
with
lient
to be
XSIL: Extensible Scientific
Interchange Language

Kent Blackburn1, Albert Lazzarini1

Tom Prince1,2, Roy Williams2

1LIGO Laboratory, California Institute of Technology 18-34, Pasadena, CA 91125, USA
^NHQW�OD]]`#OLJR�FDOWHFK�HGX

2Center for Advanced Computing Research, Caltech 158-79, Pasadena, CA 91125, USA
^SULQFH��UR\`#FDFU�FDOWHFK�HGX

Abstract. We motivate and define the XSIL language as a flexible,
hierarchical, extensible transport language for scientific data objects. The
entire object may be represented in the file, or there may be metadata in the
XSIL file, with a powerful, fault-tolerant linking mechanism to external data.
The language is based on XML, and is designed not only for parsing and
processing by machines, but also for presentation to humans through web
browsers and web-database technology. There is a natural mapping between
the elements of the XSIL language and the object model into which they are
translated by the parser. As well as common objects (Parameter, Array, Time,
Table), we have extended XSIL to include the IGWDFrame, used by
gravitational-wave observatories.

1 Introduction

The Extensible Scientific Interchange Language (XSIL) is designed to represent
collections of common scientific data objects. There are constructors for objects such
as Parameters, Arrays, Tables, and other types, as well as support for binary objects,
both MIME-typed and untyped. There is also a container object that may contain these
other types as well as other containers, so that an XSIL file can be hierarchical. For each
object, the entire object with all its data may be represented in the XSIL file.
Alternatively the XSIL file may only contain metadata, with the bulk binary data
external: there is a flexible Stream object that may contain URL-type links to external
data.

XSIL is based on the XML language1, an industry standard for which a large amount of
software is available in the form of editors and parsers, as well as the familiar Microsoft
and Netscape browsers. The aim has been to keep the language simple, intuitive, and
easy to create and use, using a text editor, an XML editor, or from a program. The XSIL
file can be used by either a human or a computer: it can be displayed, edited,
summarized, sorted, or printed for human consumption; or it can be parsed as machine
input with a number of methods and tools, as outlined below.

XSIL is a way to represent collections of scientific data objects—small objects
data explicitly contained in the file, and large objects represented by the sa
metadata and references to binary files elsewhere. We intend the XSIL format
1

s

f

ge,
cond,
s with
 black
ill be
tching,
th the
ric

ry
larity
 in
 at
used:

• As a flexible and general transport format between disparate applications in a
distributed archiving and computing system; a text-based object serialization
that can be handled by common tools, or

• As documentation mechanism for collections of data resulting from
experiments or simulations; with all the parameters, structure, filenames and
other information needed to keep a complete scientific record.

• As an “ultra-light” data format: a user can, if he wants, simply read the
markup, then delete all except the actual data, or all except for the filename
where the data may be found.

We should note that an analogous format2, WDDX, is under development as part o
Allaire’s Cold Fusion product line.

1.1 Applications

The LIGO project3 (Laser Interferometric Gravitational wave Observatory) is a lar
federally funded physics experiment that will produce several megabytes per se
24 hours per day, 7 days per week. This data will be processed, looking for matche
astrophysically significant events, for example coalescence of neutron stars and
holes. The data will also be processed and distributed in other ways, and w
supplemented by instrument status data, candidate events from the pattern ma
and other data. While a format has been fixed for the raw data, in collaboration wi
French/Italian VIRGO observatory4, there is a need for a more flexible, more gene
format for many of the other datasets, which motivated the design of XSIL.

Other projects at Caltech and elsewhere which may benefit from XSIL include

• Digital Puglia Synthetic Aperture Radar Atlas5, an archiving and processing
facility for knowledge-discovery in remote-sensing databases,

• Digital Sky, a prototype confederation of astronomical surveys,
• Center for Simulation of the Dynamic Response of Materials6, a

multidisciplinary consortium at Caltech for simulations at multiple scales.
• Interferometric SAR Library, a facility to improve the usability of this

promising technology.

