Distributed High Performance Computing with OpusJava

Erwin Laure

Institute for Software Technology and Parallel Systems
University of Vienna
Liechtensteinstrasse 22, A-1090 Vienna, Austria
E-Mail: erwin@par.univie.ac.at

February 28, 1999

Extensive Paper for Section 3: System Software & Hardware Architectures

Extended Abstract

1 Introduction and Related Work

Advanced scientific applications are often built by composing existing software components that exploit
specialized computing and algorithmic resources [6, 7]. One might e.g. extract data from a distributed data
base, perform several numerical operations using a number of supercomputers, and visualize the results on
specialized graphical workstations. We can identify a set of common properties of such applications:

1. different modules need to cooperate in solving a problem.
2. parallelism can be exploited within and across modules.
3. modules are written in different languages.

4. modules are dynamically instantiated on different, heterogeneous platforms.

Apart from these properties, it is often necessary to plug new modules into a running application on the
fly or to change the hardware composition dynamically due to load balancing problems or hardware failures.

A number of systems have been developed which aim to support such applications. These systems range
from low level services and middle-ware, like Globus [5], CORBA [10], and PAWS [1], to high level languages,
like Legion [8] and to some extent HPC++ [7]. However, these systems are either at a very low level and thus
cumbersome to use, or lack efficient support for nested parallelism and high level coordination features.!

In this paper we present OpusJava, a Java interface to the coordination language Opus [3, 4]. OpusJava
combines the strengths of Opus (especially the integration of task- and data parallelism) with the strengths
of Java (especially the dynamic networking features). OpusJava provides a high level, uniform interface
for distributed high performance computing. All low level details such as communication, data format
conversion, or thread synchronization are completely transparent to the user. With help of OpusJava high
performance modules written in HPF can be seamlessly integrated in larger distributed systems.

After a short review of the salient features of Opus we sketch the design of OpusJava and its components.

Opus was initially designed to support multi-disciplinary applications, providing an object-based exten-
sion of High Performance Fortran (HPF) that integrates coarse-grain task parallelism with HPF-style data
parallelism. Tts central concept is the shared abstraction (SDA), which generalizes Fortran 90/HPF modules

L A profound discussion of related work is given in the full paper.



using an object-oriented approach and imposing monitor semantics. SDAs can be distributed, and thus
internally data parallel, while task parallelism is exploited between different SDAs. SDAs communicate with
one another via synchronous or asynchronous method invocation. A method’s activation may be guarded
by a logical condition clause. SDA objects are created dynamically on resources specified in an on-clause
that may contain the name of a machine and the number of processors to be used. The execution of an
Opus program can be thought of as a system of SDAs in which an SDA executes a method in response
to a request from another SDA. A prototype of Opus is being implemented [9]. This prototype makes use
of a multithreading runtime system for overlapping communication with computation and incorporates the
Vienna Fortran Compiler (VFC) [2] for parallelizing the data parallel portions. Data exchange between
SDAs is accomplished by exploiting highly optimized redistribution libraries which are invoked after a short
hand-shake protocol between all the nodes of an SDA.

While Opus provides efficient support for coupling modules which exploit hybrid forms of parallelism
on homogeneous systems (properties 1. and 2. from above), it lacks support for language interoperability
and heterogeneous platforms (properties 3. and 4.). This is mainly due to the Fortran/HPF centric ap-
proach. OpusJava is designed to bridge the gap between efficient high performance computing and dynamic
distributed computing.

2 OpusJava at a Glance

OpusJava is a Java package that provides Opus functionalities. Thus, it can be used to interface Opus (i.e.
Fortran/HPF) applications with distributed Java (or C/C++ via JNI) applications or simply to program
Javain a high level Opus style. The syntax of OpusJava is similar to Opus to provide a common look-and-feel.

Java was chosen as base language because of its excellent networking support. It provides platform
independence, a common data representation, communication via RMI or sockets, multithreading, dynamic
class loading, and reflection, each of which is indispensable for our applications in mind.

The main task of OpusJava is to provide both, access to Opus SDAs, and Java SDAs with their salient
features. In doing so, OpusJava comprises three main components:

e SDAServer: The SDAServer is a daemon that is installed on every system which may participate in
an OpusJava program execution. It exports RMI methods for both, creating and destroying SDAs.

e SDAImpl: The Java class SDAImpl is the base class for all SDA objects. While any user defined SDA
needs to extend this class, the Opus compiler generates appropriate wrappers that extend SDAImpl
for all SDAs in an Opus code automatically. SDAImpl implements all inherent SDA features like
conditional method execution, storing of execution request, transmitting results, etc. Moreover, it
exports RMI methods for synchronous and asynchronous method invocation.

e SDA: The final class SDA is in principle a pointer to SDAImpl objects. It contains a remote reference
to its SDAImpl counterpart and provides methods for synchronous and asynchronous remote method
invocations.

When using OpusJava all communication, RMI, JNI, and synchronization issues are completely trans-
parent to the programmer; not even interface specifications via IDLs (which are required e.g. in CORBA)
are necessary.

