Design Issues in Building Web-Based Programming Environments

Kivanc Dincer and Geoffrey C. Fox

Northeast Parallel Architectures Center

Department of Electrical Engineering and Computer Science

Syracuse University

Syracuse, NY 13244-4100 §

Abstract

We propose a new Web in�frastructure with which to access the resources on remote high-performance computing platforms (servers) , and make them available to people (clients) through the Web browsers from any platform. This infrastructure whose implementation is based on recent advances in Internet connectivity and Web technologies has the potential of being used as a future front-end to high-performance computer systems. The client-server type prototype systems discussed here are unusual among Web services, because they allow users to create, edit, and execute files, rather than simply retrieve them by following hypertext links or by making simple database queries. Especially in our case, these tools were used to facilitate the development and execution of parallel programs. We used them to support high-level parallel programming based on Fortran 90 and High Performance Fortran (HPF), as well as explicit low-level programming with the MPI message-passing interface, and traditional serial programming. We discuss the design and implementation of several prototype systems that we successfully used at the Northeast Parallel Architectures Center and Cornell Theory Center. We discuss the role of portable/platform-independent technologies such as HTML, JavaScript, and Java in the realization of the design, outline the tradeoffs of various design choices, and detail the lessons learned in the process.

�Introduction

The World-Wide Web (WWW) has emerged as an exciting and innovative front-end to the Internet. It provides Internet users with a uniform and convenient means of accessing the wide variety of resources (pictures, text, data, sound, video) available on the Internet, and Web browsers make the Internet a more user-friendly environment by integrating all the resources into a single tool that eliminates the necessity for novice users to struggle with a steep learning curve.

Although the primary reason for connecting a remote machine on the Internet using a Web is to gain access to information, information is not the only resource available. The World Wide Web infrastructure also has the potential of being used as a convenient alternative way of accessing remote high-performance computers.

We have designed and implemented Web-based programming environments based on the client-server model, which goes beyond providing a set of features commonly found in Web servers. The Web browser provides a user-friendly interface to server-site user accounts and allows the use of HPCC parallel computing platforms and software in a convenient manner. Users do not need to log into a Unix account or type any Unix commands. Once they supply the required username and password, they are logged into their accounts and can use the computational facilities. There are also alternative ways for anonymous users to execute a parallel program on a machine. The computation server owns huge computing resources (CPU time, memory, bandwidth, disk space). Upon a user request, the server maps the computation (possibly involving parallel or distributed subtasks) onto the available computing resources. While we target this infrastructure to work across the entire Internet, it is also usable on a smaller scale. In fact, we anticipate that its initial implementations will be inside large organizations with intranets consisting of a large number of heterogeneous computers.

We expect that in the future the Web will be the standard user interface in many organizations for accessing computational resources. And instead of X-windows on Unix platforms, or Windows environments on personal computers and Mac’s, Web browsers will be used to manipulate the systems’ resources. The systems to be presented here are proof-of-concept prototypes that we developed using standard Web technologies. Java and JavaScript are used primarily to ensure interactivity and visual animation at the client site in addition to static components such as HTML. The interactive Web, HPCC backends controlled by Web servers extended with CGI modules, and HTTP-based communication represent critical enabling technologies in this framework.

In this paper we describe our experiences in building Web-based virtual programming environments. We primarily used them for educational purposes at Syracuse and Cornell. We developed slightly different products that were used for unsupervised Web demos and supervised on-site demos of local software products, and as a Web interface for using remote parallel computers. We discuss several technical challenges associated with such Web-based computation environments, depending on the underlying system and targeted use of the software. Among these opening virtual UNIX accounts to system users is a novel approach.

In Section 2 we review the prototype systems that we implemented so far and describe their system architecture. Section 3 discusses several design alternative strategies and the tradeoffs associated with each of them. Section 4 concentrates on the system security measures that we think was important to avoid comprising the security of the whole system.

� INCLUDEPICTURE C:\\GIFS-F~1\\NPAC-L~1\\VPL2\\VPL2.GIF * MERGEFORMAT \d ���

� INCLUDEPICTURE C:\\GIFS-F~1\\NPAC-L~1\\VPL2\\VPLPLO~2.GIF * MERGEFORMAT \d ���� INCLUDEPICTURE C:\\GIFS-F~1\\NPAC-L~1\\VPL2\\UT-ANIM.GIF * MERGEFORMAT \d ����� INCLUDEPICTURE C:\\GIFS-F~1\\NPAC-L~1\\VPL2\\VPL2-HPF.GIF * MERGEFORMAT \d �����Figure � SEQ Figure * ARABIC �1�: Snapshots of file manager, and HPF compilation screens of the VPL. VPL also have 2D graphics and performance animation capabilities. �

� INCLUDEPICTURE C:\\GIFS-F~1\\NPAC-L~1\\CTC\\COMPIL~1.GIF * MERGEFORMAT \d ����� INCLUDEPICTURE C:\\GIFS-F~1\\NPAC-L~1\\CTC\\EXECUT~2.GIF * MERGEFORMAT \d �����Figure � SEQ Figure * ARABIC �2�: Snapshots of compilation and execution screens of the HPF/Web module.

