April 26, 1999

Response to Professor Fox’s comments:

1. I don't see that West addresses issue as to why it is a problem that takes a lot of data (and time) to find best algorithm.  Dongarra et al. have in ATLAS got good press by taking a lot of data to do optimal empirical blocking for matrix problems.  If only needs to be done once when computer/software package commissioned -- why does this matter?

There are several approaches that I covered in my extended plan that didn’t make it past the editorial knife for the 12-page version.  Two of those are the ATLAS (Whaley and Dongarra 1998) and PHiPAC (Bilmes and others 1997) projects.  Both projects seek to produce optimal code for computation kernels through code generation.  Both systems perform a suite of benchmarks upon installation to determine how the hardware features, such as cache size, etc., of the machine being evaluated impact algorithm performance.  If these parameters are not specified, they can be empirically determined via other benchmarks.  The benchmarks test the performance of different algorithm variants for accomplishing the task at hand while varying the matrix size.  This enables crossover points for switching between the various algorithms to be identified and used for selecting the appropriate algorithm for particular problems.  For example, ATLAS contains a simple triple-loop matrix multiply along with optimized implementations of the same algorithm.  The optimized implementations involve additional overheads that for small problem sizes degrade performance.  The ATLAS software can automatically determine where the crossover point occurs, and for small problems uses the simpler implementation.  PHiPAC uses the same principles, but is substantially more complex than ATLAS.  ATLAS limits system-specific code to one square on-chip multiply, and uses the surrounding code to transform all problems to this format (this is one source of the overhead introduced by the optimized algorithms).  PHiPAC directly optimizes each individual operation, generating new code for each possible operation variant (like transpose multiplications).  The ATLAS code generator requires on the order of several hours to generate the optimized multiply routines (Whaley and Dongarra 1998), while the PHiPAC approach can consume on the order of several days. 

These projects are conceptually similar to the proposed research.  A collection of algorithm variants is assembled, and selection among them is made automatically based upon performance nuances of individual problems on individual machines.  Both approaches require extensive benchmarking, but so does the approach I propose.  In the research that I read, both ATLAS and PHiPAC focus on problems with a single adaptation dimension, matrix size, and are limited to uniprocessor problems.  Clearly, the research can be extended to overcome these “limitations,” if indeed such extensions have not already been made.  The conceptual difficulty with both techniques (as I understand them to have been implemented) is that they are compile time approaches.

The obvious drawbacks to these and similar compile time approaches is that they apply most readily to applications in which the performance-affecting features of a specific problem are known at compilation time.  Thus to be useful the application must be recompiled whenever the characteristics of the machine or the problem change.  The recompilation requirement poses serious difficulties for developing numerical libraries for use by a broad group of users on diverse applications.  Even in situations where a single user and application are being developed, the characteristics of executions, such as the number of processors or communication topologies, may vary without having to recompile the code.  Given this limitation, compile time techniques seem to be a difficult match to applications for which a single executable is used for the lifetime of the software installation, as with commercial software products. 

The research that I propose is capable of responding during execution to changes in the characteristics of the problem being solved, not just at compile time.  As I point out in the proposal however, both static (compile time) and dynamic approaches have a place in the computational arsenal.

2. I suggest that chosen algorithms (matrix problems) have the feature that one can produce analytic forms for performance based on  

a. Collective Communication algorithm

b. Latency and Bandwidth for Point to Point Messaging

c. Calculation Speed

d. Grain Size

e. Number of Processors

This feature means that one can surely choose "right" way of representing data.  However this means you are not addressing issues that arise when there is no clear "formula" and such cost models where you are not certain as to key dependent variables are most challenging.  Neural Nets/Non parameteric representations etc. are typically used.  So I suggest looking at algorithms such as adaptive meshes where performance cost model is unclear.  (That as well as cases where model understood).

[I am not sure I have gotten all the subtleties of this point, but I shall try to address some of them and trust that you will highlight those that I miss.]

