HPcc as High Performance Commodity Computing

A White Paper by

Geoffrey C. Fox, Wojtek Furmanski

(A shortened version of this is to be published by Morgan-Kaufmann July 98 as a Chapter in a book on Computational Grids edited by Ian Foster and Carl Kesselman)
gcf@npac.syr.edu, furm@npac.syr.edu

World Wide Web: http://www.npac.syr.edu
http://www.npac.syr.edu/users/gcf/HPcc/HPcc.html

Abstract:

We review the growing power and capability of commodity computing and communication technologies largely driven by commercial distributed information systems. These systems are built from CORBA, Microsoft’s COM, Javabeans, and less sophisticated web and networked approaches. One can abstract these to a three-tier model with largely independent clients connected to a distributed network of servers. The latter host various services including object and relational databases and of course parallel and sequential computing. High performance can be obtained by combining concurrency at the middle server tier with optimized parallel back end services. The resultant system combines the needed performance for large-scale HPCC applications with the rich functionality of commodity systems. Further the architecture with distinct interface, server and specialized service implementation layers, naturally allows advances in each area to be easily incorporated. We show that this approach can be applied to both metacomputing and to provide improved parallel programming environments. We describe exploitation issues within a CORBA context and illustrate how performance can be obtained within a commodity architecture. Examples are given from collaborative systems, support of multidisciplinary interactions, proposed visual HPCC ComponentWare, distributed simulation and the use of Java in high performance computing.

1: Introduction

We believe that industry and the loosely organized worldwide collection of (freeware) programmers is developing a remarkable new software environment of unprecedented quality and functionality. We call this DcciS - Distributed commodity computing and information System. We believe that this can benefit HPCC in several ways and allow the development of both more powerful parallel programming environments and new distributed metacomputing systems. In the second section, we define what we mean by commodity technologies and explain the different ways that they can be used in HPCC. In the third and critical section, we define an emerging architecture of DcciS in terms of a conventional 3 tier commercial computing model. The next section describes the expected steps in the CORBA model for establishing HPcc as a community framework and CORBA facility. In this and related papers (ref. [31]), we discuss several examples and the critical research issue: can high performance systems - called HPcc or High Performance Commodity Computing -be built on top of DcciS. Examples include integration of collaboration into HPcc; the natural synergy of distribution simulation and the HLA standard with our architecture (ref. [33]); and the step from object to visual component based programming in parallel and distributed computing. Finally we discuss the use of DcciS to build parallel programming environments and HPJava -- the use of Java on parallel or sequential machines for high performance computing (refs. [28,29]). There is a reading list and glossary of acronyms and buzzwords at the end of the article.

2: Commodity Technologies and their use in HPCC

The last three years have seen an unprecedented level of innovation and progress in commodity technologies driven largely by the new capabilities and business opportunities of the evolving worldwide network. The web is not just a document access system supported by the somewhat limited HTTP protocol. Rather it is the distributed object technology which can build general multi-tiered enterprise intranet and internet applications. CORBA is turning from a sleepy heavyweight standards initiative to a major competitive development activity that battles with COM and Javabeans to be the core distributed object technology.

There are many driving forces and many aspects to DcciS but we suggest that the three critical technology areas are the web, distributed objects and databases. These are being linked and we see them subsumed in the next generation of "object-web" technologies, which is illustrated by the recent Netscape and Microsoft version 4 browsers. Databases are older technologies but their linkage to the web and distributed objects, is transforming their use and making them more widely applicable.

In each commodity technology area, we have impressive and rapidly improving software artifacts. As examples, we have at the lower level the collection of standards and tools such as HTML, HTTP, MIME, IIOP, CGI, Java, JavaScript, Javabeans, CORBA, COM, ActiveX, VRML, new powerful object brokers (ORB’s), dynamic Java servers and clients including applets and servlets. At a higher level collaboration, security, commerce, multimedia and other applications/services are rapidly developing using standard interfaces or frameworks and facilities. This emphasizes that equally and perhaps more importantly than raw technologies, we have a set of open interfaces enabling distributed modular software development. These interfaces are at both low and high levels and the latter generate a very powerful software environment in which large preexisting components can be quickly integrated into new applications. We believe that there are significant incentives to build HPCC environments in a way that naturally inherits all the commodity capabilities so that HPCC applications can also benefit from the impressive productivity of commodity systems. NPAC’s HPcc activity is designed to demonstrate that this is possible and useful so that one can achieve simultaneously both high performance and the functionality of commodity systems.

