
Variant Selection in Adaptive Algorithms

Dissertation Research Proposal

Concise Edition

John E. West
hatter@wes.army.mil

Draft

1. Introduction

This research is focused on technologies that enable development of programs with characteristics that Alpern has termed the three P’s: portability, high performance, and parallelism (Alpern and Carter 1994). More specifically, it is focused on enabling high performance, portable scientific and engineering applications for use in modern heterogeneous high performance computing (HPC) environments. These applications typically employ mathematically complex models and produce large amounts of data. High performance computers have long been employed by scientists and engineers to meet the computational challenge of producing accurate results from complex models within operational time constraints. In recent years, however, the computational resources in large computing environments are increasingly divided over several computers, rather than being centrally located on one monolithic HPC machine. In order to assemble sufficient resources to meet the objectives of a computation it may be necessary to utilize more than one system for computation. This requires that different versions of the application be developed and maintained for each system used, or that a single version that can support each system be developed. In environments where only a single computer is used, the specifics of hardware and software configuration in high performance environments are often dynamic, and a single machine may undergo several incremental modifications throughout its installation. These modifications may alter the performance profile of the system, requiring application modifications to restore performance to expected levels. Resource decentralization and dynamic system configuration contribute to the need for application portability. Portability preserves existing code development investments, and enables research staff to focus on their research rather than the nuances of facilitating the computations themselves.

The importance of achieving high performance, portability, or both to the research community is indicated by the development of a tremendous array of software, software libraries, and standards over the years. The construction of software solutions to these problems has been complicated by the fact that programming for high performance usually requires adding machine-specific program constructs into an application, an approach that is simultaneously at odds with creating portable programs. The source code portability of applications between machines has been well served by efforts to standardize implementation languages. One may reasonably expect an application written in ANSI C to compile on all platforms of interest that provide an ANSI-compliant C compiler. However, the machine-specific constructs for high performance are dependent upon the particular features of a machine’s hardware. This naturally hinders portability, and so portability of the implementation language, while useful, is clearly not sufficient for our goals.

One of the most common software design mechanisms that has been employed is to attempt to provide both high performance and portability through abstraction. This is usually accomplished via standardized interfaces to machine-dependent implementations. Numerical libraries starting with the BLAS (Lawson, et al. 1979)(Dongarra, et al. 1990)(Dongarra, et al. 1988) and proceeding through LINPACK, LAPACK (Anderson, et al. 1995), ScaLAPACK (Dongarra, van de Geijn, and Walker 1992), ScaLAPACK++ (Dongarra, Pozo, and Walker 1993), the Multicomputer Toolbox (Skjellum 1993), PETSc (Balay, Gropp, and Curfman 1998), PLAPACK (Alpatov, et al. 1997)(van de Geijn 1997), and many others, embody this approach. Utility libraries have also been constructed using the same principles, providing portability and performance across a multitude of platform-specific functions for similar functionality. Examples of this include message passing libraries on distributed memory parallel computers, such as MPI (Message Passing Interface Forum 1994) and PVM (Geist, et al. 1994). Standardization efforts such as OpenMP (Dagum and Menon 1998) have similar goals for shared memory parallel computers.

1.1 Limitations of Current Solutions

Each of these tools deliver a common set of functions over different computing platforms by using a standard API that masks the vendor- and hardware-specific code necessary to achieve programmability with high performance, portability, or both. As such, they accomplish a portion of the tasks necessary to create portable parallel programs that also achieve high performance. These libraries typically support a single implementation for each functionality provided (such as matrix multiplication, LU decomposition, and so on). As demands on applications change and computation environments evolve over time, the performance of applications built using these libraries is likely to change, possibly for the worse. This is because traditional library design has focused upon selecting the single algorithm that performs best over the entire range of expected problems. In the traditional approach, the algorithm that best handles the problems expected to occur most often is implemented. Let us call the set of possible problems expected to occur most often the design range for an application. Performance may degrade when an algorithm selected for a specific design range is applied to problems outside that range. For some applications it may not be possible to define a design range that is sufficiently small to be adequately covered by a single algorithm. In cases where the designer can define an acceptable design range and select a suitable algorithm, this choice may not remain valid over time. The characteristics of input problems may evolve out of the design range as requirements continuously evolve (changing the nature of problems solved), hardware or system software is upgraded, or the application is ported to new architectures. Input characteristics may also evolve into a subset of the original design range, eliminating inputs at the extrema of the original range. This too may result in performance degradation if a different algorithm would perform more effectively on problems in the reduced design range.

