After a successful demonstration of the preliminary version of the WebFlow at the Alliance’98 and Supercomputing ’98, we have analyzed our experience using WebFlow for Quantum Simulations and identified areas that need improvement. As the result we did the following work:

1. reimplemented the middle tier

2. developed a new front-end

3. defined a new WebFlow API

4. updated interface to Globus

5. developed security model for WebFlow

(1) CORBA based-middle tier

Initally, the middle-tier was based on java-enhanced (servlets) web servers. That solution, although proved to be robust and satisfying all our requirements, is not extensible. It uses a custom protocol for inter-server communications implemented on low-level Java sockets. In addition, many of the features implemented by our session, module and connection managers duplicate functionality already supported by CORBA and other distributed-object technologies. Therefore we decided to build the WebFlow middle-tier as a CORBA facility.

The new middle-tier provides an environment in which the user can create an arbitrarily complex hierarchy of modules and container objects (a.k.a. contexts). A WebFlow user creates his or her own user context, which is a container for all his or her applications. The application context holds the application’s components or modules. And the module itself can be hierarchically composed of subcomponents. This way a WebFlow server, which is the root of the context hierarchy, may host simultaneously many users, and each user may run several independent, composite applications.

The new architecture of the WebFlow middle-tier is designed to provide mapping between application specific resource requests and the grid services. We will enhance its functionality by adding resource discovery services.

(2) Front-end

We found that our front-end is not sufficiently robust and lack some important features, such as capability of saving and restoring networks of modules. To this end, we changed the model how the front-end interacts with the middle-tier. In the new implementation, the user can freely modify the network of modules (i.e., add or replace a module, change connections between modules, etc.) without connecting to the middle-tier server. Once the visual composing of the application is completed, the user “commit” it, which result in sending the application description to the middle-tier servers.

The new WebFlow front-end is an example of an applet for workbench access to grid services. More generally, the WebFlow system can be regarded as a high-level, Web-based user interface and job broker for Globus and the National Machine Room.

(3) WebFlow API

Since we separated editing the application and committing it, we could define a WebFlow API, or application description language. This API is used by the front-end to specify its requests to the middle-tier. Such solution make it possible to develop a front-end independently of the middle-tier. Indeed, in a related project funded by DoD, we developed yet another front-end with capabilities different from those needed for Quantum Simulations, and integrated it with the WebFlow system without any modifications of the middle-tier.

We use XML as the syntax for the application description language. The front-end parser converts the XML document into a human readable documentation of the application (what modules are used and how they are connected), while the middle-tier parser translates it in-the-fly into Java code that implements the CORBA client. The client code creates specified context hierarchy, places, instantiates, and connect modules, and finally, starts the application.

We worked on the DATORR activity to establish interface standards

(4) Globus interface

As before, we use Globus to provide access to high performance computational resources. It is achieved by wrapping GRAM client code as a CORBA object – a WebFlow module. We follow advances of Globus, and update our modules as needed. We use PKI-based model of Globus for user authentication. Other improvements of our Globus interface include using GASS servers for staging codes and data at target host prior to execution. We expect our interface to evolve to become a proxy of complete National Machine Room services.

(5) WebFlow security model

We have extended the Globus security model to encompass the complete WebFlow system. It includes secure Web transations (mutual authentication enforced by SSL-based secure WebServer), secure object invocation within the middle-tier (using a SSL-based CORBA security service), and secure access to HPC resources enforced by GRAM.

Unfortunatelly, the implementation of our security model has to be postponed. Currently, the X509 certificates generated by Globus CA cannot be imported to the Web browser. This forces the user to use simultaneously two certificates. One issued by the WebFlow CA to authenticate as a WebFlow user and the other to access resources controlled by Globus. We expect the situation to change as soon as the Alliance PKI is deployed.