Note that commodity technologies can be used in several ways. This article concentrates on exploiting the natural architecture of commodity systems but more simply, one could just use a few of them as "point solutions". This we can term a "tactical implication" of the set of the emerging commodity technologies and illustrate below with some examples:

· Perhaps VRML or Java3D are important for scientific visualization

· Web (including Java applets) front-ends provide convenient customizable interoperable user interfaces to HPCC facilities

· Perhaps the public key security and digital signature infrastructure being developed for electronic commerce, could enable more powerful approaches to secure HPCC systems

· Perhaps Java will become a common scientific programming language and so effort now devoted to Fortran and C++ tools needs to be extended or shifted to Java

· The universal adoption of JDBC (Java Database Connectivity) and the growing convenience of web-linked databases could imply a growing importance of systems that link large scale commercial databases with HPCC computing resources

· Javabeans, RMI, COM, CORBA, IIOP form the basis of the emerging "object web" which analogously to the previous bullet could encourage a growing use of modern object technology

· Emerging collaboration and other distributed information systems could allow new distributed work paradigms which could change the traditional teaming models in favor of those for instance implied by the new NSF Partnerships in Advanced Computation

However probably more important is the strategic implication of DcciS which implies certain critical characteristics of the overall architecture for a high performance parallel or distributed computing system. First we note that we have seen over the last 30 years many other major broad-based hardware and software developments -- such as IBM business systems, UNIX, Macintosh/PC desktops, video games -- but these have not had profound impact on HPCC software. However we suggest the DcciS is different for it gives us a world-wide/enterprise-wide distributing computing environment. Previous software revolutions could help individual components of a HPCC software system but DcciS can in principle be the backbone of a complete HPCC software system -- whether it be for some global distributed application, an enterprise cluster or a tightly coupled large scale parallel computer. In a nutshell, we suggest that "all we need to do" is to add "high performance" (as measured by bandwidth and latency) to the emerging commercial concurrent DcciS systems. This "all we need to do" may be very hard but by using DcciS as a basis we inherit a multi-billion dollar investment and what in many respects is the most powerful productive software environment ever built. Thus we should look carefully into the design of any HPCC system to see how it can leverage this commercial environment.

3: Three Tier High Performance Commodity Computing

[image: image1.png]A Web-based 3-Tier Computing System

Managersent Middle Tier
= -
|| TP Scrver Object Store
-]
o
~=————% || WcbScrver
=
} <
Ped CGI . Datab:
Java Serviets Application atabase
AdiveX ————p= Sarver

Fig. 1: Industry 3-tier view of enterprise Computing

We start with a common modern industry view of commodity computing with the three tiers shown in fig 1. Here we have customizable client and middle tier systems accessing "traditional" back end services such as relational and object databases. A set of standard interfaces allows a rich set of custom applications to be built with appropriate client and middleware software. As indicated on figure, both these two layers can use web technology such as Java and Javabeans, distributed objects with CORBA and standard interfaces such as JDBC (Java Database Connectivity). There are of course no rigid solutions and one can get "traditional" client server solutions by collapsing two of the layers together. For instance with database access, one gets a two tier solution by either incorporating custom code into the "thick" client or in analogy to Oracle’s PL/SQL, compile the customized database access code for better performance and incorporate the compiled code with the back end server. The latter like the general 3-tier solution, supports "thin" clients such as the currently popular network computer.

The commercial architecture is evolving rapidly and is exploring several approaches which co-exist in today’s (and any realistic future) distributed information system. The most powerful solutions involve distributed objects. There are three important commercial object systems - CORBA, COM and Javabeans. These have similar approaches and it is not clear if the future holds a single such approach or a set of interoperable standards. CORBA is a distributed object standard managed by the OMG (Object Management Group) comprised of 700 companies. COM is Microsoft’s distributed object technology initially aimed at Window machines. Javabeans (augmented with RMI and other Java 1.1 features) is the "pure Java" solution - cross platform but unlike CORBA, not cross-language! Legion is an example of a major HPCC focused distributed object approach; currently it is not built on top of one of the three major commercial standards. The HLA/RTI standard for distributed simulations in the forces modeling community is another important domain specific distributed object system. It appears to be moving to integration with CORBA standards. Although a distributed object approach is attractive, most network services today are provided in a more ad-hoc fashion. In particular today’s web uses a "distributed service" architecture with HTTP middle tier servers invoking via the CGI mechanism, C and Perl programs linking to databases, simulations or other custom services. There is a trend toward the use of Java servers with the servlet mechanism for the services. This is certainly object based but does not necessarily implement the standards implied by CORBA, COM or Javabeans. However, this illustrates an important evolution as the web absorbs object technology with the evolution:

HTTP --> Java Sockets --> IIOP or RMI

 (Low Level network standard) (High level network standard)

Perl CGI Script --> Java Program --> Javabean distributed object.

