JAVA for Advanced Mission Design

(JAMD)

Don J. Pearson, DM/JSC

don.j.pearson1@jsc.nasa.gov

10 April 1997

JAVA for Advanced Mission Design

BACKGROUND

Java is expected to become a predominant computer language in the near future

Derived from C++

object oriented: data encapsulation, inheritance

eliminates pointers: a major source of computer bugs

simpler syntax

multi-threaded

Offers platform independence: PCs, Sun / Dec / SiliconGraphics…

Development attributed to explosive Web growth

multiple hardware platforms interconnected

many Unix-based servers and PC-based clients

distributed computing hardware of the Web offers remarkable compute potential performance, and distributed software development potential.

JAVA seems to offer a lot, but…

	…it’s use in large scale engineering applications is very limited to date

JAVA for large scale engineering

(Provide examples here)

How mature is JAVA ?

Java has been in the public sector less than 2 yrs (Summer ’95)

It is not standardized

It is undergoing evolutionary changes

the basic syntax is likely to have minimum changes

the user io (java.io) and GUI classes (java.awt) are likely to have significant changes

there is no JAVA mechanism to format floating point numbers for output

third party contributions are making up these deficiencies

ANSI C++ still not baselined

around for more than 5 years

ANSI drafts in April ’95 and Dec ’96

Our use of JAVA over the next year focuses primarily on architecture and elemental class design and NOT on large scale GUI developments.

JAVA will have another year of maturity before we focus strongly on GUIs

Project Overview / Approach

RTOP is a prototype effort to : Design a basic web-based software development architecture for lunar/Mars mission design and analysis

Define and evalute a system architecture extendible to large scale engineering development

Populate with basic classes and GUI prototypes

Evaluate JAVA language for suitability in this role

Document software development guidelines for distributed software development

Customer Objectives (Technology Goals)

Evaluate potential of JAVA for large scale engineering

full JAVA implementation (for portability)

not a “graphical in, graphical out” wrapper on non-transportable legacy code

Evaluate concept of distributed software development in the Web environment (“how to”)

deployment of classes and applications from around the country into a reusable trajectory software repository

Integrate NASA agency and universities into a collaborative s/w development effort for interplanetary mission design and analysis (“who”)

	(IF the first year RTOP is successful…)

use NASA / Universities as opposed to traditional contract award techniques

RISK: they will volunteer to become part of “the campaign to put a human on Mars”

prepare NASA trajectory software for the next 20 years

	Attracting future college graduates

	Allow retirement of “trusted legacy code”

Planned Accomplishments

FY98:

		System architecture definition

		Enumeration of trajectory components

		Initial population of the architecture & testing

			Version 1 content (approximate)

				Begin with final approach regime to Mars

				Basic ephemeris capability

				visualization of approach trajectories, aerocapture, and

					orbit adjustment

		Evaluation of suitability

		Proposal for follow-on work

			(scale up or termination)

Application / Benefits

Results of this work can be extended to

non-trajectory aerospace fields

all engineering fields

Deploys to the public arena many basic JAVA classes for re-use�		math utilities

		numeric analysis

		iteration algorithms

		

Resource / Funding Requirements

FY98: 	0.5 CS + 2.5 CONT

object oriented programming and trajectory mission design expertise

COTS hardware / software (< $25K)

	JAVA programming tools, books

	Source code control application

	data repository

	a couple of PCs (maybe)

FY99: TBD manpower for project mgmt, s/w mgmt

Web server for software respository and project managment.

Payback Analysis

We can’t promise a reduction in use of legacy code across the Agency

Obviously there is considerable redundancy in today’s code / data within field centers, and across field centers

Maintainability concerns will increase

Cost of retaining redundant code / data in evolving computer systems

	Finding talented new graduates interested in maintaining 30yr old code

There is obvious reluctance to move from trusted code

No one organization can afford to “rebuild from the ground up” a new system using traditional industry contracts

Payback Analysis (concluded)

Our approach would be to :

(FY98) Demonstrate a JAVA-based distributed software development technique is viable over the next year for this type of engineering work

(FY99) Demonstrate a collaborative NASA interagency / university effort is effective at deploying a large scale trajectory mission design capability, and that JAVA/Web has adequate performance

(FY00) “If you built it, they will come”

There is an obvious ROI (to the general public) on reusable components deployed to the Web.

Concluding Remarks

This is a small RTOP with a significant potential to demonstrate collaborative s/w development techniques for the future,

		and the viability of JAVA in this role.

It could be a good motivator pushing future interagency efforts for interplanetary trajectory software development.

�styleref Title�JAVA for Advanced Mission Design�	Slide �PAGE�11�

