentation in terms of the three key questions
that we believe will be asked by any parallel programmer:

e How do I select the parallel programming technology (library or language)
to use when writing a program? We introduce the programming models,
APIs, and languages that are commonly used for parallel program devel-
opment, and provide guidance concerning when these different models,
APIs, and languages may be appropriate.

e How do I achieve correct and efficient execution? Here, we discuss issues
relating to nondeterminism and performance modeling.

e How do I reuse existing parallel algorithms and code? Here, we provide
a roadmap to the parallel algorithms described in this book and describe
several techniques used to achieve code reuse in parallel algorithms.

In each case, we provide pointers to the chapters in which these issues are
discussed at greater length.
This chapter does mot say anything about AD or parallel file
systems.

1.2 Selecting a Parallel Program Technology

As was explained in Chapter 77, a parallel computer is a collection of processing
and memory elements, plus a communication network used to route requests and

CHAPTER 1. SOFTWARE TECHNOLOGIES 3

information among these elements. The task of the parallel programmer is to
coordinate the operation of these diverse elements so as to achieve efficient and
correct execution on the problem of interest.

The performance of a parallel program is determined by how effectively it
maximizes concurrency (the number of operations that can be performed simul-
taneously) while minimizing the amount of communication required to access
“nonlocal” data, transfer intermediate results, and synchronize the operation
of different threads of control. Communication costs are frequently sensitive
to data distribution, the mapping of application data structures to memory el-
ements: a good data distribution can reduce the number of memory accesses
that require expensive communication operations. If work is not distributed
evenly among processors, load imbalances may occur, reducing concurrency and
performance.

When evaluating the correctness of a parallel program, the programmer may
need to take into account the possibility of race conditions, which occur when
the executions of two or more distinct threads of control are sufficiently un-
constrained that the result of a computation can vary nondeterministically, de-
pending simply on the speed at which different threads proceed.

The programmer, when faced with the task of writing an efficient and correct
parallel program, can call upon a variety of parallel languages, compilers, and
libraries, each of which implements a distinct programming model with different
tradeoffs between ease of use, generality, and achievable performance.

In the rest of this section, we first review some of the principal programming
models implemented by commonly used languages and libraries. Then, we ex-
amine each of these languages and libraries in turn and discuss their advantages
and disadvantages.

1.2.1 Parallel Programming Models

We first make some general comments concerning the programming models that
underly the various languages and libraries that will be discussed subsequently.
Thirty years of research have led to the definition and exploration of a large
number of parallel programming models [2]. Few of these models have survived,
but much experience has been gained in what is useful in practical settings.

Data parallelism vs. task parallelism. Parallel programs may be categorized ac-
cording to whether they emphasize concurrent execution of the same task on
different data elements (data parallelism) or the concurrent execution of dif-
ferent tasks on the same or different data (task parallelism). For example, a
simulation of galaxy formation might require that essentially the same opera-
tion be performed on each of a large number of data items (stars); in this case,
a data parallel algorithm is obtained naturally by performing this operation on
multiple items simultaneously. In contrast, in a simulation of a complex physical
system comprising multiple processes (e.g., a multidisciplinary optimization of
an aircraft might couple airflow, structures, and engine simulations) the different
components can be executed concurrently, hence obtaining task parallelism.
Most programs for scalable parallel computers are data parallel in nature,

CHAPTER 1. SOFTWARE TECHNOLOGIES 4

for the simple reason that the amount of concurrency that can obtained from
data parallelism tends to be larger than can be achieved via task parallelism.
Nevertheless, task parallelism can have an important role to play as a software
engineering technique: it often makes sense to execute distinct components
on disjoint sets of processors (or even on different computers) for modularity
reasons. It is increasingly common for parallel programs to be structured as a
task-parallel composition of data-parallel components.

Explicit vs. implicit parallelism. Parallel programming systems can be catego-
rized according to whether they support an explicitly or implicitly parallel pro-
gramming model. An explicitly parallel system requires that the programmer
specify directly the activities of the multiple concurrent “threads of control”
that form a parallel computation. In contrast, an implicitly parallel system al-
lows the programmer to provide a higher-level specification of program behavior
in which parallelism is not represented directly. It is then the responsibility of
the compiler or library to implement this parallelism efficiently and correctly.

