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Executive Summary
This document contains the preliminary report of the Java Grande Forum.  The primary purpose of this document is to convey a succinct set of recommendations from this forum to Sun Microsystems and other purveyors of Java™ technology that will enable Grande Applications to be developed.

The notion of a Grande Application (GA) is familiar to many researchers in academia and industry but not to the world in general. In a nutshell, a GA is any application, scientific or industrial, that requires a large number of computing resources, such as those found on the Internet, to solve one or more problems. Examples of Grande Applications are presented in this report as well as a discussion of why we believe Java™ technology has the greatest potential to support the development of Grande Applications.

The front matter of this report primarily addresses more general concerns and is motivational in nature. Thus, anyone interested in making use of the Internet to solve large problems and possibly participating in the forum will find this introductory material of interest. The recommendations themselves are intended primarily for those directly influencing the direction of the Java™ language proper. (Presently, this implies Sun Microsystems or any standards body that may be formed.) 

The input to this report, being preliminary in nature, has been derived principally from members of the Java Grande Forum. For more information on the forum itself and to provide feedback, please direct e-mail to George K. Thiruvathukal, Secretary General, at

george.k.thiruvathukal@acm.org
You may also wish to visit our web site, located at http://www.jhpc.org/grande, which provides information about the Java Grande Forum activities, products, and upcoming events.

Mission and Goals

Java has potential to be a better environment for Grande application development than any previous languages such as Fortran and C++. The goal of the Java Grande Forum (hereafter, JGF) is to develop community consensus and recommendations for either changes to Java or establishment of standards (frameworks) for Grande libraries and services.  These language changes or frameworks are designed to realize best ever Grande programming environment.

The Java Grande Forum does not purport to be a standards body for the Java™ language per se. Rather, JGF intends to act in an advisory capacity to ensure those working on Grande applications have a unified voice to address Java language design and implementation issues and communicate this input directly to Sun or a prospective Java standards group.

There are many technical and business reasons why we, the JGF, believe Java has the greatest potential for Grande application development. These reasons are beyond the scope of this document, which is intended to communicate initial recommendations to Sun Microsystems and other purveyors of the Java™ language.

1. Introduction

The remainder of this document is dedicated to addressing the following questions. 

· What is a Grande Application? What is an example of a Grande Application?

· What makes a Grande Application different than other applications?

· Why do we insist on Java? Are we saying there is no room for other languages?

· What is the Java Grande Forum? How can I or my organization participate?

· When is the next meeting? How can I participate? What is expected?

· What are the planned deliverables? 

Following the discussion of these general questions, we present the preliminary reports of the two JGF working groups: the Numerics group and the Applications/Frameworks group.

1.1 Grande Applications

This section addresses the questions of immediate interest: What is a Grande Application? What is an example of a Grande Application? Why are Grande Applications important? Why Java?

Grande Applications are suddenly everybody’s interest. The explosive growth of the number of computers connected to the Internet has led many researchers and practitioners alike to consider the possibility of harnessing the combined power of these computers and the network connecting them to solve more interesting problems. In the past, only a handful of computational scientists were interested in such an idea, working on the so-called grand challenge problems, which required much more computational and I/O power than found on the typical personal computer. Specialized computing resources, called parallel computers, seemingly were the only computers capable of solving such problems in a cost-effective manner. 

The advent of the more powerful personal computers, faster networks, widespread connectivity, etc. has made it possible to solve such problems even more economically, simply by using one’s own computer, the Internet, and other computers. 

With this background, a Grande Application is therefore defined as an application of large-scale nature, potentially requiring any combination of computers, networks, I/O, and memory. 

There are already many works in progress that are by definition Grande Applications. The following list represents merely a handful of Grande Applications:

Geoffrey: I have listed examples for some of these points from your presentation. I think our case is stronger for Grande Applications if we can identify one per listed category! 

