IVF Problem Solving Environments

IVF.1 Introduction

Problem Solving Environments have been studied over the last 30 years and have always suffered from a certain impreciseness in their definition. However we can follow a pioneer in this field (John Rice from Purdue) and use his 1994 description at http://www.cs.purdue.edu/research/cse/pses
"A PSE is a computer system that provides all the computational facilities needed to solve a target class of problems. These features include advanced solution methods, automatic and semiautomatic selection of solution methods, and ways to easily incorporate novel solution methods. Moreover, PSE's use the language of the target class of problems, so users can run them without specialized knowledge of the underlying computer hardware or software. By exploiting modern technologies such as interactive color graphics, powerful processors, and networks of specialized services, PSE's can track extended problem solving tasks and allow users to review them easily. Overall, they create a framework that is all things to all people: they solve simple or complex problems, support rapid prototyping or detailed analysis, and can be used in introductory education or at the frontiers of science." 
This definition first appeared in "Computer as Thinker/Doer: Problem-Solving Environments for Computational Science" by Stratis Gallopoulos, Elias Houstis and John Rice (IEEE Computational Science and Engineering, Summer 1994). <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
IVF.2:NetSolve: Network-enabled Solvers
IVF.2.1  Motivation and History

The current software usage model entails three basic phases: i) obtaining the software (locating and/or purchasing, investigating licensing, import and export restrictions, etc.) ii)installing the software, and finally, iii)using the software. In addition to these mundane tasks, maintenance of the software system is also necessary to ensure that the latest versions are being used and to attain patches and bug fixes. The NetSolve project, underway at the University of Tennessee at Knoxville and the Oak Ridge National Laboratory had very humble beginnings. Its original goal was to alleviate domain scientists of this tedium when trying to use numerical software, particularly on multiple platforms. And so it began, a sole interface, Matlab, with access to solver routines from the LAPACK library. The first major release of NetSolve was in 1995. 

Today, NetSolve has evolved into one of the leading research projects in the area of Grid computing. Its various interfaces provide uniform access to an assortment of software toolkits and libraries. These libraries come from a diverse sphere of influence, ranging from mathematical solvers to more eclectic domains like microbiology and image visualization. Currently at version 1.2 released in the fall of 1998, the NetSolve system receives continual enhancements and feature upgrades. A beta version of 1.3 will be available in the fall of 1999 with a non-beta distribution slated for release in the early spring of 2000. The NetSolve software is freely available and can be downloaded, along with additional documentation and related papers, at:

http://www.cs.utk.edu/netsolve
IVF.2.2  The NetSolve Philosophy

As research scientists continue efforts to harness as much computational resources and power as possible, NetSolve continues to position itself in the midst of it all. As the system becomes more enhanced and, unfortunately, more complicated, there are certain fundamentals that we try to maintain in our NetSolve system. The first and foremost is that the system is very easy to deploy and use. The thing that should be furthest from the thoughts of the middleware user is how to incorporate software that in and of itself, he is not interested in. What he really wants is the software and hardware resources that the middleware makes available to him. Although simplicity is of the essence, the interface must still be intricate enough to meet the full needs of its users. NetSolve exerts much effort to do the impossible; be simplistic yet complicated at the same time. We have managed to achieve what we believe to be an adequate, if not perfect, balance between the two. 

Another perspective of NetSolve concerns the integration and usage of other Grid computing infrastructure. As opposed to re-inventing the wheel, we try to leverage on the accomplishments of the Grid computing community at large. But all our designs ensure that we are dependent on none of these systems. Should their resources be available in any of our users' domains, we gladly take advantage of them, but the NetSolve system can and most often does stand alone without infrastructure native to the NetSolve system. 

IVF.2.3  The Infrastructure

[image: image1.png]NetSolve 1.2

it/ e . utk edu/netsolve/





Figure 1.1: The NetSolve System

IVF.2.3.1  The Big Picture

As depicted by Fig. 1.1, NetSolve is of a client/agent/server design in which the client issues requests to agents who allocate servers to service those requests; the server(s) then receives inputs for the problem, does the computation and returns the output parameters to the client. The NetSolve client-user gains access to limitless software resources without the tedium of installation and maintenance. Furthermore, NetSolve facilitates remote access to computer hardware, possibly high-performance supercomputers with complete opacity. That is to say that the user does not have to possess knowledge of computer networking and the like to use NetSolve. In fact, he/she does not even have to know remote resources are involved. The NetSolve system is further enhanced by features like fault-tolerance and load balancing. In the sections below, we offer a brief discussion of the three aforementioned components. 