Implicitly parallel systems can simplify programming by eliminating the need
for the programmer to coordinate the execution of multiple processes. For exam-
ple, in the implicitly parallel, primarily data-parallel language High Performance
Fortran, the programmer writes what is essentially sequential Fortran 90 code,
augmented with some directives. Race conditions cannot occur and the HPF
program need not be rewritten to take advantage of different parallel architec-
tures.

Explicitly parallel systems provide the programmer with more control over
program behavior and hence can often be used to achieve higher performance.
For example, an MPI implementation of an adaptive mesh refinement algo-
rithm may incorporate sophisticated techniques for computing mesh distribu-
tions, for structuring communications among subdomains, and for redistributing
data when load imbalances occur. These strategies are beyond the capabilities
of today’s HPF compilers.

A parallel programming style that is becoming increasingly popular is to
encapsulate the complexities of parallel algorithm design within libraries (e.g.,
an adaptive mesh refinement library, as just discussed). An application program
can then consist of just a sequence of calls to such library functions, as illustrated
in Figure 7?7 below. In this way, many of the advantages of an implicitly parallel
approach can be obtained within an explicitly parallel framework.

Shared memory vs. distributed memory. Explicitly parallel programming systems
can be categorized according to whether they support a shared or distributed
memory programming model. In a shared memory model, the programmer’s
task is to specify the activities of a set of processes that communicate by reading
and writing shared memory. In a distributed memory model, processes only
have local memory and must use some other mechanism (e.g., message passing
or remote procedure call) to exchange information.

Shared memory models have the significant advantage that the programmer
need not be concerned with data distribution issues. On the other hand, high-

CHAPTER 1. SOFTWARE TECHNOLOGIES 5

Table 1.1: Major parallel programming technologies discussed in this book
| Name | Model | . | |

MPI Version of
Some Simple Application

Figure 1.1: An MPI formulation of the XX problem

performance implementations may be difficult on computers that lack hardware
support for shared memory, and race conditions tend to arise more easily.

Distributed memory models have the advantage that programmers have ex-
plicit control over data distribution and communication; thisc control facilitates
high-performance programming on large distributed memory parallel comput-
ers.

1.2.2 Parallel Programming Technologies

Table 1.1 lists and categorizs the major programming technologies discussed in
this book. We provide here a brief summary of each and provide pointers to
the chapters where they are covered in more detail. In the next subsection, we
discuss the situations in which each is to be preferred.

We should include cross-references to application chapters as

case studies for various of these approaches.

Message Passing Interface

The Message Passing Interface (MPI) is a specification for a set of functions
for managing the movement of data among sets of communicating processes.
Official MPT bindings are defined for C, Fortran, and C++; bindings for various
other languages have been produced as well. MPI defines functions for point-
to-point communication between two processes, for collective operations among
processes, for parallel /O, and for process management. In addition, MPI’s
support for communicators facilitates the creation of modular programs and
reusable libraries. As illustrated in Figure 1.1, MPI programs are commonly
implemented in terms of a Single Program Multiple Data (SPMD) model, in
which all processes execute essentially the same logic. Chapter ??7 provides
more details on MPI, while the parallel I/O aspects of MPI are discussed in
Chapter 77.

Parallel Virtual Machine (PVM) represents another popular instantiation of
the message passing model which however has been largely superseded by MPI.

Analysis. MPI is today the technology for constructing scalable parallel

CHAPTER 1. SOFTWARE TECHNOLOGIES 6

P-Threads Version of
Some Simple Application

Figure 1.2: A P-threads formulation of the XX problem

programs: no other technology can beat it for portability and scalability. In
addition, a significant body of MPI-based libraries has emerged that provide
high-performance implementations of commonly used algorithms. Nevertheless,
other technologies may be appropriate if our goal is a modestly parallel version of
an existing program (in which case OpenMP may be appropriate), we are using
Fortran 90 (HPF), or our application is a task-parallel composition designed to
execute in a distributed environment(CORBA, RMI).

Parallelizing Compilers

On many small (primarily shared memory) parallel computers, parallelizing
compilers are provided that can extract a certain amount of parallelism from
sequential code. The performance gains that can be expected from this technol-
ogy are application dependent but are generally small. Programmer-supplied
information (typically communicated via directives) can improve things in some
situations. However, in that case you should be considering OpenMP.