· High Performance Network Computing

· Scientific and Engineering Computations (Computational Fluid Dynamics, Pharmaceuticals)

· Distributed Modeling and Simulation (Aircraft Design)

· Parallel and Distributed Computing

· Data Intensive Computing (Data Mining)

· Communication and Computing Intensive Commercial and Academic Applications 

· HPCC 

· Computational Grids (e.g., Globus and Legion)

· Collaboration Software

· Teaching Environments

1.2 JaVA For Grande Applications

A question that naturally arises is: Why Java?

The Java Grande Forum believes that, more than any other language technology introduced thus far, Java has the greatest potential to deliver. The Java language is not perfect; however, it promises a number of breakthroughs that have eluded most technologies thus far. Specifically, Java has the potential to be written once and run anywhere. This means, from a consumer standpoint, that a Java program can be run on virtually any conceivable computer available on the market. While this could be argued for C, C++, and FORTRAN, true portability has not been achieved in these languages, save by expert-level programmers. 

While JGF is specifically focused on the use of Java to develop Grande Applications, the forum is not concerned with the elimination of other useful frameworks and languages. On the contrary, JGF intends to promote the establishment of standards and frameworks to allow Java to utilize other industry and research services, such as Globus and Legion. These services already provide many facilities for taking advantage of heterogeneous resources for high-performance computing applications, despite having been implemented in languages other than Java.

1.3 java grande forum Process and Membership

1.4 SUMMARY of Our Most Recent Java Grande Forum Meeting

The Second Java Grande Forum meeting was held May 9-10 98 in Palo Alto. It was sponsored by Sun Microsystems (Siamak Hassanzadeh), and coordinated by Geoffrey Fox with George Thiruvathukal as secretary. 

The first meeting of the Forum was March 1,98 and we expect that the next two meetings to be in August and November (at SC98). Both meetings had over 20 participants from academia, industry and government.

The meeting started with technology updates from Sun (their Hotspot optimizing compiler and the Java Native code Interface JNI) and IBM (Marc Snir on the performance of Java in scientific computing). Then we pursued the classic mix of parallel and plenary sessions using two working groups.

· Numerics and Libraries led by Roldan Pozo and Ron Boisvert of NIST. 
· Applications and Parallel/Distributed Computing led by Dennis Gannon from Indiana.

Both groups made good progress and we expect their reports to be available around the end of May. These will of course include Web pages but also a "Java Grande Forum Charter Document" which will be distributed. Further we expect to submit a set of near term action items to JavaSoft. These will contain our proposals in the areas of complex, "Fortran-like multidimensional (efficient) arrays", the importance of optimized arithmetic including extended precision and use of idealized numerical properties such as associativity. As discussed by James Gosling in his presentations at SC97 and "Java Grande 98" (Feb28-Mar 1), limited operator overloading and highly optimizable classes can allow one to implement these valuable numeric features with natural syntax and good performance. Our proposal to JavaSoft will also discuss of changes to RMI (native Java inter-object communication) to allow higher performance. We suggest exposing interfaces to allow RMI to be implemented on lower level faster transport layers and to improve the performance of serialization. 

We divided our action items into three categories

1. Proposals to JavaSoft as discussed above. These were further divided into either essential or desirable. 

2. Community activities to produce infrastructure and standards 

3. Community research which will clarify the value of new activities of type 1) and 2)

Action items of type 2) include standard interfaces and reference implementations for Java libraries of Math functions, matrix algebra, signal processing etc. We also proposed a Java Grande application benchmark suite with kernels and more substantial entries. There was significant discussion of the importance of a "Java Framework for computing" -- a set of interfaces to support seamless computing or the ability to run a given job on any one of many different computers with a single client interface. A typical community research activity is the study of the scaling of the Java Virtual Machine to large applications or understanding the tradeoffs between Java thread and distributed VM forms of parallelism.

Numerics Working Group Summary

Geoffrey: Insert bullet list here! 

Applications/Frameworks Working Group Summary

Geoffrey: Insert bullet list here!