Performance is influenced by an assortment of parameters whose effects are often linked to one another through complex, often poorly understood, relationships. In general, issues influencing performance can be divided into three categories: machine issues, such as hardware and system software; application software issues, such as programming methods and data access patterns; and instance issues, such as the characteristics of the specific problem being solved. Changes in features related to any of these categories (processor or memory upgrades, system software patches, solving larger problems, and so on) may have a significant impact on performance. It is not always obvious what this impact will be a priori, or even if an impact is to be expected.

In applications that use libraries of computational kernels, a low-performing kernel may be identified through profiling. In some cases another library algorithm may be identified that more appropriately suits the modified computational environment (modified through either changing requirements or hardware/software). In many cases, however, the library being used will have only a single implementation for each function provided. In this case a custom algorithm may be implemented. However this limits portability and increases maintenance costs by introducing additional code. A final option is to accept degraded performance by making no modifications to the algorithm.

If the performance degradation occurs in a utility library, it may be much harder to address, assuming the problem is even identifiable
. The application user, however, is likely to remain unaware of this type of performance degradation, as it does not lend itself to direct observation.

Despite these disadvantages, the single-algorithm approach to software construction can be effective in certain circumstances. For example, this approach may be entirely adequate if the application developer can be sure that the characteristics of both the work done by an application and the hardware used will not vary substantially over time. It may also suffice if the application is short-lived, or performs only negligible computation. However, if the hardware, system software, or requirements vary over time this approach may lead to substantially increased application maintenance costs or reduced performance. Even when this approach is adequate, there may still be considerable effort required of the application programmer during development to identify the specific implementation that is best suited to the application.

1.1.1 Summary

Scientific and engineering applications require high performance to meet simulation objectives, and a dynamic and diverse HPC environment requires that applications also be portable. Designing applications that achieve high performance on multiple machines is a significant challenge. Standardized implementation languages that facilitate portability are insufficient in view of the hardware-specific constructs that must be included in application code to achieve high performance. Furthermore, high level libraries that enable application designers to express functionality via a common interface while hiding hardware-optimized implementations from the designer are also insufficient. These libraries typically implement a single algorithm that may or may not perform within expectations on problems encountered by an application during production. A more flexible approach to application development is needed; one such approach is to employ adaptive algorithms.

2. Background

T

he challenge in programming for either performance or portability is significant, and increases as demands to achieve either goal become more stringent. Meeting both goals simultaneously is even more difficult since techniques for achieving them individually conflict with achieving them together. The current solutions are inadequate in many instances, and in practice, researchers demanding the highest levels of performance must rewrite their applications for each platform.

This has lead many researchers to the conclusion that different program variants are required in different computational situations to achieve high performance. Alpern and Carter (Alpern and Carter 1994) propose the need for different program variants in motivating the need for a generic model of computation. Other researchers propose that algorithms be written to include a variety of methods for solving a single problem, with a mechanism provided to select between the competitors at run time (Brewer 1995)(Demmel 1992)(Dongarra and Walker 1995)(Gunnels, et al. 1998)(Li, Skjellum, and Falgout 1997)(Rice 1968)(Sussman 1992)(van de Geijn and Watts 1997). These approaches may be viewed as parts of a larger consensus that adaptive algorithms have potential for creating algorithms that achieve portability and high performance on parallel computers.

Adaptive algorithms, sometimes referred to as polyalgorithms (Rice 1968) or poly-algorithms, encapsulate a variety of methods to solve a single problem. The specific method applied to a given problem is determined at run time based upon the parameters that influence performance: machine issues, application software issues, and instance issues. Adaptive algorithms can be thought of as containers for several related methods of solving a single problem along with a mechanism for selecting the best
 algorithm for each problem. If enough algorithms are included in the algorithm set, chances are that at least one of them will perform well for a given problem on a given machine. As noted by Brewer (Brewer 1995) this approach simplifies code reuse and provides a framework for incorporating new algorithms. This approach also provides a basis for directing new algorithm research, and provides a mechanism for evaluating the effectiveness of those algorithms.