Analysis. Parallelizing compilers are certainly worth trying when available
if only a small degree of parallelism is required. Otherwise OpenMP or MPI are
better solutions.

P-threads

As noted above, in the shared memory programming model, multiple threads of
control operate in a single memory space. The POSIX standard threads package
(P-threads) represents a particularly low level but widely available implementa-
tion of this model. As illustrated in Figure 1.2, the P-threads library provides
functions for creating and destroying threads and for coordinating thread ac-
tivities via constructs designed to ensure exclusive access to selected memory
locations (locks and condition variables). Chapter ?? provides a more detailed
discussion of P-threads.

Analysis. We do not recommend the use of P-threads for parallel program
development. The unstructured nature of P-threads constructs makes the devel-
opment of correct and maintainable programs difficult. In addition, P-threads
programs are not scalable to large numbers of processors.

CHAPTER 1. SOFTWARE TECHNOLOGIES 7

OpenMP Version of
Some Simple Application

Figure 1.3: An OpenMP formulation of the XX problem

OpenMP

An alternative approach to shared-memory programming is to use more struc-
tured constructs such as parallel loops to represent opportunities for parallel
execution. This approach is taken in the increasingly popular OpenMP, a set
of compiler directives, library routines, and environment variables that can be
used to specify shared memory parallelism in Fortran and C/C++ programs.
As illustrated in Figure 1.3, OpenMP extensions focus on the exploitation of
parallelism within loops. This parallelism may be fine-grained (as in the ex-
ample) or coarse grained (if loops call computationally expensive functions). A
desirable feature of OpenMP is that it preserves sequential semantics: ignore
the structured comments and a sequential program is obtained. This simpli-
fies program development, debugging, and maintenance. Chapter 7?7 provides a
more detailed discussion of OpenMP.
We should say something about determinism or lack of it. I
Analysis. We recommend the use of OpenMP when the goal is to achieve
modest parallelism on a shared memory computer. In this environment, the
simplicity of the OpenMP model and the fact that a parallel program can be
obtained via the incremental addition of directives to a sequential program are
significant advantages. On the other hand, the lack of support for user manage-
ment of data distribution means that scalable implementations of OpenMP are
unlikely to appear in the foreseeable future.

High Performance Fortran

High Performance Fortran (HPF), like OpenMP, extends a sequential base lan-
guage (in this case Fortran 90) with a combination of directives, library func-
tions, and (in the case of HPF) some new language constructs to provide a data-
parallel, implicitly parallel programming model. HPF differs from OpenMP in
its focus on support for user management of data distribution, so as to support
high-performance execution on scalable computers of all kinds, particularly in
distributed memory environments. Figure 1.4 illustrates how structured com-
ments are used to express the number of processors that a program is to run
on and to control the distribution of data. Chapter ?? provides more details on
HPF.

CHAPTER 1. SOFTWARE TECHNOLOGIES 8

program hpf finite difference

'HPF$ PROCESSORS pr(4) ! Running on 4 processors
real X(100,100), New(100,100) ! Data arrays
IHPF$ ALIGN New(:,:) WITH X(:,:) ! Arrays decomposed in

'HPF$ DISTRIBUTE X(BLOCK,*) ONTO pr ! one dimension.

New(2:99,2:99) = (X(1:98, 2:99) + X(3:100, 2:99) +
$ X(2:99, 1:98) + X(2:99, 3:100))/4
diffmax = MAXVAL(ABS (New-X))

Figure 1.4: An HPF formulation of the finite difference problem. Notice that
only three directives have been added to what is otherwise a pure Fortran 90
program: PROCESSORS, DISTRIBUTE, and ALIGN directives. These directives
partition each of the two arrays by row, hence allocating 25 rows to each of 4
Processors.

POOMA (or HPC++7?7) Version of
Some Simple Application

Figure 1.5: A POOMA formulation of the XX problem

Analysis. When HPF works well, it is a wonderful tool: complex parallel
algorithms can be expressed succinctly as Fortran 90 code. However, the class
of algorithms that can be expressed effectively in HPF remains relatively small
(although it continues to grow), and HPF compilers are not available for all
computers. Hence, HPF remains a niche technology for now at least.

POOMA and HPC++

An alternative approach to the implementation of implicit data parallelism is
to use libraries that encapsulate data parallel operations. This is essentially the
approach taken in POOMA and HPC++.