2 Presentation and Content

The syntax of XSIL is based on XML1 (eXtensible Markup Language), now an indust
standard for representing structured textual documents. XML combines the popu
of HTML in the wide Internet community with the battle-hardened power of SGML
the library community. Every XSIL file is an XML file; some references to XML are
the end of this document. Here is a small example of an XSIL file:

�"[PO�YHUVLRQ �����"!
��'2&7<3(�;6,/�6<67(0��;6,/�GWG�!
�;6,/!

�&RPPHQW!)LYH�0HDVXUHPHQWV�RI�YROWDJH��&RPPHQW!
�3DUDP�1DPH µ*DLQµ�8QLW µPLOOL9ROWµ!�������3DUDP!
2

 XML,
s how

m
 the
t, for
for a

ile is
t the
at is,
n:

ds
�$UUD\!�
�'LP!���'LP!�
�6WUHDP!�0HWDOLQN�)RUPDW �7H[W��'HOLPLWHU ��?Q��!

��
��6WUHDP!

��$UUD\!
��;6,/!

The first line is like a "magic number" which must be the first line of any XML file. The
second line says that this XML file is of a particular kind, an XSIL file. The �&RPPHQW!
element is supposed to contain text that appears in presentation of XSIL, but does not
play a part when the computer parses the file. This is followed by a �3DUDP! object and
and �$UUD\!�object. The �3DUDP! object is an entry in a list of keyword-value pairs —
there may also be units and comments associated with the �3DUDP!. The �$UUD\! has
one dimension, with five elements, as indicated by the �'LP! element, and the array is
then expressed explicitly in ASCII text through the �6WUHDP! tag.

2.1 Presentation

One of the advantages of basing the XSIL format on a standard language such as
is that standard desktop tools can be used to view and edit the file. Figure 1 show

this file looks when viewed with an XML editor, in this case XML Notepad fro
Microsoft. There can also be customized presentation of XML and XSIL files in
browser through style sheets. Large numbers of XML tools are coming to marke
browsing, editing, sorting, and converting XML files. Some examples are shown
more sophisticated XSIL example later in this document.

2.2 Parsing XSIL

In addition to providing a document that can be browsed by a human, an XSIL f
designed to allow computers to “understand” its content. By this, we mean tha
structure defined by the XSIL file is mapped into objects on the program side—th
an API. The current collection of XML parsing implementations are based either o

• Event based parsing: The user associates handlers with tag names, then han

Fig. 1: The file above rendered by an XML-editor.
3

ciative
e that

d for
th an
s. A

nd its
a small
 data

, from
lass,
en the

g
ents.

ce of
y,

ain

that a
t is
hat are
control to the parser.
• Document Object Model7,8: The parser returns a document object which the

user can interrogate, a fully-formed tree with the tags and text from the XML
attached.

In both cases, access to the attributes of an element is generally through an asso
lookup: given an attribute name, there may be a corresponding value, but it may b
the list of attribute names cannot be retreived.

3 The XSIL Language

3.1 Objects and Streams

In the XSIL language, there are objects and streams. An object defined in the XSIL API
implements the ;6,/2EMHFW interface, which has the method UHDG6WUHDP��, as well as
other methods to get the name and type of an object. While XSIL itself is designe
flexibility rather than speed, it is expected that streams may be implemented wi
opposite sensibility: as powerful, high-bandwidth, possibly parallel, data stream
stream is defined in the XSIL file with a �6WUHDP! element, which may contain data
explicitly, or may be a link to data stored elsewhere through a URL-like syntax.

Streams provide a separation between control and data; XSIL is the control a
Stream carries the data. Just as the anchor chain of a ship is pulled to shore with
rope, so the flexible, low-bandwidth XSIL can be used to set up high-performance
channels.