IVF.2.3.2  The Client Interfaces

A major concern in designing NetSolve was to provide several interfaces for a wide range of users and flexibility. NetSolve can be invoked via C, Fortran, MATLAB and Mathematica interfaces (the Mathematica interface is available only on Win32 client platforms). In the past, we supported a Java Application Programming Interface (API) and web-based Graphical User Interface (GUI) and are undergoing efforts to upgrade these interfaces to the current version of NetSolve. Another concern was to implement interfaces that were as simple as possible yet while being meticulous enough to allow the user to control execution of the remote procedure as much as possible. For all the interfaces involved, we two basic functions. The first allows for synchronous or blocking requests that do not return until remote execution is complete (or failure is detected). The second is a more non-traditional asynchronous or non-blocking request that returns immediately giving the user a "handle" which he can use to query the readiness of and/or obtain the solution set. In addition to these, we provide in the API functions to do error reporting. We also provide the capabilities to dynamically query a NetSolve system to receive information about either the hardware or software resources. These are used primarily to determine which problems are available and the number, type and description of the input and output parameters each problem requires. In the case of command line interpreters like Matlab and Mathematica, these are in the forms of functions. For the compiled interfaces, C and Fortran, these are compiled executables. 

IVF.2.3.3  The NetSolve Agent

The Agent as a Database

Keeping track of what software resources are available and on which servers they are located is perhaps the most fundamental task of the NetSolve agent. The agent keeps a database that maps software resources to hardware components in the NetSolve system thus having an complete picture of the capabilities of both the individual servers and the NetSolve system on a whole. The agent can report this information to the client via the interfaces (see above) which will then aid the user in setting up his problem on top of the NetSolve middleware. The protocol which NetSolve uses to maintain this database is fairly straightforward: Upon initialization, a new server sends a "problem description" for each problem it can solve to the agent it was configured to register with. This description, among other things, contains the location of the server and the particulars of the function(s) being contributed. Eventually the server is integrated into the system and can be used to service users' requests. 

The Agent as a Resource Broker

In order to expeditiously service user requests, it is necessary that the agent use certain criteria to choose the best-suited computational server for each incoming request. There are two basic choices: i)static scheduling where at compile time the agent is programmed to use some apriori scheme like round-robin scheduling and ii dynamic scheduling where the agent uses run-time information to decide which server component should be used to service a request. NetSolve uses the latter. In actuality, it combines both static and dynamic information. Static information includes speed and number of processors and complexity of the solution algorithm. Dynamic information includes server loads, network delays and transmission rates, and input data sizes. The agent then uses this information to rank the servers from best to worse. This list is passed to the client and the client makes its request to each server in turn until either the problem has been successfully solved or the list has been exhausted. 

Fault Tolerance and Load Balancing

The protocol described in the resource brokerage section above has its primary goal rooted more in high throughput than balancing load amongst the servers. In a scenario where there is a high performance supercomputer acting as a NetSolve server along with other stand alone mediocre workstations, with several simultaneous requests most of them will be sent to the supercomputer (as long as the supercomputer is determined to be the component that will finish the service quickest). In a scenario where all server resources are of essentially the same rating, however, this same paradigm will balance the load evenly amongst the servers since this scenario will then yield highest throughput. 

For fault tolerance, NetSolve ensures that a user request will be completed unless every single resource capable of servicing the request has failed. As explained above, when a client sends a request to a NetSolve agent, it receives a sorted list of computational servers to try. When one of these servers has been successfully contacted, the computation starts. If the contacted server fails during the computation, then another server is contacted and the computation restarts. This entire procedure is transacted independently of, and possibly unbeknownst to, the client user. Though effective, this primitive fault-tolerant mechanism needs to be enhanced. In the next section where we discuss current developments, we describe our research to employ more advanced fault-tolerance. 

IVF.2.3.4  The Computational Server

One of the challenges when building the NetSolve system was to design a suitable model for the computational servers. For the user to be able to invoke numerical software directly through our servers, three major features seemed to emerge as mandatory for the servers: 


Uniform access to the software: The NetSolve servers should present the interfaces with an illusion of uniformity amongst the various integrated packages. The critical point is to try as much as possible to maintain high levels of consistency amongst and within the different sets of subroutines/functions provided to the user. This allows the user to focus on the particular problem he is trying to solve rather than the peculiarities of the software package he is using to aid his investigations. This also eliminates long learning phases when using new functionalities. 

