PetaSIM Quarterly Report

Geoffrey Fox, Yuhong Wen

March 31,99

Northeast Parallel Architecture Center (NPAC)

Syracuse University

111 College Place

Syracuse, NY, 13244-4100

1. Objective

The goals of this project are: (1) to develop an easy-to-use and efficient performance prediction system for large-scale parallel systems at the early concept design stage, and (2) to demonstrate PetaSIM as an early step to the Performance Specification Language (PSL).

2. Approach

There are three parts of descriptions in the PetaSIM performance estimation system, architecture description, software/system description, and application description. The most general computer architectures can be specified using the PetaSIM nodeset, linkset while the applications can be specified using dataset, and distribution objects.

One of the most important motivations of PetaSIM is to provide a performance estimation tool for the new computer architecture designer to get a fast and accurate performance prediction during the conceptual architecture design. This requires that PetaSIM should be easy to operate and the it be convenient to modify features of the computer architecture. We chose a Java applet front end to meet this requirement in the design of PetaSIM. It works with a back end server to provide a very easy-to-use and friendly interface.

In the long run, we will extract the critical features from our experience with PetaSIM and use them as an initial step in the development of a powerful Performance Specification Language (PSL).

3. Current Status of PetaSIM

PetaSIM (version V1.0) performance estimation system has been implemented in NPAC, using C++ back end server and a Java applet as a front end user interface. It's based on an architecture description (nodeset class and linkset class) and application description (dataset class and distribution class, plus execution script to describe the operations on the dataset). 

PetaSIM can take either input from handwritten description code or application code from emulators, like the experiments from the University of Maryland’s emulators. It also supports both the distributed programming model (like UMD’s applications) and the data parallel programming model.

The experiment results show that PetaSIM not only can provide easy-to-use and quickly performance estimation, it can also provide a very accurate performance estimations.

Detailed Activities in Last Quarter:

1. Implemented a new version of PetaSIM to replace the previous kernel code. The old kernel was developed in rapid prototyping mode, and was inevitably not well organized. The current new version provides more clear structure and is implemented more efficiently.

2. Modified the execution script running schedule method in the performance estimation process of PetaSIM. More rules have been added to deal with the resource conflicting problem. This has provided some performance improvement in the UMD’s applications, though not much. We are still trying to apply more schedule approaches.

3. A new version of PetaSIM to support the binary code of execution script is being developed. This is aimed to reduce the size of real application’s execution script file. We plan to combine both the ASCII format and binary code format together. The ASCII format still has the advantage of easy to operate and understand in the Java frontend applet.

4. Trying to introduce more feature descriptions in the system/software level. Different operating systems in the machines have different task management approach. We may try to extract their features in the system domain.

4. Future Research Plans

In order to make PetaSIM more capable in dealing with real different kinds of applications, and to make the application’s execution script more efficient and easy to read, we have an on-going activity to design and provide more complex instruction statements. This will also benefit the estimation process, and makes it run quicker.

PetaSIM uses an execution script for the application specified in ASCII format, which corresponds to a coarse grained description of the application. PetaSIM’s approach appears to provide a more intuitive interface to both application and resource description, which naturally supports rapid prototyping studies over a wide range of computer architectures. In some cases, PetaSIM’s interpreted processing of the ASCII execution script may be too slow and some pre-processing (compilation) of the execution script should be added as an option to the PetaSIM. Remember one of our goals was to support the study of a range of architectures for a fixed application suite and in this case, it makes sense to compile the execution script.

Other extensions of PetaSIM include execution of the estimate in parallel and perhaps more interestingly, adding capability to address novel types of problems. Meanwhile, we are expecting to conduct more real application’s performance estimation experiments on different kinds of parallel computer architectures.

We are also designing a Performance Specification Language (PSL) based on the experience from PetaSIM, making it more generally able to deal with all kinds of applications and different kinds of parallel computer architectures.

