1 Introduction
Section Editor: Foster

1.1 CRPC and the National Scene (20 pages)
Author: Kennedy

This chapter will provide a historical perspective on the background for the book, discussing the political
and technical themes that pervaded the parallel computing community during the period of CRPC’s lifetime.

At the time of the founding of CRPC, parallel computing was dominated by the bus-based multiproces-
sors, although a few pioneering projects, such as the Caltech effort to program hypercubes (someone give
me the official title), had begun to experiment with more scaleable designs.

In the first few years of the CRPC, distributed-memory computing paradigms dominated the discourse on
parallel computing. Among the machines of this era were the hypercubes from Intel and the TMC CM-2 and
CM-5. The hallmark of this era was the struggle to develop a programming paradigm and methodology for
easy-to-use portable programming. Most of these systems employed manufacturer-specific message passing
libraries for programming. An important contribution of CRPC was the launching of the MPI forum to
standardize message passing for such machines. This built on work at Caltech and on PVM, the first defacto
standard for portable message passing.

In parallel with the development of programming models was the effort to develop suitable scaleable
algorithms for all areas of scientific and engineering programming. CRPC’s algorithmic endeavors were
classified in three groups: linear algebra, numerical optimization, and simulation. This chapter will provide
an overview of the CRPC-related efforts.

A third major thrust area was the development and standardization of high-level programming interfaces
for scaleable machines. Among these were HPF, Concurrent C++, HPC++, and OpenMP (should T discuss
this, as our contribution was minimal — T was on PCF). Definition and implementation of such languages,
along with the development of tools to support them became an important part of the CRPC effort.

As the CRPC matured, new computing paradigms began to emerge, which gave rise to new research
challenges: hardware DSM systems such as the SGI Origin and HP/Convex Exemplar, clusters of symmetric
multiprocessors, and distributed heterogeneous collections of processors. In addition, the incorporation of
secondary storage into the memory hierarchy has become a major concern.

In retrospect, it 1s clear that parallel computation is a rich and diverse area, filled with many complexities.
The CRPC has made a number of contributions to programming models and algorithms for application
development in the field and its work has been supplemented by extensive work by the entire community.
However, as the computing platforms become more complex, much more work on software for such systems

will be needed.

2 Overview
Section Editor: Foster

2.1 The Future of High-end Computing Applications (20 pages)
Author: White

Societal-scale Applications. Today, computers have taken over some very small fraction of our decision-
making responsibility and assist us in more—anti-lock brakes, whether to wear a raincoat or sun block to
work, information access on the Web, and fly- by-wire in aircraft are some common examples. Even so, the
scope of the decisions in which computer simulation plays a dominant role remains fairly limited.

However, as society’s infrastructures have grown increasingly complex, interdependent and fragile, the
need for better informed, more accurate and timely decisions has grown corresponding critical. The plight in
which we find ourselves is succinctly stated in the following excerpt from The Political Limits to Forecasting,

“...1t 1s clear that decision aptitudes are sharply challenged. The range of alternatives is greater.
The underlying technical facts are more difficult to comprehend because of their sophistication

and specialised jargon, and the consequences of error are more lethal and irreversible. Decision-
makers are perplexed by new levels of complexity and hyper-interdependence in our society,
accompanied by uncertainty, a heightened pace of social change, and discontinuities in utility of
past experience.”

The last phrase is the most telling—decisions based on rules-of-thumb responses honed over years of trial and
error are becoming less and less likely to yield acceptable solutions. The ability to reliably project alternative
courses of action (e.g. global climate scenarios, war fighting strategies, electrical power deregulation policies)
into the future in order to assess the impacts and consequences of each course of action may be a key to our
prosperity, even survival, in the next millennium.

The problems we face affect lives, security, and well being at, potentially, every level of society. Further,
the application of computing technology to the solution of these problems demand predictive modeling and
simulation at a fidelity, scale, and tempo that are far beyond our current technological ability. Applications
discussed in this chapter will include:

Global environmental security: global climate prediction, with down scaling to regional scale (e.g. agri-
cultural production in mid-west), basin scale (e.g. water resources in the Southwest), and local scale (e.g.
natural hazards such as wildfire and floods).