The Design and Use of Prototypes

All the systems that we describe here are client-server architectures. The client demands access to parallel high-performance computing resources on the server site, and a central Web server coordinates the accesses to the local computational resources on the server-site. Using a central computation server makes it easier for its maintainer to make changes to the posted software, to indicate certain resources as sharable, and to change access restrictions and management policies in a quick and convenient manner without needing superuser privileges. Web-based delivery makes it possible to access posted resources from any platform.

Built-in server-site extensibility mechanisms such as CGI and client-site support with Java, JavaScript, and helper applications open the way to high-performance computational servers accessed through the Internet using Web browsers. Quick implementations are possible since there is no need to modify the server and browser codes. The Java language helps us to provide an interactive user-interface and well-developed graphical utilities for visualizing the results and behavior of programs.

Usage�Server Id�User has account�Process id�Execution��Unsupervised Web Demos�root��user account �demo programs ��Supervised Demos��yes����Onsite Training Workshops�web account��nobody�filtered programs��Virtual Training Workshops��no����Web Front-end to User Accounts�user account��web account�arbitrary programs��Table � SEQ Table * ARABIC �1�: Server configuration and process ID selection options for various Web-based programming systems.

Prototype Implementations

We provided virtual programming environments based on Web tools that we successfully used in:

Supervised demos (SD). Typical examples include demonstrations of research projects during site visits and conferences. These may include a bit of programming for the sake of showing the flexibility of research software.

Unsupervised demos (UD). Examples of software tools developed at a research center are demonstrated to interested users from all over the world. Users are bound to running a predefined set of demo programs. This is in some ways similar to the “try-and-buy” promotional programs being launched by commercial software developers.

Onsite Training Workshops (OW). Users can use parallel computational facilities as well as educational material from the same interface, the Web browser. The lifetime of the user accounts is limited to the duration of the onsite training program, which is typically just a few days. Users concentrate on executing codes that are slightly modified versions of supplied example programs.

Virtual Training Workshops (VW). These usually take several months to complete, and some or all attendees may be on remote locations. It may involve more serious programming exercises.

Web front-end to Unix accounts (WF). Users benefit from the system as an alternative GUI-based programming environment. They login their accounts and run real codes on parallel platforms through this interface.

HPF/pC++ on the Web

A Web-based demo prototype, called “HPF/pC++ on the Web” [�], was used to demonstrate the current status of the PCRC [�] project at the Supercomputing `95 conference. NPAC’s F90D/HPF compiler and CSC’s parallel C++ compiler were shown to share the same common runtime system through a Web interface supported by an HPCC and CGI back-end on a parallel cluster of workstations. We later used the same prototype in our other supervised demos. The system dynamically generated specific HTML in response to compilation requests on arbitrary user codes. This is in contrast to the static compilation of demo programs, which was done off-line. Unlike static compilation of demo codes, this resulting document is unbounded in size and the HTML generated for any given code will change over time as the contents of the program code and data file change.

The Virtual Programming Laboratory (VPL)

Virtual Programming Laboratory (VPL) is a Web-based, integrated, parallel programming environment consisting of a visual file manager for manipulating files and directories in a user’s account, laboratory modules for compiling and executing message-passing MPI [�] programs (written in Fortran, C, and Java) and data-parallel programs (written in Fortran 90 and High Performance Fortran [�]), performance analysis and visualization subsystem to depict executed programs’ performance behavior as animated or static displays, and a graphic plotting component to materialize output data as two-dimensional plots (� REF _Ref380962381 * MERGEFORMAT �Figure 1�).

We target high-performance computing parallel language teaching that requires many exercises and programming assignments. VPLwas successfully used in a graduate level computational science course at Syracuse University during the Fall 1996 semester. Students used VPL to do their HPF and MPI programming assignments by accessing computational resources via standard Web browsers.

As its name indicates, the programming environment provided by VPL is virtual, and users have virtual accounts that are constructed by partitioning the file space provided for a dedicated UNIX account into subdirectories for each user. VPL supplies users with a restricted set of UNIX shell utilities. The accounts are password-protected, we used regular Web server (NCSA) and ba�sic Web authentication to provide access to the accounts. Users` files are preserved in their accounts as long as they keep them, or until the account is activated by the VPL administrator.