                  2: Draft REPORT OF THE NUMERICS WORKING GROUP (May 26, 1998)

Goals and Mission of Numerics Working Group
If Java is to become the environment of choice for high-performance scientific applications, then it must provide, for large scale floating-point computations, performance comparable to what is achieved in currently used programming languages (C or Fortran).  In addition, it must have language features and core libraries that enable the convenient expression of mathematical algorithms. The goal of this working group is to assess the suitability of Java for numerical computation, and to work towards community consensus on actions which can be taken to overcome deficiencies of the language and its run-time environment.  In this report, we present preliminary findings of the working group.

2.1: CRITICAL JAVA LANGUAGE AND JAVA VIRTUAL MACHINE ISSUES

We begin by outlining critical issues that impede Java's effectiveness in

applications that are dominated by the use of floating-point arithmetic.

Unless these issues are satisfactorily resolved it is unlikely that Java will

be accepted by the numerical computation community.  This can impact the entire

Java enterprise by slowing the dissemination of high quality components for

solving commonly occurring mathematical and statistical problems. For each

issue we present solutions recommended by the working group. In selecting such

solutions, the working group has been careful to balance the needs of the

numerical community with those of Java's wider audience. The proposed solutions

require additions to the current Java and JVM design.  We have tried to

minimize the changes required in Java, relying on compiler technology, whenever

feasible. This minimizes the changes that affect all Java platforms, and enable

implementors to optimize for high numerical performance only in those

environments where such an effort is warranted.

ISSUE 1 : Complex arithmetic

REQUIREMENT:  The Complex field is an essential tool in the analysis and

solution of mathematical problems in all areas of science and engineering.

Thus, it is essential that the use of complex numbers be as convenient and

efficient as the use of floats and doubles.

The obvious solution is to develop a straightforward complex class with

methods for each arithmetic operation and use such objects as needed.  There

are several reasons why this approach fails.

  (a) The object overhead of complex methods makes them unacceptably

      inefficient.

  (b) The semantics of complex objects are different than those of floats

      and doubles.  For example, the = and == operators manipulate references

      rather than values.  Such differences lead to many errors.

  (c) Use of method calls for elementary arithmetic operations leads to

      inscrutable code which is very tedious to write and debug.

      Users would simply stay away.

The ideal solution is to add new base complex types to the language on par with

float and double.  This, of course, requires a significant change in the

language and in JVM to satisfy the needs of a relatively small community. In

particular, it requires the addition of a significant number of new opcodes.

An alternative solution acceptable to the working group requires that the

following actions occur:

  (1) A complex arithmetic package be developed and included as a core Java

      package, perhaps as a subpackage in Java.math.  Such a package will

      support assignment by value, and standard arithmetic operations and

      relations on complex values.

  (2) Use of these classes is made as efficient as float or double. This

      may require an extension to Java and JVM in support of lightweight

      classes; see following sections. This also requires the cooperation of

      compiler writers to use the opportunity provided to generate efficient

      code.

  (3) Operator overloading can be used to bind natural notation for

      arithmetic, logical and assignment operators to the methods of the

      complex classes; see following sections.

This alternate suite of changes requires fewer changes to Java and JVM, but

will require more compilation efforts for an efficient implementation.

Lightweight classes and operator overloading are general mechanisms which can

satisfy the needs of many groups for alternate arithmetic systems, such as

interval and multiple precision.

In addition to complex arithmetic, the Java.math library should be extended to

support complex transcendental functions.

The current proposal assumes that complex numbers are pairs of doubles. It is

deemed acceptable (at least initially) not to support complex numbers with

float components.

ISSUE 2 : Lightweight classes

REQUIREMENT:  Implementation of alternative arithmetic systems, such as

complex, interval, and multiple precision requires the support of new objects

with value semantics. Compilers should be able to inline methods that operate

on such objects and avoid the overheads of additional dereferencing.  In

particular, lightweight classes are critical for the implementation of complex

arithmetic as described in issue 1.

A lightweight class is final.  It holds a value and supports deep assignments

and deep comparisons (who work on the object value, not its reference).

  o  a.assign(b), assigns to object a the value of object b.

  o  a.equals(b), tests that objects a and b have the same value.