When an object is read in to a program, it may have an input stream attached to it
which it may read data. For example, in the implementation of the Array c
dimensions of the Array are used to allocate an appropriate amount of memory, th
data can then be read in through the UHDG6WUHDP method of the underlying XSILObject.

3.2 XML

XML is much more than “glorified HTML”, but rather it is a “language for creatin
languages”. It is a hierarchical structure of elements that may contain other elem
An element generally consists of a start tag, a body, and an end tag, for example:
�)UXLW!%DQDQD��)UXLW!, where start and end tags are distinguished by the presen
a slash. An element may be empty, meaning that there is only a single tag, with no bod
for example �(PSW\(OHPHQW�!; note the position of the slash. Elements may cont
attributes, for example: �)UXLW�FRORU µ\HOORZµ>. We should point out that XML is
case-sensitive, so that �$SSOH!, �DSSOH! and �$33/(! are all different tags.

Finally we distinguish presentation and parsing: When an XML document is
presented, the element structure is used to generate formatting information so
human can visualize its content—conversion to HTML, TeX, VRML, etc. When i
parsed, a computer reads the file and the elements are converted to objects t
returned from the API.
4

lies
ctive
ged.

s

o

f the
ined. A
t the
d, not
 it is

IME-
3.3 The Container Object

In the XSIL language, there is a generic �;6,/! element which can contain other
elements, including other �;6,/! elements, thus inducing a hierarchy. Each of these
may have a 1DPH attribute, to provide hierarchical naming that is visible from the API.
Furthermore, the XSIL file must be enclosed in �;6,/!�����;6,/! tags, so that when
the file is parsed, it is always a single XSIL object that is passed back. Here is an XSIL
fragment that consists of a container hierarchy with an array at the second level and a
parameter at the third level:

�;6,/�1DPH µ)UXLWµ!
�;6,/�1DPH µ<HOORZ)UXLWµ!

�$UUD\!�'LP!���'LP!��$UUD\!
�;6,/�1DPH µ%DQDQDµ!

�3DUDP�1DPH µ,QGXFWDQFHµ!������3DUDP!
��;6,/!

��;6,/!
��;6,/!

3.4 Object Representation in XSIL

In general, we would like to attach data and metadata to the branches and leaves of the
tree of containers, presumably in the form of objects. We may point out here that the
terms “object” and “element” have similar meanings here: except that “object” imp
a program perspective (the API), whereas “element” implies the document perspe
(XML). Thus in this paper these points of view may be somewhat loosely interchan

The basic data element of XSIL is simply �2EMHFW!, corresponding to the base-clas
;6,/2EMHFW in the API. All XSIL elements may contain the following elements:

• �&RPPHQW!: this text is not parsed, it is presumably natural language.
• �3DUDP!: to define associations between names and values that are specific t

the containing object, and that are not accessible to other objects.
• �6WUHDP!: a definition of the input data stream that the object may draw upon

from the API.

Also, most XSIL objects can have certain attributes:

• 1DPH��A string representing the name of the object; defaults to the null string.
• 7\SH: The type of the object or of the relevant primitive type: defaults to

“double”
• 8QLW� A string representing the physical units associated with a number or

parameter, for example “Hz” or “km”; defaults to the null string.

In addition to these common properties, perhaps the most important aspect o
generic object is that it may have access to a Stream object, if one has been def
generic object might be used to reference a binary file, with the assumption tha
meaning is in the metadata or in natural-language text (such behavior is condone
encouraged). The generic object may refer to a MIME-typed object, in which case
expected that the information about interpreting the stream is contained in the M
type, which is available at the beginning of the stream.
5

the
 unit

meter
ent,

s.

 it is
. The
ard,
s

ripts,
ions
 the
e
ut it
e API
to 4.
For more specific objects, we expect the tags of the XSIL definition to provide enough
metadata to the implementation that it knows how to read the associated stream.