Cornell Theory Center’s Web/HPF

With C. Hecht and K. Barbieri, we later tailored an upgraded version of our “HPF on the Web” system for the Cornell Theory Center (CTC) environment (IBM SP-2 parallel machine on the Andrew File System) as the Web/HPF module [�]. The Web/HPF module (� REF _Ref380962408 * MERGEFORMAT �Figure 2�) has been used in CTC’s Virtual Workshops since February 1997 as the interactive programming laboratory tool for teaching parallel programming and HPF.

Users log into their CTC UNIX accounts using the Web browser and are presented with a GUI to all system functions. The system takes care of the Web and Kerberos authentication, token access, and the attachment of the users’ requests to their account ID. The Web user-name/password pairs are used as keys to access a password-protected “root”-accessible database keeping the real Unix username and passwords.

Client Site Biased System.

Another architectural alternative for building Web-based programming environments is to keep all the files of the user on the client site and use the computational server just for computation. We expect that this approach will be more in line with the current trend toward extending Web browsers with “helper applications.”

Until recently Web-based architectures were bound to using only server-site resources. JavaScript and Java, and “file-uploading” support in decent browsers have brought in the possibility of being able to do some computation on the client site or upload a file to the server site when requested. Current browsers support�ing Java still do not allow applets to access the local file system or to use network communication freely on the client site.

The Web browser can pass data sent from the server to a helper application that can interpret the coming data. We are developing helper applications, which are similar to their counterparts that we used in VPL, extended with network communication capabilities so that they will be able to communicate with server site CGI scripts in order to send programs to be executed and to collect outputs of programs.

� EMBED PowerPoint.Slide.4 ���

Figure � SEQ Figure * ARABIC �3�: Interaction of client and server sites.

Server and Client Site Configuration Items

Client site requirements for using the above mentioned systems are minimum. We only require a JavaScript- and Java-enabled Web browser to be installed on the client machine. We do not expect the client’s machine to do anything other than display HTML documents and applets that were loaded from the server. Only the Client site biased architecture in Section � REF _Ref380962616 \n �2.1.4� is targeted towards using the file space and editing utilities of the client-machine.

On the other hand, the server site carries the heavy load of all the computation and file storage (� REF _Ref380963209 * MERGEFORMAT �Figure 3�). The following server site items are common in all the systems that we developed:

NCSA’s HTTP server. The server accepts requests from the browser and starts the CGI scripts responsible for requested operations. � REF _Ref380964814 * MERGEFORMAT �Figure 4� illustrates the behavior of the server.

CGI scripts written in Perl process the requests coming from the server site. The requests may be as simple as fetching a file from disk, or as complicated as compiling a code and showing the results graphically using some kind of visualization tool. Associated with the CGI script the Perl interpreter should also be resident at the server machine.

The compilers of the serial and parallel languages that users are allowed to use to present their programs. These compilers may change from system to system. For example, in VPL we provided the compilers for the languages DEC Fortran 90, DEC HPF, C, and Fortran, whereas in Web/HPF we provided IBM’s and PGI’s compilers for the HPF only. Furthermore, MPI and other runtime libraries related to the compilation process are located on the server-site. Actual location of these items depends on the environment. The compilation process can be carried out at a chosen node of the parallel machine or a dedicated workstation can compile the given code for execution on the parallel machine.

All the related HTML files with JavaScript extensions, Java class libraries, and temporary configuration files are stored on the server site.

Implementation Issues

Depending on the targeted area of use and the underlying system properties, the requirements and implementation strategies for the Web-based programming system vary significantly. In this section we will discuss some of the important issues and im�plications of several design choices we made. The following plays an important role in the design:

the account where the computational server is activated, and the account ID it runs, once connected to the client site

using real UNIX accounts vs. virtual accounts

ease of portability for the system and system components

reusability of existing server-site standard software components, editors, debuggers, graph viewers, etc.

reusability of client site software components

users’ file space, ability to execute arbitrary programs

reusability of underlying UNIX operating system utilities -- security, file space, protection.

authentication and security threats

other issues such as logging user activity, accounting of system resource usage.

Server ID�User has account? �Process ID �Usage��

root�yes�user account�SD,SW,LW, PE��

user account�yes�user account�SD,SW,LW,PE��

web account�yes (virtual, protected)�web account �UD,SD,SW,LW,PE���no (just for demo)�web account�UD,SD,SW���no�nobody�UD��Table � SEQ Table * ARABIC �2�: Alternative ways of configuring the Web server.

ID’s of Server Daemon and Assumed User

We determined three logical ways of running the Web server as, shown in Table 2. It can be run from the “root” account, from the user’s own account, or from a dedicated web account. The account where the Web server is started and the privileges that will be assigned to the users when they connect to the server are closely related.