Lightweight objects will usually support additional unary and binary

operators.

Note that there is no requirement for lightweight classes to be immutable (i.e.

instance variables need not be final).  Immutability would lead to unnecessary

copying, preventing the updating of array of objects in place, a key need of

the numerical community.

There are two alternatives to the design of lightweight objects.

  (1) Lightweight objects are new types of objects in the Java language.  They

      are explicitly declared as such.  A lightweight  object is always

      accessed by value, as if it had a primitive Java type. : e.g., the value

      of a complex variable is a complex number, not an object reference.

      Instances of lightweight objects can be assigned (using the assign

      operator) and can be compared (using the equals operator).  On the other

      hand, if v is an instance of a lightweight object, then v = null or v ==

      null are illegal expressions.  Lightweight objects are passed by value in

      method invocations.  Methods on such objects cannot be synchronized. It

      is expected that compilers will inline invocations of standard methods

      (assign, equals, ...) on such objects.

  (2) Lightweight objects are regular Java objects, and are accessed by

      reference.  Since they are final, and since the Java (back end) compiler

      has full knowledge of the semantics of the methods applied on these

      objects, it is expected that compilers will inline invocations of assign,

      equals and other predefined methods.

The first scheme is likely to lead to the best performance: one always saves

the storage required for a Java object: a complex will always require two words

of storage, no more. No additional referencing is needed to access an object

value.  Garbage collection for such objects is simplified.

On the other hand, this scheme seems to require significant changes in the Java

language and the JVM.  For example, the JVM instruction set does not support

method invocations that return non-scalar values. It does not support arrays

with entries that are not of a primitive or a reference type. Modifications

will also be required in the Java program verifier.

The second scheme is more dependent on compiler optimization techniques for

performance: a compiler will generally be able to inline invocations of

predefined final methods; however a lean storage layout, that holds data but no

object descriptor, can be generated only if the compiler can determine that the

object is not accessed by reference; changes in the garbage collector might

also be required in order to support a lean layout.

The second scheme has the added advantage that it supports both deep and

shallow assignments or comparisons on lightweight objects.  Thus, it provides

functionality equivalent to this achieved in C or Fortran by the use of

pointers. In this scheme, lightweight objects are always passed as reference

arguments; this provides more flexibility (e.g., allowing a method to return

multiple values).

Finally, the second scheme does not require changes in Java or JVM

specifications.

There are several alternative design points that should be evaluated.

   o  If the use of lightweight objects is restricted to predefined

      classes, such as Complex, then the inlining could be done by the

      front-end compiler.  However, such an approach does not extend to

      user-defined lightweight classes. It makes harder optimizations by

      back-end (dynamic or static) compilers.  Such a choice also impacts

      debuggers and other tools.

   o  An alternative approach to lightweight objects is to treat them

      as regular Java objects that must obey certain restrictions;

      e.g., no (reference) assignment; lightweight objects cannot be

      components of regular Java arrays or regular Java structures

      (they can be components of the special rectangular Java arrays,

      defined below). This approach would still require Java language

      extensions (lightweight classes have to be declared as such, and

      the restrictions need to be spelled out).  However, no changes

      are needed in JVM (beyond carrying in the class file an

      attribute that marks the class as lightweight).  Back-end

      compilers might be able to better optimize code using such

      lightweight objects, because of the added constraints.

ISSUE 3 : Operator overloading

REQUIREMENT: Usable implementation of complex arithmetic, as well as other

alternative arithmetics such as interval and multiprecision, requires that

code be as readable as those based only on float and double.

Operator overloading is the obvious solution to this problem.  Without it,

codes implementing complex arithmetic would be extremely difficult to develop,

understand and maintain.  Such a code will look very different than similar

code using real arithmetic, thus burdening library developers.  E.g., a simple

statement such as

a = b+c*d

will be replaced by

a.assign(sum(b, product(c,d))

Without operator overloading, a large portion of the scientific computing

community would choose to avoid Java as being too unfriendly.