2.1 Current Approaches to Adaptive Algorithms

There is limited previous work directly examining the creation of switching functions for adaptive algorithms. However, a few numerical software packages are available that implement adaptive algorithms. The primary examples of these are PLAPACK (van de Geijn 1997), the Finite Difference Solver (FIDISOL), the Cartesian Arbitrary Domain Solver (CADSOL), and the Linear Solver (LINSOL). PLAPACK includes an adaptive algorithm for selecting among competing parallel matrix multiplication algorithms. The switching functions used are simple, comprised of only four rules that are each sensitive only to ratios of the matrix dimensions. These switching functions appear to be based on heuristics, and in early experiments appear to have relatively low accuracy in predicting the most desirable algorithm (about 80% correct predictions in early tests). This indicates that a more sophisticated approach may be needed.

An example of the approach typically taken in the other packages is found in LINSOL, which uses an adaptive algorithm for the iterative solution of linear systems by Krylov methods (Weiss, Haefner, and Schoenauer 1995). The adaptive algorithm uses three algorithms, each with different numerical characteristics. The first algorithm is very fast for diagonally dominant matrices, but may be unstable otherwise. The second algorithm converges slower, but the convergence criteria are somewhat relaxed. The final algorithm always converges very slowly, but is most likely to converge. The same approach is used in VECFEM3 for a subset of supported Krylov subspace solvers. Note that in these libraries the only criterion used in the switching function is convergence. There are many potential adaptation options for the Krylov methods, particularly with respect to communication patterns and data storage requirements, which are not included.

These packages are focused on delivering the highest computational throughput by modifying computation patterns. There are other aspects on which algorithms may adapt, for example storage and communication patterns. SparsLinC supports adaptive algorithms for data storage. Sparse vector accumulation is implemented using an approach that transparently switches between three different representations of sparse vectors. Some implementations of MPI and the Bulk Synchronous Parallel library (Hill, et al. 1997) provide adaptive communication algorithms for global communication based that are sensitive to the number of processors involved.

The most extensive treatment of the use of adaptive algorithms for attaining high performance with sensitivity to machine and instance issues is given by Brewer (Brewer 1995). This work, which is based on research by Sussman (Sussman 1992), is the basis of the proposed research. The switching functions employed by Brewer are based upon models that are statistically generated from a database of empirical performance data. Brewer’s linear regression approach is highly accurate (over 99% in published examples), but is expensive to create, as the performance data upon which the regression is performed is created through an extensive benchmarking process. This process is equivalent to solving an optimization problem by exhaustive search of the parameter space. The cost of populating the instance space for this type of problem rapidly becomes large as the number of parameters increases, or when any one dimension is particularly large. A central theme of the current research will be to examine alternatives to the straightforward linear regression approach and the accuracy/cost tradeoffs inherent in these alternative solutions.

3. Proposed Research

This research proposes to examine an approach for developing applications that achieve both high performance and portability with lowered development and lifecycle maintenance costs. The research is specifically targeted at parallel high performance computers and diverse HPC environments, but the concepts may be applicable generally. The solution should be easy to use and structured for wide applicability. As it is not expected that a single solution will be desirable in all situations, an understanding of the framework in which cost/benefit tradeoffs can be analyzed must be developed.

3.1 Candidate technologies

The solution proposed for investigation is adaptive algorithms. The two aspects of adaptive algorithms proposed for study in this research are switching functions and cost models. Switching functions are the software mechanism by which the adaptive algorithm selects the best available implementation for the current computational system. Previous research has concentrated on a single switching function technology with a high associated cost. A central theme of the current research will be to examine alternatives to this approach and the accuracy/cost tradeoffs inherent in them. Switching functions created using math, logic, and distance methods from the field of data mining will be examined. Additionally, methods based on analytical performance models of the hardware/software interactions will be considered.

Previous work has emphasized creating software that minimizes only one cost function – commonly measured by throughput or wall time. This research will examine how other cost models based on operational efficiency may be incorporated into adaptive algorithms to increase their applicability to a variety of needs.

3.1.1 Measurement

The switching function is a central technology enabling adaptive algorithms. In order to justify the costs of developing adaptive algorithms some benefit must be achieved. The key to actually deriving benefits from the theoretical potential of adaptive algorithms is the accuracy of decisions made by the switching functions. Benefits provided by adaptive algorithms may be at the margins of performance. As such, a careful examination of the penalty for making an “across the board” decision to use a single algorithm must be made in relation to the delivered performance improvement and the costs of obtaining that improvement. The per use cost in added overhead must also be quantified and evaluated in the final analysis.