3.5 Some XSIL Objects

XSIL is an extensible language, meaning that users can implement their own objects or
subclass the existing objects. There are mechanisms in XSIL for this through addition
of extra handlers in the parsing API, through addition of extra sections in the DTD for
syntax checking (see below), and though addition of extra parts to the style language for
presentation. In this list are some common scientific objects that many applications can
use, such as Parameter, Time, Array, Table. We will extend XSIL with a format that
may be less popular: expressing the metadata from the IGWD-Frame file, which is a
standard file format for recording data from Gravitational-Wave detectors.

3.5.1 Parameter

A parameter in XSIL is an association between a name and a value, perhaps with
additional attributes such as Unit and Type. For example:

�3DUDP�1DPH µ)UXLWB0DVVµ�8QLW µNJµ!�������3DUDP!

As may be obvious, the meaning here is "Fruit_mass = 0.387 kg", which is the kind of
thing usually found in "parameter files" or “header files” in scientific computing. At
API level, there is a dictionary of these parameters available, perhaps with
conversion, allowing an easy lookup of critical parameters.

All XSIL objects may contain Parameters, as well as Comments. Thus the Para
object is different from other objects: while a container may contain a Table elem
which in turn may contain Parameters, but the Table may not contain other Table

3.5.2 Time

In the LIGO experiment, as with many other experiments in physical science,
critical that timing information be not only accurate, but also easy to understand
�7LPH! element in XSIL can represent either “natural” time (ISO-8601 stand
YYYY-MM-DD HH:MM:SS.mmmuuunnn), or GPS time, or “Unix time” (second
since 1/1/1970). The different formats are differentiated by the 7\SH attribute in the tag:

�7LPH�7\SH µ,62�����µ!�������������������������7LPH!

3.5.3 Array

An array is a collection of numbers (or other primitive type) referenced by subsc
which is a list of integers whose maximum values are given by the list of Dimens
of the Array. This definition is very close conceptually to a Fortran or C array, with
7\SH attribute of the �$UUD\! tag specifying which primitive type is contained in th
array (float, int, etc.). The XSIL element specifies the dimensions of the array, b
does not specify the subscript ranges. For a dimension of 5, a Fortran binding of th
would label subscripts from 1 to 5, but a C binding would have subscripts from 0

As with other XSIL objects, the Array tag may have 1DPH and 7\SH attributes, and the
6

nnels
ta from
t, etc.
Array element may contain Comment, Parameter, and Stream elements. The only
element specific to this class is �'LP!, for example:

�$UUD\�7\SH µLQWµ!
�'LP!���'LP!�
�'LP!���'LP!

��$UUD\!

which specifies a 5x3 array of integers, with the last dimension changing fastest. The
presumption is that 15 integers may be read from the Stream associated with this Array.

3.5.4 Table

A table is an unordered set of records, each of the same format, where a record is an
ordered list of values. The contents of a record are defined by column headings, each of
which may have a unit and a type. This definition of a table should be thought of as
similar to the table object that is found in a relational database; we should point out that
this is not the complex and exotic typographical beast of TeX or HTML.

The only tag specific to the Table object is �&ROXPQ!, which specifies the name, type,
and possibly units associated with one of the columns of the table. It can be thought of
as the heading of a column in a table. In Figure 2 is shown a small table definition,
together with a presentation of the table in HTML.

3.5.5 IGWD Frame

We are implementing an XML definition of the metadata found in a IGWD Frame9, the
principle data object of the LIGO3 (USA) and VIRGO4 (France/Italy) gravitational-
wave observatories. The idea is that an XSIL file can contain the metadata for these
objects, such as cataloguing information, perhaps with embedded content summaries.
The Frame object in XSIL will also include a Stream that provides access to the actual
binary file. The metadata includes timing information, the observatory at which the data
was taken, natural language “history” records, together with the list of data cha
that are recorded in the file. Each named data channel represents a stream of da
a particular instrument at the observatory, and has a status, data rate, gain, offse

�7DEOH!
�&ROXPQ�1DPH µ)UXLWµ�!
�&ROXPQ�1DPH µ&RORUµ�!
�&ROXPQ�1DPH µ0DVVµ�8QLW µNJµ�!
�6WUHDP!