More details are needed here. Standard numerical libraries

(e.g., PETSc) could be discussed here also, although I think

it is better to focus on it as a reuse technology.

CORBA and Java
| Details to be added. |

CHAPTER 1. SOFTWARE TECHNOLOGIES 9

CORBA Version of
Some Simple Application

Figure 1.6: A CORBA formulation of the XX problem

Hybrids

A variety of hybrids approaches are possible and in some cases are proving ef-
fective and popular. For example, it is increasingly common to see applications
developed as a distributed memory (MPI) framework with shared memory par-
allelism (e.g., OpenMP) used within each “process.” The primary motivation is
a desire to write programs whose structure mirrors that of contemporary paral-
lel computers consisting of multiple shared memory computers connected via a
network. The technique can have advantages: for example, a multidimensional
problem can be decomposed across processes in one dimension and within a
process in a second.

Other hybrids that have been discussed in a research context include MPI
and P-Threads, MPI and HPF, CORBA and HPF.

1.2.3 Summary

In the preceding discussion of parallel programming models and technologies
we have made a number of points concerning the pros and cons of different
approaches. Table 1.2 brings these various issues together in the form of a set
of rules for selecting parallel programming models.

I Perhaps we can create some sort of decision tree? I

1.3 Achieving Correct and Efficient Execution

The problem of achieving correct and efficient parallel programs is made diffi-
cult by the issues noted in the introduction to this chapter: nondeterminism,
concurrency, and complex parallel computer architectures. These problems can
be overcome by a combination of good programming practice and appropriate
tools. Tools such as debuggers, profilers, and performance analyzers are dis-
cussed in Chapter ?7?; we talk here about two issues of programming practice,
namely dealing with nondeterminism and performance modeling.

CHAPTER 1. SOFTWARE TECHNOLOGIES 10

Table 1.2: Decision rules for selecting parallel programming technologies

| Use ... | If:

target platform has a good parallelizing compiler
portability is not a major concern

Compilers | goal is to extract moderate [O(4-10)] parallelism from existing code

OpenMP | goal is to extract moderate [O(10)] parallelism from existing code
good quality OpenMP exists for target platform
portability is not a major concern

MPI you want to use MPI libraries
scalability is important
portability is important

HPF writing in F90
program amenable to expression in array syntax
good quality HPF is available on target platform

CORBA, | program has task-parallel formulation

RMI interested in running in network-based system
performance is not critical
Threads scalability is not important

program involves fine-grained operations on shared data
program has significant load imbalances
OpenMP is not available or suitable

1.3.1 Dealing with Nondeterminism

A nondeterministic computation is one in which the result computed depends
on the order in which two or more unsynchronized threads of control happen to
execute. Nondeterministic interactions can sometimes be desirable: for exam-
ple, they can allow us to select the “first” solution computed by a set of worker
processes that are executing subtasks of unknown size. However, the presence of
nondeterminism also greatly complicates the task of verifying program correct-
ness as, in principle, we need to trace every possible program execution before
we can ensure that the program is correct. And in practice it can be difficult
both to enumerate the set of possible executions and to reproduce a particu-
lar behavior. Hence, nondeterminism is to be avoided whenever possible. The
following general techniques can be used to achieve this goal:

e When possible, use a parallel programming technology that does not per-
mit race conditions to occur: e.g., HPF or OpenMP.

e If using a parallel programming technology that permits race conditions,
adopt defensive programming practices to avoid unwanted nondetermin-
ism. For example, in MPI, ensure that every “receive” call can match
exactly one “send.” Avoid the use of P-threads.

e When nondeterminism is required, encapsulate it within objects with well-
defined semantics. For example, in a manager-worker structure, the man-

CHAPTER 1. SOFTWARE TECHNOLOGIES 11

Table 1.3: Major parallel algorithms discussed in this book
| Type | Description | Chapter | Page # |

ager may invoke a function “get next solution”; all nondeterminism is then
encapsulated within this function.

1.3.2 Performance Modeling

In Chapter 77, tools are described for measuring and analyzing the performance
of a parallel program. In principle, a good performance tool should be able to
relate observed performance to the constructs of whatever parallel programming
technology was used to write the original program. It may also seek to suggest
changes to the program that can improve performance. Tools available today
do not typically achieve this ideal but they can provide useful information.