As an example consider the evolution of networked databases. Originally these were client-server with a proprietary network access protocol. Web linked databases shown in figs. 2 and 3, produced a three tier distributed service model with an HTTP server using a CGI program (running Perl for instance) to access the database at the backend. Today we can build databases as distributed objects with a middle tier Javabean using JDBC to access the backend database. Thus a conventional database is naturally evolving to the concept of managed persistent objects.

Today as shown in fig. 4, we see a mixture of distributed service and distributed object architectures. CORBA, COM, Javabean, HTTP Server + CGI, Java Server and servlets, databases with specialized network accesses, and other services co-exist in the heterogeneous environment with common themes but disparate implementations. We believe that there will be significant convergence as a more uniform architecture is in everyone’s best interest.

[image: image2.png]Distibuted Computing Carpanent
‘Sequential Networked Carrpute Server
ObjectServer

Parallel Carpuer

Parallel Datahase

Callaboratory Server

Web Server

s-grozZyRo

Fig. 4: Today’s Heterogeneous Interoperating Hybrid Server Architecture. HPcc involves adding to this system, high performance in the third tier.

We also believe that the resultant architecture will be integrated with the web so that the latter will exhibit distributed object architecture shown in fig. 5.

More generally the emergence of IIOP (Internet Inter-ORB Protocol), CORBA2, and the realization that CORBA is naturally synergistic with Java is starting a new wave of "Object Web" developments that could have profound importance. Java is not only a good language to build brokers but also Java objects are the natural inhabitants of object databases. The resultant architecture in fig. 5 shows a small object broker (a so-called ORBlet) in each browser as in Netscape's current plans. Most of our remarks are valid for all these approaches to a distributed set of services. Our ideas are however easiest to understand if one assumes an underlying architecture which is a CORBA or Javabean distributed object model integrated with the web.

We wish to use this service/object evolving 3-tier commodity architecture as the basis of our HPcc environment. We need to naturally incorporate (essentially) all services of the commodity web and to use its protocols and standards wherever possible. We insist on adopting the architecture of commodity distribution systems as complex HPCC problems require the rich range of services offered by the broader community systems. Perhaps we could "port" commodity services to a custom HPCC system but this would require continued upkeep with each new upgrade of the commodity service. By adopting the architecture of the commodity systems, we make it easier to track their rapid evolution and expect it will give high functionality HPCC systems, which will naturally track the evolving Web/distributed object worlds. This requires us to enhance certain services to get higher performance and to incorporate new capabilities such as high-end visualization (e.g. CAVE’s) or massively parallel systems where needed. This is the essential research challenge for HPcc for we must not only enhance performance where needed but do it in a way that is preserved as we evolve the basic commodity systems. We certainly have not demonstrated clearly that this is possible but we have a simple strategy that we will elaborate in ref. [31] and sec.5. Thus we exploit the three-tier structure and keep HPCC enhancements in the third tier, which is inevitability, the home of specialized services in the object-web architecture. This strategy isolates HPCC issues from the control or interface issues in the middle layer. If successful we will build an HPcc environment that offers the evolving functionality of commodity systems without significant re-engineering as advances in hardware and software lead to new and better commodity products.

Returning to fig. 4, we see that it elaborates fig. 1 in two natural ways. Firstly the middle tier is promoted to a distributed network of servers; in the "purest" model these are CORBA/ COM/ Javabean object-web servers as in fig. 5, but obviously any protocol compatible server is possible. This middle tier layer includes not only networked servers with many different capabilities (increasing functionality) but also multiple servers to increase performance on an given service. The use of high functionality but modest performance communication protocols and interfaces at the middle tier limits the performance levels that can be reached in this fashion. However this first step gives a modest performance scaling, parallel (implemented if necessary, in terms of multiple servers) HPcc system which includes all commodity services such as databases, object services, transaction processing and collaboratories. The next step is only applied to those services with insufficient performance. Naively we "just" replace an existing back end (third tier) implementation of a commodity service by its natural HPCC high performance version. Sequential or socket based messaging distributed simulations are replaced by MPI (or equivalent) implementations, as in sec. 7, on low latency high bandwidth dedicated parallel machines. These could be specialized architectures or "just" clusters of workstations. Note that with the right high performance software and network connectivity, workstations can be used at tier three just as the popular "LAN" consolidation" use of parallel machines like the IBM SP-2, corresponds to using parallel computers in the middle tier. Further a "middle tier" compute or database server could of course deliver its services using the same or different machine from the server. These caveats illustrate that as with many concepts, there will be times when the relatively clean architecture of fig 4 will become confused. In particular the physical realization does not necessarily reflect the logical architecture shown in fig 4. For instance figs. 2 and 3 give examples of database and object services implemented in different ways in the commodity 3-tier approach.