�0HWDOLQN�)RUPDW µ7H[Wµ�'HOLPLWHU µ�?Qµ�!
%DQDQD�<HOORZ�����
&KHUU\�5HG�����

��6WUHDP!
��7DEOH!

Fig. 2: An XSIL fragment expressing a Table of Fruit. To the right is a presentation of the
table using HTML viewed in a browser: because XSIL is an XML dialect, such translations
can be done with great facility.
7

 new
e” is
 is

 in the
h is

her as
When the parser sees a �,*:')UDPH! element, it should pass control to a Frame reader
module, which assumes the existence of an XSIL Stream object from which it can read
the data. For more detail, see section 7.

4 Streams

When an XSIL element is parsed, the implementation of the resulting object may use
the UHDG6WUHDP���method of the object, for example an Array object would first read
the type and dimensionality of the Array, then proceed to read in the data from its
Stream. Thus a Stream may be thought of as a data socket, together with metadata about
the link: data encoding, recommended timeout values, permission information,
delimiter characters, and so on. The data may be contained in the XSIL file directly,
either as readable text or as binary that is encoded to text by uuencode or base64.

4.1 A Stack of Streams

As the file is parsed, a stack of stream objects is created, with a new Stream pushed on
the stack whenever such an element is encountered, and the stack is popped from the
stcak and closed when certain end-tags are encountered. When an element is parsed into
an object, it is given access to the Stream which is at the top of the stack. Many objects
may then be read serially from the same Stream. For example:

�6WUHDP�1DPH µ<DQJW]Hµ!�����6WUHDP!
�;6,/!

�$UUD\�1DPH µ3DQGDµ!������$UUD\!
�6WUHDP�1DPH µ7KDPHVµ!�������6WUHDP!
�$UUD\�1DPH µ4XLQFHµ!������$UUD\!
�$UUD\�1DPH µ3XPSNLQµ!����

�6WUHDP�1DPH µ+XGVRQµ!������6WUHDP!
��$UUD\!

��;6,/!
�$UUD\�1DPH µ%DPERRµ!������$UUD\!

Here the Array named “Panda” is read from the only open Stream, “Yangtze”. A
stream, “Thames” is then pushed on to the stack, from which the Array “Quinc
read. The Array “Pumpkin” comes with its own Stream, called “Hudson”, which
closed and popped as soon as the Array has been read. When the final Array
example is reached, “Bamboo”, only one Stream is still on the stack, whic
“Yangtze”, from which it is read.

4.2 Stream Element

A Stream element may contain actual data or a link to the data.

4.2.1 <Data>: Explicit Data

If the data is present explicitly, it is assumed to be unparsed character data; eit
delimited text (as specified in the 'HOLPLWHU� attribute of the 0HWDOLQN tag);
alternatively it may binary encoded as text in one of various ways.
8

onal
4.2.2 <Link>: External Data

Another way to specify a data stream is by an external reference, which is done in XSIL
with a �/LQN! element. The content of the Link element has a URL-like syntax:

SURWRFRO���KRVWQDPH�SRUW�ILOHQDPH

where the data may be on a local file (ILOH), on a web- or ftp server (KWWS, IWS), or other
idiosyncratic words like WDSH. From the API perspective, the protocol list can be
extended by suitable handlers.

4.2.3 Metalink

There may be also be a �0HWDOLQN! element associated with the �6WUHDP! or with
�/LQN! elements. This empty element provides metadata about the link itself: how
binary has been encoded to text, the delimiter character between numbers in a text
stream, the recommended timeout when accessing this data, access protocols, access
restriction information, etc. etc.