An important adjunct to any performance tool is the use of analytic perfor-
mance models as a means of predicting likely performance and of explaining ob-
served performance. As discussed for example in 7?7, a good performance model
relates parallel program performance (e.g., execution time) to key properties of
the program and its target execution environment: for example, problem size,
processor speed, and communication costs. Such a model can then be used for
qualitative analysis of scalability. If the model is sufficiently accurate (and es-
pecially if it is calibrated with experimental data) it can also be used to explain
observed performance.

Present a performance model for the example program presented
earlier and use an example to show how this can be used to study
scalability etc.

1.4 Reusing Parallel Algorithms and Code

The ability to reuse existing algorithms and code is critical to programmer
productivity: without it, no programmer can build on prior experience and every
programming project must start from scratch. Effective reuse requires both
cataloging so that programmers can locate algorithms and techniques that meet
their needs and reuse technologies that allow these algorithms and techniques to
be encapsulated in a reusable fashion—whether as design patterns, functions,
libraries, components, objects, or whatever.

This book is not intended to serve as a comprehensive catalog of parallel
algorithms. Nevertheless, the various application chapters of Part I and the
more detailed technology chapters of Part II do collectively present a broad
spectrum of algorithms. We provide in Table 1.3 a reasonably complete listing
and categorization of these algorithms. For more detailed discussions of parallel
algorithm design see the excellent books by XX ??, YY [], and ZZ [?].

I Table 1.3 should be completed once the manuscript is further
along.

CHAPTER 1. SOFTWARE TECHNOLOGIES 12

The techologies and techniques used to achieve reuse are discussed in several
chapters. We provide here a brief review of three major approaches.

Templates: Design Patterns for Parallel Software

In sequential programming, the concept of a design pattern has emerged as an
approach to cataloging and communicating basic programming techniques [?].
For example, divide and conquer is a design pattern with relevance to a variety of
problems. A specification of this pattern might specify the problem-independent
structure and note where problem-specific logic must be supplied. This specifi-
cation does not provide any executable code but provides a basic structure that
can guide a programmer in developing an implementation.

The design pattern concept has considerable relevance to parallel program-
ming as in practice there are only a fairly small number of basic parallel algo-
rithm techniques. Here are three examples:

e Manager/worker: summary to be provided.
e Reduction/broadcast: summary to be provided.
e Domain decomposition: summary to be provided.

The design pattern concept turns up at various points in this book but is
discussed in particular within Chapter 7?7, where the concept of templates is
introduced. A template is ... (need details).

Communicators and Data Structure Neutrality

The development of truely reusable parallel libraries is difficult (outside the
somewhat constrained world of languages such as OpenMP and HPF) because
of additional complexities associated with concurrency and data distribution:

e An unfortunate consequence of concurrency is that two processes or func-
tions that execute correctly in isolation may not execute correctly when
composed, because of race conditions.

e Data distribution issues can lead to both correctness and performance
problems. If a function expects data to be distributed in one fashion and
receives it in another, then either the function will execute incorrectly (in
the worst case) or an expensive redistribution operation may be required.

A consequence of these complexities is that until recently there were rela-
tively few examples of successful reusable parallel libraries. Those libraries that
did exist (e.g., Scalapack) could only deal with a small number of data distri-
butions and required that these data distributions be specified via cumbersome
argument lists

Two recent advances have led to a new generation of libraries that can be
composed and reused relatively easily, thanks to two techniques:

CHAPTER 1. SOFTWARE TECHNOLOGIES 13

e MPI’s communicators mechanism allows the programmer to encapsulate
communications that are “internal” to a function, hence avoiding race
conditions that might occur if communications intended for one function
are intercepted by another. This mechanism makes it easier to construct
components so that interactions occur only via well-defined interfaces.

e Improved software engineering techniques allow data distribution issues
to be separated from other aspects of function logic. What are sometimes
called data-structure neutral libraries allow an application to invoke an
operation on a parallel data structure without regard to how the data
structure is distributed: the distribution should impact performance but
not correctness [?].

Contemporary examples of libraries that incorporate these two techniques
are the PETSc collection of numerical solvers (see Chapter 7?7, XX [], XX [],
XX [], and XX [].

Common Component Architecture

Conclude with a discussion of the Common Component Archi-
tecture (CCA). See HPDC paper.

1.5 Future Directions

We conclude this chapter with a discussion of four areas in which significant
progress is required—and, we believe, will occur—in parallel software concepts
and technologies.