Accessing real UNIX accounts.

In cases where users have actual accounts on the system, the Web-based environment just provides an alternative way (a graphical Web front-end) of accessing those accounts. When we use the underlying Unix system’s user accounts, O/S utilities readily provide most of the protection, file access, file space, and security mechanisms for us.

Depending on our purpose, we can allow users to login their accounts through this Web front-end, or they may first gain access to their accounts, and run these tools just as they will any other system utilities: as an alternative graphical user interface to the underlying system (similar to X-windows or Sun’s OpenWindow). In the former case, the server should be running under the “root” account, and will promptly switches to the user’s UNIX account ID by executing a “setuid” command as soon as the authorization is completed.

The second alternative is to start a server with a separate port number for each user of the system. The server is automatically started with the user’s account ID and continues to run under the same account. Its advantage is that since everybody has his own port, they will not starve when trying to access the system when it is crowded. The servers may be separated into groups, and the work may be distributed onto different servers to balance the load. However, when the number of users is high, the advantages quickly vanishes. First of all, current servers, such as the NCSA server, require setting up a separate server directory (~2MB) in each user’s directory. Although disk space is quite cheap nowadays, we may use virtual links to common configuration files for a less redundant setup. Second, unless we find another way of automatically starting servers, ‘standalone’ mode would cause at least one server daemon for each user will be hanging around (in the background). (We may be able to start the servers not as “standalone” but so as to be started by inetd or activate them automatically at user’s first request and kill them afterwards).

Demo accounts.

Running the server daemon httpd as a specially created nonprivileged user such as “httpd” is another alternative. This way, an intruder who finds a vulnerability in the server will only have access privileges for this unprivileged user. We used these dedicated accounts to run supervised demo programs.

Virtual accounts.

Similar to the demo accounts, in this category, the server daemon is also activated from a dedicated account and continues to run with the same ID to serve the user requests. The physical account’s file space is partitioned among the Web-based system’s users. Setting up the user accounts is easy and does not require superuser privileges. The CGI scripts and JavaScript or Java modules handle coordination and partition of disk space among users. In some ways, providing such a virtual account environment is similar to providing a multi-user O/S on top of a single-user O/S; file protection and security mechanisms are required.

Anonymous users.

We do not need authentication in order to provide access to anonymous users,. The server is run from a dedicated account as described above, and as soon as a connection is made the process ID is switched to “nobody”, which has minimum privileges in the system (analogous to an anonymous FTP user). Read-only and execute-only file access permissions given to world users should be adequate for running demo programs. We used this alternative in designing unsupervised, as well as some supervised demos.

In order to prevent anonymous users from overwriting each others’ files, each anonymous user is assigned a file space partition. Temporary files created resulting from a compilation and execution are deleted after a certain period of inactivation.

� EMBED PowerPoint.Slide.4 ���

Figure � SEQ Figure * ARABIC �4�: The state diagram for the Web server actions.

Platform Independence and Portability Issues

From the perspective of platform independence and portability, the components building the systems discussed here can be investigated in two categories. Platform-independent components are readily supported in other systems without requiring any further processing. Portable components can easily be ported to any platform, and a process that requires at most a recompilation. Actual binaries may differ from system to system, but they all behave similarly regardless of the platform they run on. The basic components of all the systems we are describing here can be ported to any other platform quite easily. We always collected parts that need to be modified for porting the software to other environments into a single module. The porting process requires replacing the pathnames for the documents and other system utilities.

The following important components are by definition platform-independent or portable:

HTML documents with JavaScript functions and Java classes constituting the backbone of the front-end of our systems are platform independent.

CGI scripts that control the actions of the server depending on the requests from the client are also platform independent.

Items forming the back-end computation engine of the server, such as the Perl and UNIX shell interpreters, compilers of various languages (Fortran, C, HPF, and Fortran 90), and their loaders and linkers, and runtime support libraries (message-passing, intrinsics, etc.) are not platform independent, but portable. Their behavior is similar in every platform in which they were ported.

The graphical Web browsers which form the user interface for the previously mentioned Web-based systems are portable. We assume that any decent browser can readily support Java and JavaScript. These browsers are available in every platform.

In regard to utilities provided to the client site, there was always a tradeoff between using server-site X-windows utilities and platform-independent custom components.

Depending on the implementation and target platforms, we sometimes exploited other local utilities on the server site. For example, when the client machine that runs the browser is a UNIX machine with X-windows capabilities just like the server machine, we were able to use the X- windows-based system utilities on the client site. In CTC’s HPF/Web module where users have private UNIX accounts on the system, they have the option of using traditional X-windows based editors such as emacs, vi, or pico, that directly open an external window on the user’s display.