Emerging and re-emerging diseases: management of natural or man-made biological threats. These applica-
tions connect global epidemiology to molecular biology.

Infrastructure planning and investment: transportation, energy, health care, telecommunications are the ba-
sic infrastructures upon which society rests. The framework for these applications takes the form of networks
or graphs rather than the discretization of continuous phenomena.

Crisis management: training, planning, and response: wildfire, earthquakes, floods, severe weather, volca-
noes, etc. provide a special challenge for modeling and simulation because of the time urgency and real-time
surveillance requirements.

Attacking problems at the societal level places additional requirements on the technology as well as the
fundamental theory upon which these simulations are based. Robust threat identification (e.g. wildfire,
infectious disease) will require not only peta(fljops computing, but also commensurate surveillance and 1/0
capabilities. Real-time applications will require extraordinary RAS compared to today’s scientific computing
systems. Quantification of the uncertainty inherent in these simulations will be of paramount importance,
as these simulations may very well be used in life and death situations. Finally, we must understand the
decision-making process and embed these tools within it. That is, we must provide the end user, the decision-
maker, with information they require and trust, in a format, context, time-scale, and location which they
can use in support of their activities.

2.2 Parallel Architectures (20 pages)
Author: Stevens

No response from author Re: description & attendance at June CRPC book review meeting
2.3 Computing Technologies (20 pages)
Authors: Kennedy, Foster

This chapter will provide an overview of the computing technologies for parallel systems that will be discussed
later in the book. These technologies fall generally into two categories: system software including compilers
and parallel numerical algorithms.

In the software section are included base technologies, such as message passing libraries, run-time libraries
for parallel computing, such as class libraries for HPC++, languages like HPF and HPC++, tools such as
Pablo, and high-level programming systems.

Scaleable parallel algorithmic research is classified in three groups: linear algebra, numerical optimization,
and simulation. This section will provide an overview of these efforts in CRPC.

Finally, the section will review advanced technologies for new computing paradigms such as DSM, clusters,
and distributed heterogeneous grids.

2.4 Numerical Algorithms and Libraries (20 pages)

Authors: Dongarra, Sorensen

Traditional Libraries. The ultimate development of fully mature parallel scalable libraries will necessarily
depend on breakthroughs in many other supporting technologies. Development of scalable libraries cannot
wait, however, until all of the enabling technologies are in place. The reason is twofold: (1) the need
for such libraries for existing and near-term parallel architectures is immediate, and (2) progress in all
of the supporting technologies will be critically dependent on feedback from concurrent efforts in library
development.

The linear algebra community has long recognized that we needed something to help us in developing
our algorithms into software libraries. Several years ago, as a community effort, we put together a de facto
standard for identifying basic operations required in our algorithms and software. Our hope was that the
standard would be implemented on the machines by many manufacturers and that we would then be able
to draw on the power of having that implementation in a rather portable way. We began with those BLAS
operations designed for basic matrix computations. Since on a parallel system message passing is critical we
have been involved with the development of message passing standards. Both PVM and MPI have helped
in the establishment of standards and the promotion of portable software that is critical for software library
work.

User Interfaces. As computer architectures and programming paradigms become increasingly complex,
it becomes desirable to hide this complexity as much as possible from the end user. The traditional user
interface for large, general-purpose mathematical and scientific libraries is to have users write their own
programs (usually in Fortran) that call on library routines to solve specific subproblems that arise during
the course of the computation. When extended to run on parallel architectures, this approach has only
a limited ability to hide the underlying architectural and programming complexity from the user. As we
extend the conventional notion of mathematical and scientific libraries to scalable architectures, we must
rethink the conventional concept of user interface and devise alternate approaches that are capable of hiding
architectural, algorithmic, and data complexity from users.

