Java for Computational Science and Engineering – Simulation and Modeling

Geoffrey Fox, 25 January 97

NPAC, Syracuse University, 111 College Place, Syracuse NY 13244



Several groups in CRPC (Argonne, Boston, Caltech, Indiana, Maryland, Rice, Syracuse, Tennessee) have been investigating the use of Web Technology for computing over the last two years. A fruitful recent focus has been on the role of Java in Science and Engineering Simulation. We have involved the HPCC community through a Birds of a Feather Session at the Supercomputing 96 Conference and a workshop with 45 participants at Syracuse Dec 16-17, 1996.

We have established an email discussion list and are collecting papers for a special issue of the journal “Concurrency: Practice and Experience”. The web site http://www.npac.syr.edu/projects/javaforcse contains further material including the December Workshop presentations.

Java and Web technology can be used in many areas of science and engineering computation. These include sophisticated user interfaces and coarse-grain integration of different modules in complex meta-applications. However most interesting (and controversial) is perhaps the use of Java as the language used to code the computationally intense parts of a scientific code. All these areas were discussed at the workshop with promising initial results and studies reported in each case. Again applications were described both for large scale event driven and time stepped simulations and also to smaller client side applets aimed at education.

The appeal of Java as a simulation language includes its object oriented characteristics, elegant applet software distribution model and natural support of graphical user interfaces. Most skepticism about Java for simulation is centered on performance issues. Here we should distinguish two ways of processing Java code. Currently Java is typically compiled to the “JavaVM – Virtual Machine” which are universal bytecodes downloaded from the server and interpreted on the client. Such invocation of Java applications suffers today from a performance penalty of between 5 (PC JIT Compiler) and 50 (Unenhanced Interpreter) compared to comparable native compiled C code. As JIT (Just in Time) compilers improve in quality and become generally available, we can expect that this way of using Java will improve but always lie some factor of two in performance lower than conventional compiled code. However one can also build native Java compilers and the workshop discussion indicated that with some restrictions on codin