3.2 Proposed Method

This section highlights most of the major, and many of the minor, aspects of the proposed research. This includes both high-level research directions and lower-level implementation details.

· The algorithms tested for adaptation will emphasize dense matrices.

· The implementations will focus on distributed memory parallel architectures.

· The research will focus on implementing and analyzing switching functions and mechanisms for incorporating different cost minimization functions.

· Two technologies for creating switching functions will be explored: analytical models of machine/software performance and models built from empirical data using methods from the field of data mining.

· Data mining techniques require a database of benchmark performance data for analysis from which the empirical models of performance are constructed. One of the disadvantages of previous work is the quantity of data required for accurate training. Strategies for controlling the quantity of data and their impact on prediction quality will be examined.

· In addition to investigating methods to reduce the amount of training data required for the empirical models, the proposed research will also extend previous research by evaluating competing empirical modeling methods. A variety of techniques from data mining will be examined to determine their appropriateness for switching functions, including: k-Nearest Neighbors, neural networks, decision trees, and decision rules.

· The proposed research will also extend previous work by investigating mechanisms for minimizing more than a single cost function. Nominally, mechanisms for both minimizing throughput and maximizing efficiency will be investigated.

· It is critical that the research remains focused on the technology of adaptive algorithms. Two well-understood algorithms from computational science, matrix-matrix multiplication, and the LU factorization have been selected for this research.

· To build the performance database from which the empirical methods will construct their models, a set of benchmarking features must be selected. Initially this will include block size, number of processors, shape of the processor topology, and problem size, but this list may be modified as the research proceeds and additional insights develop.

· The software for the adaptive algorithm implementations will be completed using C or C++ with PLAPACK, the BLAS, and MPI. PLAPACK is chosen because it supports manipulation of high level mathematical objects while maintaining performance at least equivalent to ScaLAPACK. Also, PLAPACK supports a rudimentary matrix multiplication adaptive algorithm, and reusing their implementations in conjunction with the new switching functions is expected to minimize algorithm development and debugging time while still providing a solid vehicle for experimentation.

· To provide a context in which to evaluate the adaptive algorithm technologies, both simple driver routines and sample applications will be implemented.

· The adaptive algorithms will be evaluated (nominally) on the CRAY T3E, the IBM SP, and a Linux Beowulf cluster.

· The switching functions and cost models must be assessed not only in terms of their performance relative to approaches of previous researchers, but also in terms of accuracy, overhead, and costs.

3.3 Research Contribution

This research is focused on technologies that enable development of programs with characteristics that Alpern has termed the three P’s: portability, high performance, and parallelism (Alpern and Carter 1994). The preceding discussion establishes that achieving either high performance or portability in a diverse parallel HPC environment is challenging; achieving both simultaneously is even more challenging. Yet, high performance and portability are both critical to computations in science, engineering, finance, medicine, and many other areas of research. Thus the general problem is complex, and continuing research on solutions is justifiable.

Recent research results suggest that some form of adaptive algorithms may have potential in meeting performance and portability goals. This indicates that the general area of research is recognized as important by other researchers. However, relatively few implementations of adaptive algorithms have been published. Of those that have, the bulk of the literature focuses on the mathematical aspects of the algorithms themselves, without having established a solid base of understanding in the enabling technologies. The proposed research will address this and extends previous work on empirically based switching functions by investigating approaches that are more sophisticated. This research will also add new data on the applicability of analytical modeling based approaches to constructing switching functions.

Efforts by earlier researchers implicitly focused on minimizing a single cost function, the execution wall clock time. The proposed research will extend those efforts by incorporating an efficiency cost function and investigating the incorporation of generic functions for cost minimization.

4. Bibliography

Alpern, B., L. Carter, E. Feig, and T. Selker. "The Uniform Memory Hierarchy Model of Computation." Algorithmica 12, 2-3 (August-September 1994).

Alpatov, P., G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, and R. van de Geijn. "PLAPACK: Parallel Linear Algebra Package." Proceedings of the SIAM Parallel Processing Conference, 1997.

Anderson, E., Z. Bai, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User's Guide. 2nd. SIAM, 1995.

Balay, S., W. Gropp, and L. Curfman. PETSc 2.0 Users' Manual. Http://www.msc.anl.gov/petsc/docs/manual/manual.html:March 1998.

