JPT: a Java Parallelization Tool

Kristof Beyls
Ist March 1999

Abstract

A Java parallelization tool, JPT is presented. In contrast with other approaches,
which focus on adding user-defined parallelization directives to a Java program, JPT
detects parallelism automatically. The development is based on accessing the internal
parallelization kernel of the open compiler, FPT. As a result, dependencies in loops
are detected and parallel loops are converted into multithreaded Java code. The
results illustrate the feasibility of this approach and indicate that good speedups can
be obtained.

1 Introduction

The importance of Java as a coherent, platform independent, object-oriented and network-
minded language is not disputed. Given these features, it is not surprising that Java
has also entered the high performance computing area with projects such as HPJaval2],
jPVM[4], Java/DSM|9], Spar[8], JAVAR[1],

These extensions/libraries all add the possibility to express parallelism in an elegant
way. Some of these tools generate in 100% standard Java, while others use platform
dependent libraries, or even specific Java Virtual Machines [7].

From these papers it appears that there are many ways to add parallel directives to
the Java programming language. However, only a few authors[l] investigate the way to
automatically detect parallel executable regions in a Java program, and to generate parallel
code from this analysis. This can be attributed to the complexity of parallelization, and
to the fact that parallelization tools were mainly developed for other languages [3]. In
this paper, the kernel parallelization algorithms and internal syntax tree of FPT[10] is
applied to detect parallelism in Java loops. This work was simplified because of the open
structure of the FPT with regard to new algorithms and languages. As a result, a rigorous
dependence analysis is performed on the Java program and the parallelism is revealed by
the FPT-analyzer. In a second phase, multi-threaded Java code is generated, based on the
back-end code generator of JAVAR[1]. The resulting code is able to execute in parallel on a
multiprocessor which executes the Java threads in parallel, e.g. on the Sparc, Windows-NT
and Linux platforms running the JDK1.7 development kit.

def_ref finds out for every node in the AST which
variables are read from and written into in
that part of the program.

create_depgraph | creates a dependency graph and stores it in
the AST

doall_converted | parallelizes all loops in the AST, subject to
the dependence analysis

Table 1: The functions that are used to identify the parallel loops in the AST.

This paper addresses the automatic generation of parallelism starting from “sequential
Java” source code. Related work has been done by Aart J.C. Bik and Dennis B. Gan-
non, who made JAVAR [1] which generates thread based parallel Java source code from
sequential source code.

2 Java loop parallelization

Loops are traditionally areas of implicit parallelism. The parallel execution of loops is
subject to a non trivial analysis of the loop-carried dependencies. Dependency analysis
has matured over time and the most important dependence analysis algorithms have been
put into the Fortran parallelizer, FPT [11], which has been developed at the University of
Ghent.

2.1 Dependence Analysis

By design[10], the inner data structures and the abstract syntax tree of FPT are quite
language independent. As a consequence, the same dependence analysis can be applied to
any language that can be expressed in the FPT syntax tree. Furthermore, the FPT API
(application programming interface) offers the right tools to detect, annotate and retrieve
the parallelism. The effort to make an interface to FPT for another language than Fortran
was done previously for C, leading to CPT (C parallel transformer|[5]).

The dependence analysis of FPT uses techniques such as Banerjee, Wolfe and GCD
tests|6], loop boundary calculation and unimodular transformations [11].

By using functions from FPT’s API, one can construct an FPT AST. The API also

contains the necessary functions to detect parallelism in the loops (see Table 1).

2.2 Parsing Java

The Java source is parsed by the GNU compiler guavac into a complete Java-based ab-
stract syntax tree. Since FPT was developed for Fortran, obviously some Java language

FPT KERNEL

Z

FPT AST Parallel FPT AST
transiation getting parallelization
information
parsing
= source code generator_
-2, /

sequential Java source Guavac AST Parallel Guavac AST o, parallel Java Threads

=&

other parallel
Java Platform

Figure 1: JPT parsing, parallelization and code generation.
The source file is parsed into an AST by Guavac. The loop nests are forwarded to FPT.
After parallelization by FPT, the parallel loops are annotated in the Guavac AST. Finally,
code can be generated for different parallel Java platforms.

constructs cannot be represented by the abstract syntax tree of FPT. However, the compu-
tation intensive parts, most amenable to parallelization, are represented similarly in both
languages, i.e. by loops and array calculations. As a consequence, only a part of the

Guavac AST is feeded into the AST of FPT.