Configurability: The server should not be confined to any particular software. It was, therefore, essential that we provide a framework that permitted the addition of functionality to a computational server. This framework should be as intuitive as possible and general so that one can integrate any software toolkit with NetSolve servers and make them accessible to the client interfaces. 

Pre-installation: As stated in the last section, we wished to ease the user of the burden of software installation. Therefore, in the NetSolve paradigm, the client user is not responsible for installing any software directly. The software is made available via the NetSolve servers in a read-to-use fashion. It is also possible in some scenarios for the NetSolve system to dynamically install and compile routines without any intervention at the user-level. 


The NetSolve server addresses and successfully resolves all these issues. Mainly through the use of what we call a problem description file (PDF), the server can be configured with a set of pre-installed software libraries to provide uniform access to the sub-routines provided. The PDF in essence describes the particulars of a function to be added. Some of the information that is described in this file are the name to be given to the problem, the calling sequence to the NetSolve client interface, the libraries or archives containing the underlying functions being integrated and other things. The PDF really describes a wrapper that is used to receive or send input and output parameters from and later back to the client interface. In the midst of these networking transactions is a call to the routine from the underlying library to actually do the service that was requested. Although network interactions are involved, neither the client nor the writer of the PDF needs be concerned with this. The NetSolve system carefully encapsulates and hides these interactions from the user. These wrappers are parsed and compiled into source codes which are compiled with the library archives into NetSolve specific executables. The appropriate executable is initiated by the server daemon whenever it needs to service a client request. 

IVF.2.4  NetSolve in Grid Context

In this section, we give a brief description of the role that NetSolve has been playing in the world of Grid Computing. We describe some of the applications that have taken advantage of what NetSolve has to offer. We also discuss some of the other metacomputing resources that NetSolve has used to leverage itself. 

IVF.2.4.1  NetSolve and Other Metacomputing Resources

Globus

Globus is a software system that provides infrastructure for computations that leverage distributed computational and informational resources. It is being developed at the Argonne National Laboratory and the University of Southern California's Information Sciences Institute. Currently, the NetSolve system uses a component of Globus referred to as the Heart Beat Monitor (HBM.) The HBM allows NetSolve to easily detect failed server hosts and update the agent's database. We are also testing a new NetSolve proxy-client that allows Globus-enabled NetSolve client users to access and use Globus computational resources through the NetSolve interface. 

CONDOR

The CONDOR system, of the University of Wisconsin, takes advantage of the fact that many CPU cycles go wasted on idle workstations at times when the primary user is not using his or her machine. The system assigns tasks submitted to the CONDOR system to "registered" host machines as long as these machines are idle. Should an owner return to his machine, the task is immediately halted and assigned to another host. CONDOR pools can be used as NetSolve servers. In essence, the request for service is forwarded to the CONDOR system which then assigns the task to an idle workstation for completion. 

Ninf

Ninf is a system very similar to NetSolve. Developed at the Electrotechnical Laboratory in Tsukuba, Japan, it too provides an interface that allows for remote execution of functional components. In a collaborative effort, a NetSolve-Ninf bridge has been built that allow both systems to utilize servers provided to the other. Administrators of NetSolve and Ninf systems can then join forces to create an even bigger computational Grid. 

Legion

Legion is an object-based metasystems software project at the at the University of Virginia. Its object is to tie together hosts systems with high-speed links and present the illusion of a single computer with access o varied physical resources. The NetSolve client-user can use the NetSolve interface while leveraging metacomputing resources of Legion. The NetSolve client side uses Legion data-flow graphs to keep track of data dependencies. 

IVF.2.4.2  Some Applications of NetSolve

MCell

MCell is a general Monte Carlo simulator of cellular micro physiology. MCell uses Monte Carlo diffusion and chemical reaction algorithms in 3D to simulate the complex biochemical interactions of molecules inside and outside of living cells. MCell is a collaborative effort between the Terry Sejnowski lab at the Salk Institute, and the Miriam Salpeter lab at Cornell University. 


NetSolve is very well suited to MCell's need and this project aims at writing a NetSolve-based framework to support large MCell runs. One of the central pieces of that framework is a scheduler that takes advantage of MCell input data requirements to minimize turn-around time. This scheduler is part of the larger AppLeS at the University of California, San Diego. The use of NetSolve isolates the scheduler from the resource-management details and allows researchers to focus only on the design of the scheduler. 

IPARS

IPARS is a framework for developing parallel models of subsurface flow and transport through porous media. It currently can simulate single phase (water only), two phase (water and oil) or three phase (water, oil and gas) flow through a multi-block 3D porous medium. IPARS can be applied to model water table decline due to overproduction near urban areas, or enhanced oil and gas recovery in industrial applications. 