One possible approach is that of a “problem solving environment,” typified by current packages like MAT-
LAB, which would provide an interactive, graphical interface for specifying and solving scientific problems,
with both algorithms and data structures hidden from the user because the package itself is responsible for
storing and retrieving the problem data in an efficient distributed manner. Such an approach seems especially
appropriate in keeping with the trend toward graphical workstations as the primary user access to comput-
ing facilities, together with networks of computational resources that include various parallel computers and
conventional supercomputers. The ultimate hope would be to provide seamless access to such computational
engines that would be invoked selectively for different parts of the user’s computation according to whichever
machine is most appropriate for a particular subproblem. We envision at least two interfaces for a library
in linear algebra. One would be along conventional lines (LAPACK-style) for immediate use in conventional
programs that are being ported to novel machines, and the other would be in the form of a problem solving
environment (MATLAB-style). The two proposed interface styles are not inconsistent or incompatible: the
problem solving environment can in fact be built on top of software that is based on a more conventional
interface.

Heterogeneous Networking. Current trends in parallel architectures, high-speed networks, and personal
workstations suggest that the computational environment of the future for working scientists will require
the seamless integration of heterogeneous systems into a coherent problem-solving environment. Graphical
workstations will provide the standard user interface, with a variety of computational engines and data
storage devices distributed across a network. The diversity of parallel architectures means that inevitably
different computational tasks will be more efficient on some than on others; with no single architecture

uniformly superior. Thus, we expect the “problem-solving environment” envisioned above eventually to
migrate to a heterogeneous network of workstations, file servers, and parallel computation servers. The
various computational tasks required to solve a given problem would automatically and transparently be
targeted to the most appropriate computational engine on the network. System resources would be shared
among many users, but in a somewhat different manner than conventional timesharing computer systems.
We have already made important first steps toward achieving these goals with systems like PVM and MPI,
which supplies the low-level services necessary to coordinate the use of multiple workstations and other
computers for individual jobs, and this system could serve as the foundation for a complete problem-solving
environment of the type we envision.

Network computing techniques such as NetSolve offers the ability to look for computational resources on
a network for a submitted problem (which can be a single LAPACK, ScalLAPACK or Matlab function call),
choose the best one available, solve it (with retry for fault tolerance) and return the answer to the user. This
system 1s available for Fortran, C, and Matlab users.

Software Tools and Standards. An ambitious development effort in scalable libraries will require a
great deal of supporting infrastructure. Moreover, the portability of any library is critically dependent on
adherence to standards. In the case of software for parallel architectures, precious few standards exist, so new
standards must evolve along with the research and development. A particularly important area for scalable
distributed-memory architectures is internode communication. The BLLAS have proven to be very effective
in assisting portable, efficient software for sequential and some of the current class of high-performance
computers. We are investigating the possibility of expanding the set of standards that have been developed.
There is a need for a light weight interface to much of the functionality of traditional BLAS. In addition,
iterative and sparse direct methods require additional functionality not in traditional BLAS. Numerical
methods for dense matrices on parallel computers require high efficiency kernels that provide functionality
similar to that in traditional BLAS on sequential machines.

Software tools are also of great importance, both for developers to use in designing and tuning the library
software, and for end-users to monitor the efficiency of their applications.

Conclusions

1. In spite of a lack of enabling technologies, library development cannot wait for research in programming
languages, compilers, software tools, and other areas to mature, but must be done in conjunction with
work in these areas. The the time to begin is now.

2. The user-library interface needs rethinking. It is not clear that the conventional library interface will
be adequate to hide the underlying complexity from the user.

3. Object-oriented programming will be required to develop portable libraries that allow the user to work
at an appropriate conceptual level.

4. Work on algorithms, particularly linear algebra, is important and cannot be isolated from general
library development.

5. Language standards are important. The lack of language standards is the most significant obstacle to
the development of communication libraries. A language standard must emerge before a software tool
“development sweep” can begin.

These are some of the major research issues in developing scalable parallel libraries.