Only a limited facility for operator overloading is necessary to fulfill this

requirement. If the first scheme is used, so that an object supports either

shallow or deep assignments, but not both, the assignment operator = will be

overloaded to signify deep assignment:  a = b is interpreted as a.assign(b)).

Similarly, a == b is syntactic sugar for a.equals(b), if a and b are

lightweight objects.  On the other hand, if the second scheme is used, then new

operators are needed for deep assignments and comparisons.  Thus a <- b is

syntactic sugar for a.assign(b) and a === b is syntactic sugar for

a.equals(b).  (It may be desirable to introduce new operators even if the first

scheme is used, so as to reduce confusion.  It may also be desirable to allow

'<-' to be used for assignment of primititive types, for consistency.)

Thus, if the second scheme is used, then

Complex c = new Complex(0.0, 0.0);

Complex d = new Complex(1.0, 1.0);

Complex e;

e = c;

c <- d;

System.out.println(e.real + "," e.imag);

prints:

1.0, 1.0

The arithmetic, assignment and logical operators must be extendable by

overloading, using their natural notation.  One may have a predefined naming

scheme for methods that overload existing operators: 'sum' for '+', 'product'

for '*', etc.  It is not necessary to admit the introduction of new operators

(beyond assign and equals). Thus, no new syntax is required for operator

overloading,  except that predefined operators apply to lightweight objects. An

expression of the form 'a+b' is merely syntactic sugar for sum(a,b) (and is

illegal if the 'sum' method is not defined on a and b).

There are several alternatives that should be evaluated.

  o  Operator overloading may be restricted to predefined lightweight

     objects (such as complex) or extended to user-defined lightweight

     objects, or extended to arbitrary classes. It is reasonable to

     couple operator overloading with lightweight objects: the

     language conveys the right intuition by using operators for

     'cheap' operations and method invocations for expensive

     operations.

  o  Binary operators, such as 'sum' can be restricted to the case were

     both operands are of the same type, or extended to operands of

     distinct types.  Type promotion is very natural in many cases

     (e.g., real*complex), and should be supported.

ISSUE 4 : Optimal use of hardware

REQUIREMENT: The high efficiency necessary for large-scale numerical

applications requires aggressive exploitation of the unique facilities of

local floating-point hardware.

The current insistence of bitwise reproducibility of results on all JVMs makes

it impossible to satisfy this requirement.  Efficient processing of Java

programs requires that compilers and JVMs provide the _option_ to

  (a) use IEEE extended arithmetic hardware anywhere in the computation

  (b) use the associative law to rearrange to order of computation

  (c) use possibly unsafe identities to eliminate computations

The use of IEEE extended arithmetic in intermediate computations can improve

the accuracy and reliability of numerical results.  Processor with hardware

support for IEEE extended should NOT be required to round intermediate

results.  This slows the computation and makes it less accurate.  There should

not be a requirement that such a store be forced on each assignment statement

in a user's program. Rounding should be done by the compiler when necessary.

For example, on a machine with extended precision registers, rounding should

occur only when registers must be spilled to memory.  On a machine with fused

multiply-add, a multiplication followed by an addition should always be

replaceable by a fused multiply-add.

The associative law can be used by optimizing compilers to reorder arithmetic

operations in order to make more efficient use of hardware.  Such optimizations

are crucial to improving the performance of numerical codes, and users should

have access to this technology. A typical example for such an optimization is

the use of associativity to execute a reduction in parallel.

On the other hand, bitwise reproducibility is important for code testing and is

needed in many environments. Users may want to ensure strict reproducibility by

enforcing the default Java model.  Programmers may want to disable unsafe

optimizations for selected codes in order to have better control on the

execution (e.g., guarantee better precision).

We do not feel that large changes to the Java specification are needed to

satisfy the needs of the numerical community on this issue.  In particular,

the current JVM specification for bitwise reproducibility can remain the

default behavior.  Instead, what is needed is

  (a) JVM flags that allow the _user_ to select efficiency over

      reproducibility at runtime.