IPARS is being made into a fully functional NetSolve server. The goal of this project is to allow this server to be accessible via a web browser using the Common Gateway Interface on top of NetSolve's C interface. The server will also render animated graphics via a destination web-page. This total web-accessibility will allow those wanting to see IPARS simulations to do so with nothing but simple input parameters defining the simulation. 

SCIRun

SCIRun is a scientific programming environment that allows the interactive construction, debugging and steering of large-scale scientific computations. SCIRun can be used for interactively: i)Changing 2D and 3D geometry models (meshes), ii) Controlling and changing numerical simulation methods and parameters and iii)Performing scalar and vector field visualization. 


Currently, NetSolve is being integrated into SCIRun as the broker for computational resources. This integration will allow for increased parallelism and performance in the SCIRun paradigm. 

LUCAS

LUCAS is a system that uses computer modeling to integrate biological and socioeconomic data of land areas to help natural resource specialist evaluate the consequences of alternative land management scenarios. It uses the Geographic Information System, GRASS, to represent and manipulate spatial data on workstations. 


There is an on-going effort to integrate NetSolve to harness the computational cycles for LUCAS. This will prove especially useful when LUCAS is used to spawn several "replicates" which normally would compute in serial on the local machine. Using NetSolve, the computations would be done in parallel, possibly on machines specialized for High Performance Computing. 

DIPS

DIPS is a software tool, developed at the Computer Graphics and Vision unit of the Graz University of Technology in Austria, which allows remote computing for image processing. DIPS extends the Image/J Java image processing application to provide remote access to the high-performance ImageVision library by Silicon Graphics. 


At its core, DIPS uses NetSolve as its metacomputing resource to provide unprecedented computing power by aggregating distributed resources on the Internet to a single system. 

IVF.2.5  Current Developments and Future Research

IVF.2.5.1  Dynamic Server-software Enhancements

In the current NetSolve design and implementation, there is a tight coupling between the server's hardware and software components. The server is statically configured (at compile time) to solve a particular problem set. Although we have provided the tools to allow this problem set to be easily expanded, this can only be done initial configuration, so to increase a running servers capability entails a shutdown, reconfigure and restart loop. This will not be the case in the next major release of NetSolve. We are providing the capability of storing NetSolve specific software binaries (See Sect. Error! Hyperlink reference not valid.) in a software repository whose location is known to the NetSolve agent. At request time, should a particular server not possess the appropriate binaries, it will be directed to the repository for a download. This paradigm will not replace, but will enhance, the current protocol where the server is statically binded with software. 

IVF.2.5.2  Fault Tolerance

As explained in Sect. Error! Hyperlink reference not valid. the fault tolerance possessed by the NetSolve system incorporates only a retry and restart mechanism. We are presently developing servers enhanced with checkpointing capabilities. As they run, the servers will take frequent checkpoints (via a core dump mechanism); should one of these servers fail, they will be restarted not from the beginning, but from the state represented by the core image of the most recent checkpoint. Homogeneous migration will also be possible, meaning that it will be possible to restart the process on a different machine of similar architecture and operating system. As this feature becomes more advanced, we will investigate heterogeneous migration and possibly checkpointing parallel programs. 

IVF.2.5.3  Request Sequencing

We recently investigated a bit of research that would allow us to minimize the network traffic between client and servers in a single client program that made numerous requests to NetSolve. We noticed that, in many cases, there exists data dependencies between these requests. We have implemented a feature that allows the client user to bracket together multiple requests to NetSolve. The NetSolve system then analyzes data dependencies and only sends to the servers the minimal data necessary. Inputs to later requests that were outputs of a previous request(s) need not be obtained from the client again. The server makes this data persistent and uses it across all requests as necessary. In our current model, all request must execute on a single server. Future research will yield a model that will investigate using systems like the Internet Backplane Protocol (IBP) and other distributed storage facilities to stage data as requests are serviced on multiple servers. 

IVF.2.5.4  Win32 Servers

The Distributed Component Object Model (DCOM) is a protocol that enables software components to communicate directly over a network in a reliable, secure, and efficient manner. DCOM is based on the Open Software Foundation's DCE-RPC and is a standard similar to that of the Common Object Request Broker Architecture (CORBA). We will be developing a version of the Netsolve server that acts as a gateway to problem solving libraries and systems optimized for the NT platform. The server will be built using the DCOM protocol to manage its networking interactions. 

IVF.3 WebFlow Object Web computing