3 Applications

Section Editor: Fox

This section of the book contains b chapters. Appll is a general discussion; Appl2 is a set of about 20 short
case studies and Appl3, Appld and Appld are three long case studies. One goal is that a reader should be
able to take their favorite application and find a ”near-match” somewhere in the five chapters and so be
ready to start parallel computing!

3.1 Appll: General Application Issues (20 Pages)
Author: Fox

The first application chapter contains an introduction to the other four followed by a discussion of gen-
eral strategies that have been found helpful in parallelizing applications. We will describe an application
as a general set of linked entities (a.k.a. a complex system) and initially contrast artificial systems such
as financial instruments with physical simulations. In latter case, we contrast microscopic or macroscopic
entities and discuss how the different states of matter (fields, classical particle or quantum mechanical) lead
to different numerical challenges. We note that some characteristics, such as multiple physical scales and
phase transitions are pervasive. We describe broad issues in applications and algorithms including Partial
Differential Equations, Particle Dynamics, Circuits, Ordinary Differential Equations, Monte Carlo, Domain
Decomposition, Pleasingly Parallel, Metaproblems, heuristic algorithms, data analysis, preconditioning, syn-
chronous, loosely synchronous, regular and irregular. (This list is very mixed up of course — it will be added
to and organized). We discuss differences between illustrative and real applications by contrasting Laplace’s
equation with Navier Stokes and complex physics in climate simulations. We will try to discuss typical
problem sizes and why tera- and peta-(fl)op machines are relevant. Typical issues governing performance are
discussed. Maybe we can philosophize as to whether computational science is a science or an art by illustrat-
ing how much experimentation is needed to find reliable numerical methods and how different approaches
are in seemingly similar Application areas. These general remarks should tie to discussion in following four
chapters which will be summarized in a suitable set of tables. The discussion of basic numerical methods
(PDE, ODE, Monte Carlo etc.) could go to § 5.

3.2 Appl2: List of Application Overviews: (about 1.5 to 2 pages each — Total about 40 pages)
Author: Fox

1. Black holes (Matzner, Fox) - start

2. Astrophysics (Salmon) - start

Earthquakes - Rundle,Fox - start

- @

Climate - (LANL White, Malone) - start

Comp. Chemistry - (Kuppermann, Goddard, McKoy, PNL) - start
QCD (Geoffrey, Rajan, Ceperley) - start

Accelerators (Ryne - LANL)

Plasma Physics (Reynders) - start

© o =1 oy Ot

MDO (Geoffrey)

10. Financial modeling (Geoffrey)

11. Weather (CAPS, NASA)

12. Comp. Biology - Keck Center, Rice - start
13. Astronomy - T. Prince

14. Scheduling (Bixby) - start

15. Materials (Holian, Lomdahl, Goddard)

16. Combustion (Butler, LANL - Colella)

17. Networks (LANL)

18. Structural, solid mechanics - (DOD, Ortiz)

19. Forces modeling - (GCF, CACR)

20. CFD (Dan, Herb) - start

21. Energy and environment (Mary Wheeler) - start

22. Computational Electromagnetics (DoD Modernization)
23. Signal Processing (DoD Modernization)

24. Electrical Transmission Lines (Geoffrey)

Designation as “Start” implies that one starts with this subset to give exemplars that can used to show
others how to do their field. Note some of those areas are quite broad and could generate several distinct
summaries. For instance, Chemistry could generate separate overviews corresponding to applications typified
by Charmm, Gaussian and Mopack.
Template for each application overview:

1. Application overview and summary - field discussion

2. Focused case study - what was parallelized, technology discussion and results

3. References and resources

4. Computational issues including algorithms, software and comments on performance needs and hardware
dependencies

5. What has been done and what needs to be done
3.3 Appl3: Parallel Computing in CFD (20 pages)
Authors: Meiron, Keller

Dan Meiron has responded and will provide the requested description.
Description from Geoffrey Fox:

special to CRPC

Intro - context for CFD - impact of CFD on industry
Incompressible CFD; Homotopy, Compressible CFD
Specific mention of AMR,

3.4 Appl4: Parallel Computing in Environment and Energy (20 pages)
Author: Wheeler

Mary Wheeler has responded and will provide requested description.