On the other hand, since we aim to make the same systems accessible from a Windows 95 PC, or from a Windows-based Mac, we sometimes had to supply the user with other platform-independent versions of the same options. For example, in the case of “text editor,” we provided a platform-independent text editor implemented by using a simple form utility and CGI. This was successfully used during our Supercomputing `95 demos. To use this editor in VPL, we later added some JavaScript functions to extend the interactivity. A final product in this respect is a Java-based editor with supporting common found in decent text editors.

Pros and cons of using client site and server site utilities.

Server site utilities like a text editor actually runs on the server machine, and have tendency to overload the server machine artificially since every key stroke is sent to and processed on the server machine. On the other hand, client site editors such as the ones implemented using form/CGI or Java runs on the client’s machine. The interaction with the server is required only for loading or saving user files.

Using server site utilities have the advantage of bringing the users a full-featured well-tested software package that most of them are familiar with. There are no web-based widespread utilities around yet. We therefore had to build custom-made utilities with restricted capabilities. This was also true for the editors, debuggers, graphical tools, and performance visualization tools.

In contrast, in some implementations we were not able to use server-site components, since they give the users more capabilities than we desire. For example, we could not supply a traditional text editor with VPL since it gives access to users to go up and down into other directories and other users` virtual accounts. Graphics packages like GNUPlot and its Java-based counterparts have the same pros and cons with text editors.

Tradeoff between making all or some utilities platform-independent.

A question that comes to mind is whether we should really make all of the client site building components platform independent. In other words, should we announce all existing software to be obsolete or unusable with the Web and start rewriting them from scratch in Java in order to make everything platform independent? We believe that only the utilities that will be used by the client site and that need to be transmitted on the Internet are candidates for being made platform independent.

If a component will be used solely on the server (e.g., CGI modules), it does not need to be written in a platform-independent language like Perl. For the sake of faster execution, we can use executable binary programs instead of interpreted scripts. Similarly, programs that need to be executed may times on the server can be written in standard portable languages and can be recompiled conveniently if the Web system needs to be ported onto another platform.

Using client-site standard utilities as helper applications.

Our purpose should be to reuse the existing software in the same way while adopting the Web tech�nology so that the transition from Unix to Web + Unix, or Windows to Windows + Web can go smoothly.

As we customize our Unix accounts or home PC environments by loading software, users may choose to cus�tomize their browsers with the programs/plug-ins they desire. In this way, standard utilities that many people are accustomed to can be exploited with little modification. We expect a technology trend in this direction. For example, many text editors can be customized with little effort to access files across the network at URL addresses, and to interact with the Web browsers. This may also allow part or all of the user’s file space to be kept on the client-machine. A primitive way of doing this with standard technologies is to download the file to the client-machine, and upload it back to the server once the editing is completed.

Other Issues

Accounting. In some systems, as in CTC, a user has a certain initial computation quota and all the computations made on the machine are charged to the user’s accunt. If a Web-interface is being used to log into a user’s actual account, calculating the charges is trivial. Otherwise, the Web system must communicate with the accounting system explicitly in order to charge the resource usage to the user’s actual account.

Logging of user activities. Keeping logs is also difficult. Automatic server logs do not write all this information to the log files; we may need to record various additional information with standard logs. We set the access permissions to the conf/ directory appropriately so that only the owner of the physical account can access to this directory.

Furthermore, when running the server with the same ID as the user, there is a potential threat. Users of the system should be prevented from being able to modify the log. We did this by not allowing a user to read or write anything outside of his/her directory tree. We should also take care of the input/output in programs.

Security is the reason for prohibiting the server from running directly as “nobody”. If such a thing were done, it would be possible for users to modify logs that keep the accesses to the system.

Location of Servers. If the Web server runs in a confined environment and is not permitted to use “rsh” or “rexec” to execute parallel programs on the computational platform, then we have to run the computational Web server on a node of the parallel machine. This has the disadvantage of consuming the resources on the paralllel machine. Furthermore, if users have their own servers running, it affects the accounting process. At NPAC we could run the servers from a dedicated workstation and send jobs to the parallel machines using remote execution mechanisms.

Automatic server startup. Servers may need to be started automatically via inetd by using crontab files after every crash of the machine on which they run. The parallel machines have a shorter mean time between failures. If the server is running on a node of the parallel machine (e.g., Web/HPF), then we need to automate the process of starting the server during the reboot of the machine to keep the system functional.

A subject related to this is the detection of broken links. If the main server that acts as a gateway to the backend computational resources is running on a more stable machine, but the computational servers are on other less reliable machines, then the main server should be able to locate and disable the links to the unavailable machines.

Account Privacy. We assume that even if the account is virtual, the user has privacy. Just like a superuser, the owner of the dedicated server account is morally obligated to respect the user’s rights.