Let us illustrate the components and functionalities of OpusJava using an example (code fragments are
given in Figure 1). Every module of an application needs to extend SDAImpl. In our case, it is a class Test
which has one public method foo. If Test is an SDA from an Opus program, the corresponding class is
generated by the Opus compiler. In such a case, foo would be a C wrapper for the original Fortran/HPF
procedure which is accessible from Java via JNI (cf. Figure 2 which illustrates the invocation of an Opus
method from Java).

In order to create/access an SDA object from a Java program, a new instance of class SDA needs to be
created. The constructor has 4 arguments: the name of the SDA, an array of input arguments for the remote
constructor, the machine-name on which it should be allocated, and the number of processors to be used.
Internally, the constructor of SDA contacts the SDAServer on the given machine, passing along the request



class Test extends SDAImpl{ public class Main {

public static void main(...) {

/* constructor */

public Test ({3} /* create new instance of Test */

SDA bar = new SDA(‘‘Test’’,null,’’machine’’,1);
/* method */
public void foo(...) {...} /* invoke a method of Test synchronously */

} Object[] args = ..

bar.call(‘‘foo’’,args);

/* invoke a method of Test asynchronously */
Event ev = bar.spawn(‘‘foo’’,args);

/* synchronize */
ev.wait();

+}
Figure 1: OpusJava Example

for creating the SDA on the given number of processors with the given input arguments. The SDAServer
exploits Java’s reflection mechanism to check, whether appropriate classes are available. If not, dynamic
class loading can be used to load the classes from user specified resources on demand. After the SDA object
has been created, the SDAServer registers the new object in the RMIRegistry and sends back the registered
name. The SDA object creates a remote reference to the registered object via which all subsequent method
calls occur.

Class SDA provides methods for calling remote methods in a synchronous (call) or asynchronous (spawn)
way. In the first case, the call is blocking until the results are available, while in the latter case an Event
object is returned immediately, which can be used for synchronization later on (e.g. with the method wait).
When invoking a method, the method name and an array of input arguments needs to be passed. On
the recipient side, the base class SDAImpl provides mechanisms for receiving and evaluating the validity of
requests utilizing Java’s reflection mechanisms.

3 Conclusions

Let us summarize the salient features of OpusJava: OpusJava provides a high level interface for coupling
and coordinating modules written in different languages and exploiting multiple levels of parallelism. High
performance components can be seamlessly and efficiently integrated in a bigger system by calling Opus
from OpusJava, which is enabled by appropriate wrappers generated by the Opus compiler. These high
performance components need not to be changed and can still exploit highly optimized communication
mechanisms available on their target platform. The user of OpusJava can focus on the algorithmic problem:

Opus Application —— Ruisodes Java Application

———————————— > NI

—_— Procedure Call

Opus Request

= SDAClass extending
Opus_C_Wrapper
= SDAImpl

Figure 2: Opus/Java Interaction with OpusJava



all low level details like communication, RMI mechanisms, data format conversions, or JNI are transparent.
Moreover, OpusJava employs Java’s dynamic class loading features, which allow new modules to be plugged
into a running application dynamically.

In the full version of the paper, the OpusJava architecture and its interface to Opus are elaborated in
more detail. Moreover, runtime results will be presented which compare the method invocation overhead of
OpusJava with that of pure Opus.

References

[1] P.H. Beckman, P.K. Fasel, W.F. Humphrey, and S.M. Mniszewski. Efficient Coupling of Parallel Appli-
cations Using PAWS. In Proc. HPDC, Chicago, IL, July 1998.

[2] S. Benkner. VFC: The Vienna Fortran Compiler. Journal of Scientific Programming, 7(1):67-81,
December 1998.

[3] B. Chapman, M. Haines, E. Laure, P. Mehrotra, J. Van Rosendale, and H. Zima. Opus 1.0 Reference
Manual. Technical Report TR, 97-13, Institute for Software Technology and Parallel Systems, University
of Vienna, October 1997.

[4] B. Chapman, M. Haines, P. Mehrotra, J. Van Rosendale, and H. Zima. OPUS: A Coordination Language
for Multidisciplinary Applications. Scientific Programming, 6/9:345-362, Winter 1997.

[5] I. Foster and C. Kesselman. The Globus Project: A Status Report. In IPPS/SPDP ’98 Heterogeneous
Computing Workshop, 1998.

[6] I. Foster and C. Kesselman, editors. The Grid. Morgan Kaufmann, 1999.

[7] D. Gannon et al. Developing Component Architectures for Distributed Scientific Problem Solving. IEEE
Computational Science & Engineering, April-June 1998.

[8] A.S. Grimshaw, W.A. Wulf, et al. The Legion Vision of a Worldwide Virtual Computer. Communications
of the ACM, 40(1), January 1997.

[9] E. Laure, M. Haines, P. Mehrotra, and H. Zima. On the Implementation of the Opus Coordination
Language. Technical report, Institute for Software Technology and Parallel Systems, University of
Vienna, to appear.

[10] OMG. CORBA/IIOP 2.2 Specification, June 1998.