Description from Geoffrey Fox:

Intro - impact
Specific mention of domain decomposition - multigrid

3.5 Appl5: Computational Astrophysics (20 pages)
Author: Salmon

No response from author Re: description & attendance at June CRPC book review meeting

Description from Geoffrey Fox:

Specific mention of multipole techniques
Describe Beowulf and why this can be used here and in other applications

4 Computing Technologies
Section Editor: Kennedy

4.1 Base Technologies (20 pages)

Author: Kesselman

No response from author Re: description & attendance at June CRPC book review meeting

4.2 Libraries (20 pages)

Authors: Reynders, Gannon

Dennis Gannon has responded and will provide the requested description.
4.3 Languages (20 pages)
Authors: Kennedy, Chandy

This chapter will discuss the progress made on languages and compilers for high performance computing
systems during the lifetime of the CRPC, with a special emphasis on work sponsored by CRPC. The principal
foci of this discussion will be on Fortran and C++4, with some discussion of Java.

In the Fortran section, topics will include:

e Automatic Parallelization. Continued progress on the parallelization of plain Fortran applications,
especially for symmetric multiprocessors.

e Data Parallel Languages. This will focus primarily on High Performance Fortran and other distribution
based languages.

e Task Parallel Languages. This will discuss a number of strategies for representing Task parallelism in
Fortran, including pthreads and OpenMP, a derivative of the original PCF Fortran.

The discussion will conclude with an assessment of the impact of these models on practice and a discussion
of which models work well in various cases.

In the C++ arena, the principal focus will be on Concurrent C++ and HPC++. The latter emphasis
will concentrate on the part of the language efforts that were not based on libraries (which will be expanded
by Gannon and Reynders in their section). ***Mani, would you like to finish this?***

The goal of this chapter is to provide a survey of progress with hints to the user that will help in selecting
the right high-level language programming model for a given application.

4.4 Programming Environments (20 pages)

Authors: Dongarra, Fox

Parallel computers or more generally distributed resources will be little used if they are not easily accessible
to ordinary users. In this chapter, we examine how the complexities of programming can be reduced through
the use of application-specific tools and toolkits comprising what is commonly called a Problem Solving
Environment. These toolkits enable a programmer to specify their problems at a high level, frequently using
abstractions tailored to a specific application domain. The details of mapping this high-level description
onto back end compute resources are left to the application tool. For example, issues of resource discovery
(both hardware and software), problem decomposition, scheduling, application code locate, etc. can all be
managed by the application-specific tool without user intervention.

This chapter is divided into three parts. First we desribe general issues in Problem Solving Environments
(PSE) discussing two types of activities — building the components from which many different PSE’s can
be constructed and secondly using these components in particular application domains. Then we illustrate
these general ideas by two particular examples — Netsolve and WebFlow which have been succesfully applied
in several application areas.

We note that the remote resources harnessed by network-enabled application-specific toolkits are just as
likely to be software as hardware. Numerical libraries, software development systems, and problem solving
systems have become increasingly sophisticated. Users normally do not know where these resources are
and, once located, they are tedious to obtain and/or use. Hence, techniques are required for identifying
and locating appropriate software, delivering that software to the user, identifying an appropriate compute
server, and testing and evaluating software. This is one example of the many services a PSE must offer and
we discuss these in terms of a middleware of networked servers accessed directly or via agents as in NetSolve
from the client. Some of the ideas of current distributed object technology (such as CORBA and RMI) are
relevant and we illustrate this in the discussion of the WebFlow architecture.

4.5 Tools (20 pages)
Authors: Reed, Aydt

As parallel applications become more complex, they grow more irregular, with data-dependent execution
behavior, and more dynamic, with time-varying resource demands. Consequently, even small changes in
application structure can lead to large changes in observed performance. This performance sensitivity is a
direct consequence of resource interaction complexity and growing hardware complexity (e.g., deep memory
hierarchies, and complex communication networks). To support creation of high-performance applications,
we believe one must tightly integrate compilers, languages, libraries, algorithms, problem-solving environ-
ments, runtime systems, schedulers, and performance tools. With this deep integration, one can measure,
analyze, visualize, and tune all aspects of application code, compilation strategies, and resource management.