�Comparison of Web home userdirs w/ virtual accounts.

Virtual accounts should not be confused with the home directories provided by the server software.

Tradeoffs of running anon codes

Giving the anonymous users running arbitrary codes on the computational servers is risky and dangerous. On local area networks, a system administrator maintains user access-rights and user accounts that makes the network available only to a trusted set of users. This is not a fea�sible solution for the Web.

Executing an anonymous piece of code on the computation server poses integrity and security threats to the host since it has unlimited access to system resources. A buggy binary executable can interfere with other running applications or completely crash the host machine. A malicious executable, such as a code that contain a virus or Trojan horse, can delete important files or secretly transfer sensitive data of the unsuspecting user.

 To deal with these dangers, the host should run untrusted code inside a confined environment that allows only limited access to system resources.

User Level. Ensuring protection for the host for compiled code or plain binary executables is complicated since there is no controlling entity that can check every instruction for safety. The recently developed technique of Software Fault Isolation (SFI) [�] inserts a safety check in front of every potentially dangerous machine code instruction that later aborts the execution of the instruction if it is about to access a prohibited resource (memory location, disk file, network address, etc.).

Execution Speed. In practice there is always extra run-time overhead that comes from the safety checks needed to guarantee the security of the host. Software fault isolation as implemented in the Omniware system introduces an average execution overhead of only 9.3% [� NOTEREF _Ref380581309 �6�].

O/S Level. Another variation of SF1 [�] do not modify the executable at all, but instead use the operating system's mechanisms for authentication, memory protection and access control. On a UNIX sys�tem, for example, a straight-forward way to provide containment for untrusted code is to create a temporary "user" for every anonymous application being run. UNIX's access control mechanism based on user and group identifiers can restrict the applications file access. This, combined with the operating system's process address space protection, can ensure that the untrusted code does not interfere with other users' processes on the host. This approach is less flexible since it relies on OS functionality which may not be present, or may be implemented differently, in every operating system. Most importantly it is cumbersome to use, since it requires system administrator privileges from the user running the computation server software. Nevertheless it appears to be a viable alternative for machines used as dedicated Web computation servers.

�Current Trends in World-Wide Web Security

In early days of the Web, the servers and browsers used to send information to each other in `plain-text'' form over the internet allowing intruders listen to lines and steal legitimate users' passwords. We have already begun seeing servers and browsers supporting secure transactions.

A server is to be defined as secure if it is capable of encrypting the contents of any information transmitted between it and the user's browser [� NOTEREF _Ref380580263 �8�]. A secure browser can be defined similarly. Encryption is the process of encoding information so that only parties who can understand the code can read that information [�]. There are currently two protocols available for conducting a secure transaction. The first protocol is Secure Socket Layers (SSL) by Netscape Communications and the other is Secure-HTTP (S-HTTP) that was proposed by EIT. S-HTTP and SSL are different in one basic way: S-HTTP is an application protocol, meaning it can only be used for HTTP transactions, whereas SSL is a protocol that can be implemented with any application protocol: HTTP, FTP, Gopher, Telnet and others. Both SSL and S-HTTP have all three aspects of the security: they use public key cryptography to encrypt data, perform authentication, and employ signatures.

Authentication verifies that a message has not been changed since it was sent and that the name of the sender is accurate. Both SSL and S-HTTP protocols use certificates to verify the authenticity of the data between a Web server and the browser. A certificate is a means of determining whether an individual who gives you a public key is really authorized to do so by the server that you are connecting to. The certificate contains the server's public key and is signed by a third party, the certificate issuer, using the third party's private key. This signing is simply encryption with the third party's published public key. If what's is inside the certificate turns our to be the server's public key, the validity of the certificate is at least as good as the reputation of the third party who did the signing.

The signature on a document is a certificate that verifies the identity of a particular individual or organization. The certificate is unique and distributed by data security organizations, such as RSA Data Security, Inc.

�System Security

Server Setup

The first potential security threat may come from the HTTP server software itself. It is crucial to use one of the servers that is known to have no security bugs [�]. Once this is ensured the server has to be configured in a very careful manner in order not to hinder the security of the entire system. Many of the threats may result from careless configuration of the HTTP server and the poor organization of the server document directories [�]. When configuring theWeb, Web servers used mainly for serving static documents, it is recommended that extra protection be given to sensitive directories by turning off the server-side includes in order to prevent files from these directories from being included in HTML documents. The server-side includes (ssi) can be abused by hostile users who prey on scripts that directly output things that have been sent to them. However, in Web-based programming environments like those we built, it was almost always necessary to use ssi option to create dynamic documents on the fly. We had to ensure security by other means, as explained below.