2.3 JPT parsing, parallelization and code generation

e The source file is parsed into a Guavac AST.

o JPT translates nodes in the Guavac AST bottom-up into semantically equivalent
FPT syntax trees. If a node in the Guavac AST is not translatable into an FPT
AST, then all the subtrees of the Guavac AST which contain this untranslatable
node are also untranslatable, after which JPT continues with starting to translate
another part of the Guavac AST. As soon as an outermost for-loop that can be
translated has been discovered by JPT, the translation is feed into the parallelizer of
FPT (see Table 1).

o The resulting parallelized FPT AST is traversed to see which loops were parallelized

by FPT, and the corresponding loops in the Guavac AST are marked as parallelizable.

2.4 Parallel Java code generation

Currently, JPT generates parallel source code as standard Java Threads. This code pro-
duction reuses the technique described in [1].

3 Results

JPT was tested on programs with non-homogeneous loops including if-tests, such as linear
systems (e.g. BLAS), matrix multiplication etc.

As an example the Gauss-Jordan elimination algorithm is parallelized as follows (the
directive /* Par */ indicates that the following for-loop may be executed in parallel. On
the left side is the original Java function, on the right the function parallelized by JPT):

void eliminate(float[][] a, int n) | void eliminate(float[][] a, int n)
{ {
double f; double f;
for(int i=0;i<n;i++) { for(int i=0;i<n;i++) {
/* Par */
for(int j=0;j<n;j++) { for(int j=0;j<n;j++) {
if (i'=j) { if (it=3) {
f=alj][i]/alil [i]; f=aljl[i]/alil [i];
/* Par */
for(int k=i+1;k<n+1;k++) for(int k=i+1;k<n+1;k++)
aljl[k] -= f*ali][k]; aljl[k] -= f*ali][k];
t t
t t
t t
t t

4 Conclusion.

Java is widespread and becomes to have its impact in the High Performance community,
provided it contains an easy-to-use parallelization package. This paper is an additional
step in this direction.

JPT is able to find the parallelism in computation-intensive Java loops, from which
efficient executable code can be generated for a number of different High Performance Java
platforms.

References

[1]

2]

3]

[10]

[11]

A.J. C. Bik, J. E. Villacis, and D. B. Gannon. javar: a prototype Java restructuring
compiler. Concurrency, Pract. Exp. (UK), Concurrency: Practice and Frperience,

9(11):1181-1191, Nov. 1997.

B. Carpenter, G. Zhang, G. Fox, X. Li, and Y. Wen. Hpjava: Data parallel extensions
to java. Concurrency: Practice and Fxperience, 10(11-13):873-877, 1998.

E. D’Hollander, F. Zhang, and). Wang. The fortran parallel transformer and its
programming environment. Journal of Information Seciences, 106(7):293-317, July

1998.

A. J. Ferrari. JPVM: Network parallel computing in java. In Proceedings of the ACM
Workshop on Java for High-Performance Network Computing, Mar. 1998.

L.-S. Peng. Implementatie van een c-interface voor de parallelliserende compiler fpt.
Master’s thesis, University of Ghent, 1998.

K. Psarris. The Banerjee-Wolfe and GCD tests on exact data dependence information.

Journal of Parallel and Distributed Computing, 32(2):119-138, Feb. 1996.

Sun Microsystems. The Java Virtual Machine Specification, 1.0 beta edition, Aug.
1995.

K. van Reeuwijk, A. J. van Gemund, and H. J. Sips. Spar: A programming lan-
guage for semi-automatic compilation of parallel programs. Concurrency: Practice

and Frperience, 9(11):1193-1205, Nov. 1997.

W. M. Yu and A. L. Cox. Java/DSM: a platform for heterogeneous computing. In
Proc. of Java for Computational Science and Engineering—Simulation and Modeling

Conf., pages 1213-1224, June 1997.

F. Zhang. Development of a program information base for the FPT programming envi-
ronment. In E. H. D’Hollander, G. R. Joubert, F. J. Peters, and D. Trystram, editors,
Parallel Computing: State-of-the-Art and Perspectives, Proceedings of the Conference
ParCo’95, 19-22 September 1995, Ghent, Belgium, volume 11 of Advances in Parallel
Computing, pages 223-230, Amsterdam, Feb. 1996. Elsevier, North-Holland.

F. Zhang. The FPT Parallel Programming Environment. PhD thesis, University of
Ghent, 1996.