Keywords: source code correlation; instrumentation; adaptive control; multilevel measurement; performance
visualization

5 Numerical Algorithms and Libraries
Section Editor: Dongarra

5.1 Templates and Linear Algebra (20 pages)

Authors: Dongarra, Sorensen

The increasing availability of advanced-architecture computers has a significant effect on all spheres of scien-
tific computation, including algorithm research and software development in numerical linear algebra. Linear
algebra—in particular, the solution of linear systems of equations—Ilies at the heart of most calculations in
scientific computing. This chapter discusses some of the recent developments in linear algebra designed to
exploit these advanced-architecture computers. We discuss two broad classes of algorithms: those for dense,
and those for sparse matrices. A matrix is called sparse if it has a substantial number of zero elements,
making specialized storage and algorithms necessary.

Much of the work in developing linear algebra software for advanced-architecture computers is motivated
by the need to solve large problems on the fastest computers available. In this chapter, we focus on four
basic issues: (1) the motivation for the work; (2) the development of standards for use in linear algebra and
the building blocks for libraries; (3) aspects of algorithm design and parallel implementation; and (4) future
directions for research.

As representative examples of dense matrix routines, we will consider the Cholesky and LU factorizations,
and these will be used to highlight the most important factors that must be considered in designing linear
algebra software for advanced-architecture computers. We use these factorization routines for illustrative
purposes not only because they are relatively simple, but also because of their importance in several scien-
tific and engineering applications that make use of boundary element methods. These applications include
electromagnetic scattering and computational fluid dynamics problems.

For the past 15 years or so, there has been a great deal of activity in the area of algorithms and software
for solving linear algebra problems. The goal of achieving high performance on codes that are portable
across platforms has largely been realized by the identification of linear algebra kernels, the Basic Linear
Algebra Subprograms (BLAS). We will discuss the Eispack, Linpack, Lapack, and Scalapack libraries which

are expressed in successive levels of the BLAS.

The key insight of our approach to designing linear algebra algorithms for advanced architecture comput-
ers is that the frequency with which data are moved between different levels of the memory hierarchy must
be minimized in order to attain high performance. Thus, our main algorithmic approach for exploiting both
vectorization and parallelism in our implementations is the use of block-partitioned algorithms, particularly
in conjunction with highly-tuned kernels for performing matrix-vector and matrix-matrix operations (the
Level 2 and 3 BLAS).

In general, the use of block-partitioned algorithms requires data to be moved as blocks, rather than as
vectors or scalars, so that although the total amount of data moved is unchanged, the latency (or startup
cost) associated with the movement is greatly reduced because fewer messages are needed to move the data.

A second key idea is that the performance of an algorithm can be tuned by a user by varying the
parameters that specify the data layout. On shared memory machines, this is controlled by the block size,
while on distributed memory machines it is controlled by the block size and the configuration of the logical
process mesh.

The sparse linear systems that result from partial differential equations need very different techniques
from those used for dense matrices. While direct methods have the virtue of reliability, they also take copious
amounts of space and time. Iterative methods, of one type or another, are considerably more frugal in their
space demands, but on difficult problems their convergence may be slow, and is not even guaranteed.

5.2 Constrained Optimization (20 pages)

Authors: Dennis, Wu

John Dennis has responded and will provide the requested description.
5.3 Discrete Optimization (20 pages)

Authors: Bixby, Cook

Bill Cook has responded and will provide the requested description.
5.4 Automatic Differentiation (20 pages)

Author: Carle

Alan Carle has responded and will provide the requested description.
5.5 Nonlinear Equations (20 pages)

Author: Keller

No response from author Re: description & attendance at June CRPC book review meeting

6 Bringing It All Together and Futures (20 pages)
Section Editor: White

Andy White wants to review the abstract before composing this description.