Enabling the server-side includes option requires the server to parse every HTML file before sending it to the client, which places a tremendous burden on the server. It is therefore recommended that this option be disabled in the future. Since we definitely need ssi, we chose to enable them per-file with an <AddType> directive in the server resource map file (srm.conf.)

Another way of limiting access to the rest of the disk is to sett up an alternate root directory and run the httpd in a chroot (or chrootuid) environment. 	

CGI Scripts

The Webmaster should be very careful in constructing CGI (Common Gateway Interface) scripts. These programs compute information to be returned to users and are often driven by input from the remote user, who may be hostile. If these programs are not carefully constructed, remote users may be able to subvert them to execute arbitrary commands on the server system. Almost all vulnerabilities arise from these issues. It is a good idea to provide CGIs as statically linked binaries rather than as interpreted scripts. This will remove the need for a command interpreter to be available inside the chrooted environment. The contents, permissions, and ownership of files in the cgi-bin directory should be set carefully.

We do not allow CGI scripts from anywhere by using the <AddType> directive using a CGI magic type extension. Instead, we specify the CGI script directories explicitly by using the <ScriptAlias> directive.

Required authorization checks and execution rights

Running the server or clients as root is always dangerous; therefore, the script interpreted with the “root” privileges should not take more than a few statements. If the authorization system breaks after authentication but before switching to the user’s ID, the intruder may gain access to the “root” account. But even in this case it should not go to the shell.

On the other hand, unsupervised demos using “nobody” as the server ID is considered harmless. An authorization mechanism is not required, as the server can get only the IP address of the caller. First of all, we do not give modification rights to these users. They will be able to run the demos, but will not be able to run their own programs. We also need to put limits on stack size, exec. time, etc.

Authentication by Web Passwords

Security is best applied in layers. We first place a sensitive file in a file system that is not accessible to anyone except authorized users (first layer). We require users to authenticate using an ID and password to the system (second layer).

If the user will not be able to run arbitrary programs, such as in unsupervised Web demos, authentication may not be necessary, given that the system is securely set up. On one occasion following the Supercomputing `95 demo, we allowed anonymous users to run arbitrary programs through the Web interface. One obvious security concern was the inevitability of giving Web clients the ability to compile and execute arbitrary programs on local hardware with whatever privileges the HTTP server might have. We precluded some mischief by refusing programs that contained system calls, but users could easily trick the server into giving out, for example, password data using only standard I/O. The only good solution is to powerfully restrict the abilities of whatever user or pseudo user the HTTP daemon runs (for example, user “nobody”) and to monitor carefully the access records for signs of abuse [� NOTEREF _Ref380579831 �1�].

However, in other scenarios explained in Section 2.1, we desire to give users the capability of executing real programs using this system. Therefore, we used a Web authentication mechanism based on Web collaboration passwords and IP addresses to restrict accesses to the system. The Web authentication mechanism allows the administrator to specify as protected certain directories or files under a server. A password file is generated containing the usernames and associated passwords of all the valid users of the system. We preferred to specify access control policies for the server in global server access configuration file (conf/access.conf) as a whole instead of per-file basis for performance reasons. We do not use DBM databases for passwords, since it is not efficient for such a small number of clients using our systems. We protected all the document directories and CGI script directories in this way. A user who does not supply a matching username/password pair is not allowed to access the system directories; instead, a special page containing the system use policy and contact information for the administrator is shown.

Another concern might be the security of transferring these passwords over the internet. In spite of common belief, in the decent browsers such as Netscape 3.0, passwords are not transferred in “clear text” form, but in encrypted form just as Telnet or FTP does. Therefore, it is as secure as using those other popular network-based remote access utilities.

Filtering User Input for Metacharacters

The input fields typed by users should be checked against all kinds of special Unix meta-characters such as \n\r(.,/;~!)>|^&$`< [�] and rejected if determined to be potentially dangerous. This prevents passing the user input (for example from forms) directly to command interpreters such as Perl, AWK, Unix shells or programs that allow commands to be embedded in outgoing messages such as /usr/ucb/mail. Any characters that have special meaning to the underlying shell in a query string may cause a CGI script to misinterpret those characters. A mischievous client may use special characters to confuse your script and gain unauthorized access. Languages like Perl and the Bourne shell provide an eval command that permits the execution of a string constructed by another statement on the fly. If the server script is going to use any data from the user to construct a command line for a call to popen() or system(), before calling the function, backslashes should be put before �any characters that have special meaning to the Bourne shell.

Protection Against Other Users

Another concern was possible attacks by other legitimate users of the system. To prevent this we set up a special account for the system and ran the server under this account. This brought us the flexibility to use Unix system file protection mechanisms to protect our directories from other users of the same system. Furthermore, as much as possible, the system never indicates the actual location of a Web account to the user. We always precluded this information from diagnostics and error messages.