4.2.4 Fault Tolerance

There may be multiple �/LQN! elements for a given Stream, with the assumption being
that any of the links can supply the data. In this way we can provide transparent fault-
tolerance for access to the data: one link may be to volatile disk (with a small timeout),
and another may link to an archival tape-robot, with a long timeout. The data may also
be on a tape offline if both of these fail.

5 An Example XSIL File

To illustrate some of the capabilities of the XSIL format, we have created a fairly
comprehensive example, which is page from an “eletronic logbook” for computati
scientists:

�"[PO�YHUVLRQ �����"!
��'2&7<3(�;6,/�6<67(0��;6,/�GWG�!
�;6,/�1DPH �6DPSOH�;6,/�)LOH�!

�&RPPHQW!/,*2�SRZHU�VSHFWUXP�RI����PDJQHWRPHWHUV��&RPPHQW!
�&RPPHQW!&UHDWHG�E\�-LOO�DQG�6XH��&RPPHQW!
�3DUDP�1DPH �/,*27\SH�!3RZHU�6SHFWUXP��3DUDP!
�7LPH�1DPH �6WDUW7LPH��8QLW �*36�!��������������������7LPH!
�3DUDP�1DPH �)UHT6DPS��8QLW �+]�!

�&RPPHQW!7KLV�LV�WKH�VDPSOLQJ�IUHTXHQF\��&RPPHQW!
����

��3DUDP!

�6WUHDP!
�����2SHQ�D�6WUHDP��WKLV�GDWD�LV�DW�&DFU��+DQIRUG��DQG�RQ�D�WDSH�LQ�WKH
ILUHSURRI�YDXOW��7KH�LPSOLFDWLRQ�LV�WR�RSHQ�21(�RI�WKHP���!

�/LQN!�0HWDOLQN�)RUPDW �ELJHQG��7LPHRXW ������3URWRFRO µ'&(µ�!
ILOH���KSVV�FDFU�FDOWHFK�HGX�PDJYDOB��B��B���ELQ

��/LQN!
�/LQN!�0HWDOLQN�)RUPDW �EDVH����!

ILOH���KDQIRUG�OLJR�FDOWHFK�HGX�PDJYDOB��B��B���EDVH��
��/LQN!
�/LQN!WDSH��������������������/LQN!
9

pler—
ovide
their
��6WUHDP!
�����+HUH�LV�DQ�$UUD\�REMHFW��WKH�GDWD�FRPHV�IURP�WKH�VWUHDP�DERYH���!

�$UUD\�1DPH �0DJUHDG��7\SH �GRXEOH�!
�&RPPHQW!0DJQHWRPHWHU�5HDGLQJV�IURP�6HSW������&RPPHQW!
�3DUDP�1DPH µ*DLQµ!�������3DUDP!
�'LP!������'LP!
�'LP!����'LP!

��$UUD\!
�����7KLV�$UUD\�KDV�LWV�RZQ�GDWD���!

�$UUD\�1DPH �0DJFDO��7\SH �)ORDW�!
�&RPPHQW!0DJQHWRPHWHU�&DOLEUDWLRQ�IURP�6HSW������&RPPHQW!
�'LP!����'LP!
�6WUHDP!�0HWDOLQN�)RUPDW �7H[W��'HOLPLWHU ��?Q��!

��
��
��
��

��6WUHDP!
��$UUD\!

�����1HVWHG�FRQWDLQHUV���!
�;6,/�1DPH �0DJQHW�SDUDPHWHUV�!

�&RPPHQW!7KLV�LV�WKH�PDJQHWLF�YDOXH�DQG�RIIVHW��&RPPHQW!
�3DUDP�1DPH �0DJQDPH�!%HUWKD648,'��3DUDP!
�$UUD\�1DPH �0DJYDOXH��7\SH �&RPSOH[�!

�'LP!����'LP!
�6WUHDP!�/LQN!�0HWDOLQN�)RUPDW �ELJHQG��!