  (b) a class and method modifier, StrictNumerics, which specifies that

      the given class or method must adhere to the more restrictive

      Java arithmetic specification, regardless of flags which may be

      set by the user.

The number and semantics of runtime flags should be left up to the JVM

developer.  The important features of this proposal are that

  o Strict Java semantics apply, by default.

  o JVMs may provide environment flags to overrule strict Java

    semantics.  These would be similar to compiler optimization options.

    Thereby, the user can decide to select efficiency over

    reproducibility at runtime.

  o Developers can shield critical segments of code where these

    relaxations should never occur, using the StrictNumerics attribute.

The existing proposals for LooseNumerics and IdealizedNumerics is unnecessarily

complicated -- we do not feel that code developers will want this level of fine

grain control.  The implementation mechanism would be the same as in these

proposals: the StrictNumerics attribute is carried in the class file, and

observed by back-end compilers.  Also, while optimizations may change the

numerical outcome of a computation, or even cause a Not a Number value to be

returned, rather than a regular value, the optimizations should still preserve

the "precise exception" model of Java: null pointer of index out of bound

exceptions should occur in the optimized code in the same state as they would

have occured in the unoptimized code.

ISSUE 5 : Rectangular arrays

REQUIREMENT: Operations on multidimensional arrays of base types must be easily

optimized.  In addition, the memory layout of such arrays must be known to the

algorithm developer in order to process array data in the most efficient way.

The performance of Java code can suffer from a deterioration of up to 25%

because of the lack of true rectangular arrays.  For native Java arrays code

generated for column traversal is less efficient because of pointer chasing.

Compiler elimination of run time tests for null pointers and out of bound

indices is harder if arrays can be jagged, or can change shape at run time.

More significantly, disambiguation is hard: even if two 2D arrays are not

identical they may still share a row. This forces compilers to generate

superfluous stores because of potential aliasing. Finally, a clearly defined

memory layout with guaranteed locality of data will allow developers to devise

algorithms which can be processed more efficiently.

We propose that standard Java classes be developed which implement

multidimensional rectangular arrays, and that these be included as subpackage

in Java.math.  These classes would store multidimensional arrays internally so

as to provide access that is as efficient as if the arrays were stored in a

canonical order (e.g., row-major).  The classes would support 1D, 2D, 3D, and

possibly 4D...7D arrays with Int, Long, Float, Double and Complex entries (a

different class is needed for each dimensionality and each element type --

since Java does not support templates).  The classes provide the following

methods.

  (a) Get and set to access and update an array entry.

  (b) Operations that correspond to Fortran 90 array intrinsics.

      In particular:

    (b.1) Operations to access the number of dimensions and

          the extends of an array.

    (b.2)  operations to reshape and transpose an array.

    (b.3) elemental conversion functions (e.g., the

          equivalent of REAL and AIMAG, that convert complex arrays

       into double arrays.

    (b.4) elemental transcendental functions

    (b.5) elemental boolean functions

    (b.6) array reduction functions (sum, minval, etc.)

    (b.7) array construction functions (merge, pack, spread, unpack)

    (b.8) array reshape function

    (b.9) array manipulation functions (shift, transpose)

    (b.10) array location functions (maxloc, minloc)

    (b.11) array scatter-gather and array scan operations (Fortran 95)

    (b.12) matrix multiply

Not all Fortran 90 and Fortran 95 operations are needed, upfront.  One can

likely do without elemental transcendental functions.

  (c) operations that correspond to array expressions (sum, scaling, etc.)

  (d) operations that create copies of or references to array sections.

      These operations allow one to copy subarrays (defined by

      subscript triplets or by vector subscripts) or to create

      references to such subarrays, thus supporting in place update of

      subarrays.  (As in Fortran 90, references to subarrays may be

      restricted to subarrays described by subscript triplets, so as

      to have succinct subarray descriptors.) A possible mechanism is to

      support the definition of index sets (or array shapes) and the

      extraction of a subarray defined by such an index set.