Brewer, E. A. "High-Level Optimization Via Automated Statistical Modeling." Proceedings of Principles and Practice of Parallel Programming, 1995. Pages 80-91.

Dagum, L., and R. Menon. "OpenMP: an Industry-Standard API for Shared-Memory Programming." IEEE Computational Science and Engineering 5, 1 (January/March 1998).

Demmel, J. Trading Off Parallelism and Numerical Stability, University of Tennessee, 1992. Technical Report UT-CS-92-179; LAPACK Working Note 52.

Dongarra, J., Du Croz, J., S. Hammarling, and R. Hanson. "An Extended Set of FORTRAN Basic Linear Algebra Subprograms." Transactions on Mathematical Software 14, 1 (1988): 1-17.

Dongarra, J., Du Croz, J., S. Hammarling, and R. Hanson. "A Set of Level 3 Basic Linear Algebra Subprograms." Transactions on Mathematical Software 16, 1 (1990): 1-16.

Dongarra, J., R. van de Geijn, and D. Walker. "A Look at Scalable Dense Linear Algebra Libraries." Proceedings of the 1992 Scalable High Performance Computing Conference, J. H. Saltz., IEEE Press. 1992. Also appears as LAPACK Working Note 43, University of Tennessee Technical Report UT-CS-92-155, May 1992.

Dongarra, J., R. Pozo, and D. Walker. "An Object-Oriented Design for High Performance Linear Algebra on Distributed Memory Architectures." Proceedings of the Object-Oriented Numerics Conference, 1993.

Dongarra, J., and D. Walker. "Software Libraries for Linear Algebra Computations on High Performance Computers." SIAM Review 37, 2 (June 1995): 151-180.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel Virtual Machine, a Users' Guide. MIT Press, 1994.

Gunnels, J., C. Lin, G. Morrow, and R. van de Geijn. "Analysis of a Class of Parallel Matrix Multiplication Algorithms." Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing (1998 IPPS/SPDP '98), 1998. Pages 110-116.

Hill, J., W. F. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel, T. Tsantilas, and R. Bisseling. BSPlib: The BSP Programming Library, Oxford University Computing Laboratory, May 1997. Technical Report PRG-TR-29-9.

Lawson, C., R. Hanson, D. Kincaid, and F. Krogh. "Basic Linear Algebra Subprograms for FORTRAN Usage." Transactions on Mathematical Software 5, 3 (1979): 308-323.

Li, J., A. Skjellum, and R. Falgout. "A Poly-Algorithm for Parallel Dense Matrix Multiplication on Two-Dimensional Process Grid Topologies." Concurrency: Practice and Experience 9, 5 (1997).

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Computer Science Department, University of Tennessee, Knoxville, TN, May 5, 1994. Technical Report CS-94-230. Also appears in the International Journal of Supercomputing Applications, Volume 8, Number 3/4, 1994.

Rice, J. R. "On the Construction of Poly-Algorithms for Automatic Numerical Analysis." In Interactive Systems for Experimental Applied Mathematics, M. Klerer and J. Reinfelds. 301-313. Academic Press, 1968.

Skjellum, A. "The Multicomputer Toolbox: Current and Future Directions." Proceedings of the Scalable Parallel Libraries Conference, A. Skjellum and D. S. Reese., IEEE Computer Society Press. October 1993. Pages 94-103.

Sussman, A. "Model-Driven Mapping Onto Distributed Memory Parallel Computers." Proceedings of Supercomputing '92, Minneapolis, MN, IEEE Computer Society Press. August 1992. Pages 818-829.

van de Geijn, R. 1997. Using PLAPACK. MIT Press.

van de Geijn, R., and J. Watts. "SUMMA: Scalable Universal Matrix Multiplication Algorithm." Concurrency: Practice and Experience 9, 4 (1997): 255-274.

Weiss, R., H. Haefner, and W. Schoenauer. LINSOL (LINear SOLver) - Description and User's Guide for the Parallelized Version, University of Karlsruhe Computing Center, 1995. Technical Report 61/95.

� For example, an MPI implementation created before operating system support for processor subset barriers may become inefficient (relative to potential performance) once the kernel is updated to provide the new capability.

� Use of the word “best” in this context means “best among the available alternatives.” rather than “best among the universe of possible alternatives.”

DRAFT
- 24 Mar 99
 14