ILOH���KSVV�FDFU�FDOWHFK�HGX�PDJYDO�ELQ
��/LQN!��6WUHDP!

��$UUD\!
��;6,/!

�����$�WDEOH�H[SUHVVHG�LQ�;6,/���!
�7DEOH!

�&ROXPQ�1DPH �&KDQQHO1DPH��7\SH �6WULQJ��!
�&ROXPQ�1DPH �6LWH���������7\SH �)ORDW�����8QLW �PHWHU��!
�&ROXPQ�1DPH �&ORFN��������7\SH �)ORDW�����8QLW �KRXU��!
�&ROXPQ�1DPH �'HVFULSWLRQ��7\SH �6WULQJ��!
�6WUHDP!�0HWDOLQN�)RUPDW �7H[W��'HOLPLWHU ��?Q��!

%2;B��B�������������7HPSHUDWXUH�IRU�WKH�DSSOH
%2;B��B�������������3UHVVXUH�LQVLGH�WKH�EDQDQD
%2;B��B�������������3UHVVXUH�LQ�WKH�%DQDQD�&U\RSXPS

��6WUHDP!
��7DEOH!

�����)LQDOO\�D�JHQHULF�;6,/�REMHFW��+HUH�7\SH�PHDQV�0,0(�7\SH���!
�2EMHFW�1DPH �([FHO&KDQQHOV��7\SH �DSSOLFDWLRQ�YQG�PV�H[FHO�!

�&RPPHQW!6DPH�WDEOH�LQ�([FHO�IRUPDW��&RPPHQW!
�6WUHDP!�/LQN!
KWWS���ZZZ�OLJR�FDOWHFK�HGX�EHUWKD�FKDQQHOV�[OV
��/LQN!��6WUHDP!

��2EMHFW!
��;6,/!

5.1 Attributes and Elements

In many ways attributes and elements are treated equally by presentation and parser
mechanisms. The major difference seems to be that whereas attributes are sim
only a string is returned, but elements can be arbitrarily extended. We shall pr
element-based versions of the Name, Type, and Unit attributes.to allow
extendability.
10

nted
ed by

re very
TD
ther

D

6 DTD Definition of XSIL

An XML file may be associated with a Document Type Definition (DTD) which defines
the allowed tag names in the document, and how these fit together: which elements may
contain which other elements, and how many of each element there may be. For
example, an �$UUD\! element may have multiple �'LP! element to specify its
dimensionality, but it cannot contain �7DEOH! or �2EMHFW! elements.

��(/(0(17�;6,/��;6,/_&RPPHQW_2EMHFW_3DUDP_6WUHDP_$UUD_7DEOH�
�!
��$77/,67�;6,/�1DPH�&'$7$����7\SH�&'$7$���!

��(/(0(17�&RPPHQW�3&'7�!

��(/(0(17�2EMHFW�&RPPHQW�_�6WUHDP�
!
��$77/,67�2EMHFW�1DPH�&'$7$����7\SH����&'$7$��������������!

��(/(0(17�3DUDP��3&'7�_�&RPPHQW�
�!
��$77/,67�3DUDP�1DPH�&'$7$����8QLW����&'$7$����!

��(/(0(17�6WUHDP��3&'7�_�/LQN�_�0HWDOLQN�
�!
��(/(0(17�/LQN��3&'7�_�0HWDOLQN�
�!
��(/(0(17�0HWDOLQN��3&'7�!
��$77/,67�0HWDOLQN�

)RUPDW�&'7����7LPHRXW�&'7����'HOLPLWHU�&'7����!

��(/(0(17�$UUD\��'LP�_�3DUDP�_�6WUHDP�_�&RPPHQW�
�!
��$77/,67�$UUD\�1DPH�&'7����7\SH�&'7���!
��(/(0(17�'LP�3&'7�!
��$77/,67�'LP�1DPH�&'$7$���!