  (e) Operations to cast Java arrays into rectangular arrays, and

      vice-versa.

The array classes can be implemented with no changes in Java or JVM. However,

It is essential that the get and set methods be implemented as efficiently as

array indexing operations are in Fortran or in C.  We expect that inlining will

be used for this purpose, and that garbage collectors will recognize

rectangular arrays.  Multidimensional arrays are extremely common in numerical

computing, and hence we expect that efficient multidimensional arrays classes

will be heavily used.

Note that an array of complex entries need not be implemented as an array of

references (if Complex objects are regular Java objects), or as an array of

lightweight objects.  Rather, such an array can be implemented as an array of

doubles (with twice as many entries as the complex array).  The naive

implementation of the get method will access two double values and return a

(new) complex object -- better implementations will inline this code.

Additional methods will be provided to convert a complex array into a double

array (with twice as many entries), and vice-versa.

The inclusion of standard array classes in Java.math does not require any

change to the Java language. However, the use of explicit method invocation to

effect all array operations will significantly decrease the readability of Java

code, and incur the wrath of users. The introduction of a simple notation for

multidimensional arrays which maps to the standard array classes would make the

use of such arrays much more natural.  A multi-index notation, like a[i,j] to

refer to such array elements would be ideal.  This would allow statements like

   a.setElement(i,j,b.getElement(i,j)+s*c.getElement(k,l));

to be more naturally expressed as

   a[i,j] = b[i,j] + s*c[k,l];

Alternatively, one could reuse the bracket notation of Java, namely

  a[i][j] = b[i][j] + s*c[k][l].

The front-end compiler disambiguate the expression according to the type of a.

This requires changes in the Java language or (with the second alternative)

fancier operator overloading mechanisms.

Some alternatives that need be discussed:

  o Operator overloading may be applied to array arithmetic; e.g. A =

    B+C. This is nice, but not strictly necessary.

  o It would be nice to facilitate indexing operations by explicitly

    supporting triplet notation. This either implies new syntax, or

    fancy overloading of the indexing

We did not impose a strict requirement that rectangular arrays be stored in

contiguous memory in, say, row major order.  This for two reasons: (i) this

requirement would not have any semantic effect, since one cannot access a 2D or

3D array as if it was one-dimensional (we do not propose the equivalent of

Fortran 90 assumed-size arrays).  The requirement has only performance

implications; e.g., in place reshaping of a 2D array into a 1D array is

expected to be very fast, as no data copying is required. In any case,

contiguity is a significant requirement only within page boundaries: contiguous

pages are not necessarily contiguous in real memory.  Also (ii) a strict

requirement that arrays be stored contiguously would require changes in JVM.

Therefore the weaker requirement that access be as efficient as if the arrays

are stored in canonical order.

As for the storage order, one can follow two approaches.

  o There is a unique storage order, e.g., row major.

  o Arrays can be stored in distinct orders.  For example, storage order could

    be specified when the array is instantiated.  Possible choices would be (i)

    row major (C order), for better performance when native C methods are

    invoked; (ii) column major (Fortran order), for better performance when

    native Fortran methods are invoked; (iii) block major, for block oriented,

    recursive algorithms. A default, row-major layout would be used when users

    do not specify layout.

2.2: DEVELOPMENT OF CORE CLASSES AND INTERFACES FOR NUMERICAL COMPUTING

The numerics working group has agreed to begin the development of a variety

 of core numerical classes and interfaces to support the development of

substantial Java applications in the sciences and engineering.  The main

purpose of this work is to standardize the interfaces to common mathematical

operations.  A reference implementation will be developed in each case.  The

purpose of the implementation will be to clearly document the class and its

methods.  Although we expect these to be reasonably efficient, we expect that

highly tuned implementations or those relying on native methods will be

developed by others.  Also, the simple methods, such as get or set, will not

provide reasonable performance unless they are inlined, because the method

invocation overhead will be amortized over very few machine instructions.

Unless otherwise specified, we will initially only define classes based on

doubles, since computations with Java floats are less useful in numerical

computing.