The next item could be restructured as “higher-level languages”

and “component architectures”. “Better compilers” is not very

exciting as it stands.

Ease of use. Omne major goal for research and development in parallel com-
puting must necessarily be to reduce the cost of writing and executing parallel
programs, particularly for shared-memory multiprocessor systems.

[paragraph on how advances in compiler technology will help by automating
extraction of parallelism from sequential programs.]

A second approach that appears to have considerable promise is to exploit
parallelism within programs written in high-level languages such as Matlab,
Mathematica, and Excel. [need a few comments about what this involves, ref-
erences to relevant papers|

A third, related approach is PSEs... [this may be covered above]

Clusters and DSM. While shared-memory multiprocessors are becoming in-
creasingly common, another parallel computing technology is also seeing widespread
use, namely clusters constructed from PC nodes connected with commodity
networks. Such clusters can be extremely cheap when compared with multi-
processors, but do not offer the same integrated operating system services or
convenient shared memory programming model. Heterogeneity is another po-
tential obstacle. However, numerous research and development activities are

CHAPTER 1. SOFTWARE TECHNOLOGIES 14

working to overcome these problems.

At the operating system level, numerous activities based around MPI-10,
etc. Also work such as Fast Messages, etc., and Virtual Interface Architecture
(VIA) focused on reducing communication costs to something more like MPPs.

Clusters today are almost invariably programmed with MPI. Yet experi-
ence with multiprocessors shows that shared memory parallelism can be more
convenient for applications that involve irregular data structures and data ac-
cess patterns. Hence, various groups are working to develop distributed shared
memory (DSM) systems that will allow a cluster ... [material on DSM]

Grids. FEmerging “Computational Grid” infrastructures support the coordi-
nated use of network-connected computers, storage systems, and other resources,
allowing them to be used as an integrated computational resource [1].

Grid concepts and technologies have significant implications for the practice
of parallel computing. For example, while traditionally parallel computers have
been used as “batch” engines for long-running, non-interactive jobs, in Grid
environments a parallel computer may need to interact frequently with other
systems, whether to acquire instrument data, enable interactive control, or ac-
cess remote storage systems. These new modes of use are likely to require new
runtime system and resource management techniques.

Grid infrastructures can also be used to create what might be termed “gen-
eralized clusters,” enabling the dynamic discovery and assembly of collections of
resources that can be used to solve a computational problem. Because so many
computational resources are underutilized, this mode of use has the potential
to deliver order-of-magnitude increases in available computation. However, the
heterogeneous and dynamic nature of such generalized clusters introduces sig-
nificant challenges for algorithms and software technologies.

Ultra-scale computers. The final area of future concern that we discuss relates to
the software technologies required for tomorrow’s extremely large-scale parallel
computers—those capable of 10'° operations per second or more.

A variety of very different architectures have been proposed for such com-
puters, ranging from scaled-up versions of today’s commodity-based systems
to systems based on processor-in-memory components and/or superconducting
logic [3]. These different systems have in common a need to be able to exploit
large amounts of parallelism—10° times more than today’s largest computers—
and to deal with deep memory hierarchies in which memory may be a factor of
103 further away (in terms of processor clock cycles) than in today’s systems.

These scaling issues, which derive from trends in processor and memory
technology, pose major challenges for parallel software technologies at every
level.

Further Reading [Do we want this?]

An article by Skillicorn and Talia [2] provides an excellent survey of parallel
programming paradigms and languages.
Kennedy compiler book?

CHAPTER 1. SOFTWARE TECHNOLOGIES 15

Reed parallel I/O book?

MPI-2 book?

The book The Grid: Blueprint for a Future Computing Infrastructure pro-
vides a comprehensive review of the technologies that underly emerging Grid
infrastructures and applications.

The book Topics in Ultrascale Computing reviews the hardware and soft-
ware challenges that must be overcome to build the next generation of high-
performance computers, and surveys the state of the art in relevant technolo-
gies.

Bibliography

[1] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future
Computing Infrastructure. Morgan Kaufmann Publishers, 1999.

[2] D. Skillicorn and D. Talia. Models and languages for parallel computation.
Computing Surveys, 30(2):123-169, 1998.

[3] T. Sterling et al., editors. Topics in Ultrascale Computing. 2000.

16