When users logged in to their accounts ensuring account privacy was more trivial. The scripts terminated with errors when the users were not allowed to do a certain operation, and we presented the error message directly to the users.

We took several measures to prevent users of virtual Web accounts from being able to access other users’ accounts: There is no way for the users of the system to go out of their directories by using any of the utilities provided by the system. VPL is the most capable system in this respect and approximates the Unix shell’s functionality. In VPL, the commands such as delete/make/rename directory or delete/remove/rename/copy file always manipulate items in the user’s home account. Using JavaScript for validity checks at the client site, and more advanced CGI script based checks on the server site, guaranteed this result. Other systems that we built needed only a subset of these precautions to ensure privacy of accounts.

Verifying the Arbitrary User Programs

It was a challenge to provide access to more powerful, higher-level computing services without compromising security. When the server is running with users’ Unix account IDs, users are able to run any arbitrary programs, as they are executing in their own accounts. However, when virtual Web accounts are used, we should bring further restrictions to the programs to be executed by the system. Programs supplied by the user for execution may contain possible system calls. We filter the user programs for “system calls,” and reject the execution if one is found. The user may also gain some access to system files such as the password file using input/output statements.

Confining untrusted programs is technically simple when the code is being interpreted. Since every single instruction is executed under the control of the interpreter, the interpreter can check the in�struction arguments to ensure that all accesses are legal before executing the instruction. For example, Netscape [�] prohibits all local file accesses and allows network connections only to the server from which the applet was downloaded. We could have done something similar, but we chose to restrict the input/output syntax/semantics a little, and allow user input/output. The input/output statements are filtered against any files the users open outside their own directories. We do not allow using variables as filenames in open statements, since this would elaborate the filtering process and might force us to adapt Java’s way of thinking. The user must always put the filename in quotes in the open statement so that the system can validate it.

Conclusion

The implementation of Web-based programming systems pose challenging technical problems that need to be addressed. In this paper we have described the design and implementa�tion of several Web-based general programming environments that we built to facilitate the development and execution of parallel message-passing and data parallel programs. The prototype systems allow browsing, program development, directory management, performance, and scientific data visualization within the framework of a single package. They have the unique property of using the Web as the standard interface for accessing computational resources from any platform (Unix, PC, or Mac) using a standard Java-enabled browser.

Acknowledgments

We would like to thank Caroline Hecht, Kathy Barbieri, Susan Mehringer and
Anne T
r
efethen
 from the Cornell Theory Center for their collaboration in tailoring the HPF/Web module. Caroline should be acknowledged as the major implementor of the HPF/Web module. We corresponded with her quite oftenly, shared our experience, ideas, and some critical codes that made the implementation possible. We would also like to thank E. Weinman for proofreading this manuscript.

References

§ Mailing address: NPAC at Syracuse University, 111 College Place, CST Mail-Stop 3-217, Syracuse, NY 13244-4100. WWW: http://www.npac.syr.edu/users/{dincer,gcf}, e-mail: {dincer, gcf}@npac.syr.edu.

�PAGE �

�PAGE �
24
�

�PAGE \# "'Page: '#'�'" ��

� 	Cowie, J., Dincer, K., and Li, X., “Towards a Web-Based PCRC Programming Environment,” SCCS Technical Report, NPAC, Dec. 95.

� 	Parallel Compiler Runtime Consortium Project, at http://www.npac.syr.edu/projects/ pcrc/.

� Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard,” International Journal of Supercomputer Applications, vol. 8, no. 3 & 4, pp. 157--416, 1994.

� High Performance Fortran Forum, “High Performance Fortran Language Specification: Version 1.0,” Scientific Programming, vol. 2, no. 1 & 2, 1993.

� Mehringer, S. And Barbieri, B., “A Workshop at Your Workstation,” Cornell Theory Center Forefronts Magazine, pp. 10--11.

� Colusa Software, “Omniware Technical Overview,” at URL http://www.colusa.com, 1995.

� Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. A., “A Secure Environment for Untrusted Helper Applications -- Confining the Wily Hacker,” In Proceedings of the 1996 USENIX Security Symposium, 1996.

� Magid, J., Matthews, R. D., and Jones, P., The Web Server Book, Ventana Press, 1995.

� WWW Security FAQ at http://www genome.wi.mit.edu/WWW/faqs/www-security-faq.html.

� ftp://ftp.auscert.org.au/pub/auscert/papers/unix_security_checklist, ftp://ftp.auscert.org.au/pub/ auscert/papers/ unix_security_checklist 2.19 World Wide Web (WWW) - httpd

� CERT Advisory CA-95:04 C.8.

� Netscape Communications, Inc. At URL http://home.netscape.com.