��(/(0(17�7DEOH��&ROXPQ�_�3DUDP�_�6WUHDP�_�&RPPHQW�
�!
��(/(0(17�&ROXPQ�(037<!
��$77/,67�&ROXPQ�1DPH�&'$7$����7\SH�&'$7$����8QLW�&'$7$���!

When a parser sees a document that is supposedly XSIL, it can first use the DTD to
check that it meets the specification, that some object does not have two names, that an
Array does not contain a Table. This part of the validation can be done with any
validating XML parser. After this the parser can check XSIL-specific validation, such
as making sure that the dimension of an array is integer.

A DTD may also be thought of as a collaboration mechanism. The members of the
collaboration jointly agree on a DTD, then each side can implement against this
specification—this is analogous to the collaboration mechanism with object-ore
programming, where there is joint agreement on objects and their methods, follow
independent implementation.

7 Extending XSIL

After years of developement, object-oriented languages such as C++ and Java a
good at defining inheritance; unfortunately, XML has not come so far, and the D
mechanism is not structured for element inheritance and subclassing. O
specifications of document type are under discussion10,11.

As an illustration, let us consider how XSIL will be extended to include the IGW
11

en the
ted a
ry for

s,
Frame. In the Document Object Model, a document object has been passed back
through the API representing the XSIL file, and an element has been found whose name
is �,*:')UDPH!. Control is then passed to an ;6,/�)UDPH�object whose function it is to
interface between the Frame and the XSIL. This object reads in the metadata associated
with the Frame—provenance, timing, size, channel list, etc.—then returns the ;6,/�

)UDPH object to the application. The application may use the ;6,/�)UDPH object as
metadata, to present, to choose, to update the catalogue, or it may actually op
Frame file and read in all of its data. From the XSIL Stream object can be extrac
C++ stream or a C file descriptor, which can be passed to the existing Frame libra
reading.

8 References
[1] XML resources:

KWWS���ZZZ�[PO�FRP

[2] Web Distributed Data Exchange (Allaire Corp.)
KWWS���ZZZ�DOODLUH�FRP�GHYHORSHU�ZGG[�

[3] LIGO (Laser Interferometric Gravitational wave Observatory)
KWWS���ZZZ�OLJR�FDOWHFK�HGX�

[4] VIRGO Gravitational wave Observatory
KWWS���ZZZ�SJ�LQIQ�LW�YLUJR

[5] G. Aloisio, M. Cafaro, R. Williams, Digital Puglia Synthetic Aperture Radar Atla
Proceedings of HPCN99, Amsterdam, April 12-16

[6] A Center for the Dynamic Response of Materials,
KWWS���ZZZ�FDFU�FDOWHFK�HGX�$6$3�

[7] Document Object Model Specification (W3C)
KWWS���ZZZ�Z��RUJ�75�:'�'20�OHYHO�RQH�[PO

[8] Document Object Model Resources
KWWS���ZZZ�[PO�FRP�[PO�SXE�'20

[9] IGWD-Frame Class Library
KWWS���ZZZ�OLJR�FDOWHFK�HGX�aZPDMLG�IFO�LQGH[�KWPO

[10] Document Content Description for XML
KWWS���Z�F�RUJ�75�127(�GFG

[11] XML-Data, a Schema Definition Language for XML written in XML
KWWS���ZZZ�Z��RUJ�75������127(�;0/�GDWD�
12

	1 Introduction
	1.1 Applications

	2 Presentation and Content
	2.1 Presentation
	2.2 Parsing XSIL

	3 The XSIL Language
	3.1 Objects and Streams
	3.2 XML
	3.3 The Container Object
	3.4 Object Representation in XSIL
	3.5 Some XSIL Objects

	4 Streams
	4.1 A Stack of Streams
	4.2 Stream Element

	5 An Example XSIL File
	5.1 Attributes and Elements

	6 DTD Definition of XSIL
	7 Extending XSIL
	8 References