Yes, I have chosen algorithms that are simple enough to be accurately characterized analytically.  One aspect of the proposed research is that I will investigate the application of generic analytical performance models (such as the Uniform Memory Hierarchy and others).  The two algorithms I have proposed for my research are sort of special cases, however, in that they can be very accurately predicted by specialized models that are well known.  It is my view that this type of situation is unusual in general.  Many algorithms are too complex for closed form representation, while other applications of adaptive algorithms will occur at a high enough level that they encompass too many relationships to be algebraically specified.  Thus, I propose to explore techniques other than exact modeling to see if they are effective.  

The first step in this is to understand how to manage the dependency information once it is assembled, and to understand what the issues are in assembling those data.  Thus there is somewhat of a cheat here.  I propose in my plan to benchmark on a number of features (matrix dimensions, topology shape, number of processors, blocking size, etc.) which you rightly point out I knew were important ahead of time from the analytic forms that other people have produced.  This will give me the data necessary to investigate the software issues in managing multiple algorithms in a single interface.  But what if I hadn’t some idea of what features were important?  That isn’t something that I have directly addressed.  At first blush, it seems that beyond general classes of similar algorithms this issue is algorithm dependent, and may resist an overall solution.  Certainly domain knowledge has to be applied in ferreting out these relationships.  But again this is part of the argument for adaptive algorithms – they, and their switching functions, encapsulate someone else’s knowledge about a computational problem.

Your suggestion to use neural nets to uncover these relationships is the heart of what I hope to show.  In this context, however, I am only proposing to explore a family of techniques and understand how effective they are at capturing relationships.  For problems where the performance-dependencies are not well understood one has the expensive shotgun alternative of varying everything in a huge benchmark set and letting the machine figure it out.  In this type of situation more powerful techniques that support auto-exclusion of unimportant features (like neural systems) seem to be important.

As a final note, you mentioned adaptive grid refinement as a possible area of inspiration.  My preliminary experiments have recently pointed me down this path and it is an idea I am working into my proposal.  My first early attempts at using data mining methods to predict performance have had only lukewarm success, mostly due to the nature of the benchmark data.  The first benchmarks I ran used a (mostly) arbitrary selection of sample points that I thought might be important in the parameter space.  But what is really going on with a switching function is that the user relies on it to identify the transition from one algorithm to another – in a 3 parameter space, you can visualize the shapes of regions where algorithms are superior to others and understand that what you are trying to do is accurately find those shapes.  I had high error rates in my initial predictions, all concentrated in the areas where one algorithm transitioned to another.  I have been recently exploring using an adaptive technique where the refinement criterion is the difference between the performance of two algorithms when one gives way to the other as the best choice.  If this difference is more than say 10%, one may trust that the real transition between the algorithms happened somewhere between the two sample points measured by the benchmark, and additional measurements are taken to find the “exact” spot.  This data may then be fed to a data mining method.  But this is may not be necessary, if one remembers that the job of the data mining method is to find transitions between algorithms.  These have already been located (to within refinement error) by the process of refinement, and it may be possible to apply a geometric algorithm to extract the shape information and build the switching functions.  

3. There is another class of research where all these issues are relevant.  That is in performance model driven compilers.  Here Uli Kremer from Rice wrote his thesis.  This area is quite interesting as need very fast estimators.

I will explore this area – thanks for the tip!

4. Less importantly, could comment on Java and issue of performance versus reproducible results.

I may have missed some of this point, but Demmel did some interesting thinking about similar issues (not related to Java) concerning performance and reliability of results.  He suggests adaptive algorithms that are sensitive to the need to produce fast, but accurate answers.  Thus a family of algorithms with increasing stringent numerical requirements for accuracy can create a chain of computation that enables fast computation on special systems at high accuracy and slow computation with the same accuracy on systems that don’t meet all the criteria.

I hope this is helpful!

Thank you again for sharing your thoughts with me – I look forward to any further thoughts my responses may have evoked.