The classes identified for first consideration are the following.  We expect to

have the first three fully developed this year, with the others to follow soon

after.

  (a) Complex

      This implements a complex data type for Java as described above.  It

      includes methods for complex arithmetic, assignment, as well as the

      elementary functions.

      Contacts: John Brophy, Visual Numerics

                Marc Snir, IBM

  (b) Multidimensional arrays

      This implements one, two and three-dimensional arrays for Java as

      described above.

      Contacts: Marc Snir, IBM

                Roldan Pozo, NIST

  (c) Linear algebra

      This implements matrices (in the linear algebraic sense) and operations

      on matrices such as the computation of norms, standard decompositions,

      the solution of linear systems, and eigenvalue problems.  A strawman

      proposal has already been developed here and will be released for comment

      soon.

      Contacts: Cleve Moler, The MathWorks

                Roldan Pozo, NIST

                Ron Boisvert, NIST

  (d) Basic Linear Algebra Subroutines (BLAS)

      These implement elementary operations on vectors and matrices of use to

      developers of linear algebra software (rather than to average users).

      This work will be done in conjunction with the BLAS Technical Forum.

      Contacts: Roldan Pozo, NIST

                Keith Seymour, University of Tennessee

                Steve Hague, NAG

  (e) Higher Mathematical Functions

      This includes functions such as the hyperbolics, erf, gamma, Bessel

      functions, etc.

      Contacts: Ron Boisvert, NIST

                John Brophy, Visual Numerics

  (f) Fourier Transforms

      This includes not only a general complex transform, but specialized

      real, sine and cosine transforms.

      Contact: Lennart Johnsson, University of Houston

  (g) Interval Arithmetic

      This implements an interval real data type for Java.  It includes methods

      for interval arithmetic, assignment, as well as elementary functions.

      Contact: Dmitri Chiriaev, Sun

  (h) Multiprecision Arithmetic

      This implements a multiprecision real data type for Java.  It includes

      methods for arithmetic, assignment, as well as elementary functions.

      Contact: Sid Chatterjee, University of North Carolina

The working group will review these proposals and open them up for public comment.  It will also set standards for testing and documentation for numeric classes.  It will work with Sun and others to have such classes widely distributed.

2.3: OTHER ISSUES

The following problems were discussed by the forum, but no formal position was taken.

  (1) Alternative definition of the Java.math library of transcendental functions.  The current operational definition is imprecise and suboptimal (the functions are defined in terms of bitwise compatibility with a particular implementation).  Alternative definitions are (i) precise rounding -- result is as if computed in infinite precision arithmetic, next rounded; (ii) within fixed bound of precise result; or (iii) improved operation definition.  The first definition is very desirable if it can be achieved with acceptable performance overhead.  The second weakens bitwise reproducibility.  Note that current Java implementations are not in strict adherence to this aspect of the Java standard: most JVMs use their native C math library.

  (2) Improved native interfaces between Java and Fortran.
  (3) Extensions to support multiple NaN values.  This seems to be already in the making.

2.4: MEMBERS OF THE NUMERICS WORKING GROUP

The following individuals contributed to the development of this document at the Java Grande Forum meeting on May 9-10 in Palo Alto, California.

  Ronald Boisvert, NIST, Co-chair

  John Brophy, Visual Numerics

  Sid Chatterjee, University of North Carolina
  Dmitri Chiriaev, Sun
  Geoffrey Fox, Syracuse University
  Steve Hague, NAG
  Siamak Hassanzadeh, Sun
  Lennart Johnsson, University of Houston
  Roldan Pozo, NIST, Co-chair
  Keith Seymour, University of Tennessee
  Nik Shaylor, Sun

  Marc Snir, IBM

  George Thiruvathukal

The following additional individuals also contributed comments which helped in the development of this document.

Susan Flynn-Hummel, IBM
Roger Golliver, Intel

William Kahan, University of California, Berkeley
Cleve Moler, The MathWorks
Jose Moreira, IBM

Sam Midkiff, IBM
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