XSIL: Extensible Scientific
I nter change L anguage

Kent Blackburn®, Albert Lazzarinit

Tom Prince', Roy Williams?

hico Laboratory, CaliforniaInstitute of Technology 18-34, Pasadena, CA 91125, USA
{kent,Tazz}@ligo.caltech.edu

2Center for Advanced Computing Research, Caltech 158-79, Pasadena, CA 91125, USA
{prince, roy}@cacr.caltech.edu

Abstract. We motivate and define the XSIL language as a flexible,
hierarchical, extensible transport language for scientific data objects. The
entire object may be represented in the file, or there may be metadata in the
XSIL file, with apowerful, fault-tolerant linking mechanism to external data.
The language is based on XML, and is designed not only for parsing and
processing by machines, but also for presentation to humans through web
browsers and web-database technology. There is a natural mapping between
the elements of the X SIL language and the object model into which they are
trandated by the parser. Aswell ascommon objects (Parameter, Array, Time,
Table), we have extended XSIL to include the IGWDFrame, used by
gravitational-wave observatories.

1 Introduction

The Extensible Scientific Interchange Language (XSIL) is designed to represent
collections of common scientific data objects. There are constructors for objects such
as Parameters, Arrays, Tables, and other types, as well as support for binary objects,
both MIME-typed and untyped. Thereis also a container object that may contain these
other typesaswell as other containers, so that an X SIL file can be hierarchical. For each
object, the entire object with all its data may be represented in the XSIL file.
Alternatively the XSIL file may only contain metadata, with the bulk binary data
external: there is a flexible Stream object that may contain URL-type links to external
data.

XSIL isbased on the XML languaget, an industry standard for which alarge amount of
softwareisavailablein the form of editorsand parsers, aswell asthefamiliar Microsoft
and Netscape browsers. The aim has been to keep the language simple, intuitive, and
easy to create and use, using atext editor, an XML editor, or from aprogram. The XSIL
file can be used by either a human or a computer: it can be displayed, edited,
summarized, sorted, or printed for human consumption; or it can be parsed as machine
input with anumber of methods and tools, as outlined below.

XSIL is a way to represent collections of scientific data objects—small objects with
data explicitly contained in the file, and large objects represented by the salient
metadata and references to binary files elsewhere. We intend the XSIL format to be

used:

» As aflexible and general transport format between disparate applications in a
distributed archiving and computing system; a text-based object serialization
that can be handled by common tools, or

* As documentation mechanism for collections of data resulting from
experiments or simulations; with all the parameters, structure, filenames and
other information needed to keep a complete scientific record.

* As an ‘“ultra-light” data format: a user can, if he wants, simply read the
markup, then delete all except the actual data, or all except for the filenames
where the data may be found.

We should note that an analogous form&¢DDX, is under development as part of
Allaire’s Cold Fusion product line.

1.1 Applications

The LIGO project (Laser Interferometric Gravitational wave Observatory) is a large,
federally funded physics experiment that will produce several megabytes per second,
24 hours per day, 7 days per week. This data will be processed, looking for matches with
astrophysically significant events, for example coalescence of neutron stars and black
holes. The data will also be processed and distributed in other ways, and will be
supplemented by instrument status data, candidate events from the pattern matching,
and other data. While a format has been fixed for the raw data, in collaboration with the
French/Italian VIRGO observatdtythere is a need for a more flexible, more generic
format for many of the other datasets, which motivated the design of XSIL.

Other projects at Caltech and elsewhere which may benefit from XSIL include

« Digital Puglia Synthetic Aperture Radar Afftasn archiving and processing
facility for knowledge-discovery in remote-sensing databases,

» Digital Sky, a prototype confederation of astronomical surveys,

« Center for Simulation of the Dynamic Response of Maté&iaks
multidisciplinary consortium at Caltech for simulations at multiple scales.

e Interferometric SAR Library, a facility to improve the usability of this
promising technology.

2 Presentation and Content

The syntax of XSIL is based on XMl(eXtensible Markup Language), now an industry
standard for representing structured textual documents. XML combines the popularity
of HTML in the wide Internet community with the battle-hardened power of SGML in
the library community. Every XSIL file is an XML file; some references to XML are at
the end of this document. Here is a small example of an XSIL file:

<?xml version="1.0"7>

<!DOCTYPE XSIL SYSTEM "XSIL.dtd">

<XSIL>
<Comment>Five Measurements of voltage</Comment>
<Param Name="Gain” uUnit="millivolt”>1.453</Param>

<Array>
<Dim>5</Dim>
<Stream><Metalink Format="Text" Delimiter=" \n"/>
1.28374 1.23453 1.94847 2.148474 2.39484
</Stream>
</Array>
</XSIL>
Thefirst lineislike a"magic number" which must be thefirst line of any XML file. The
second line saysthat this XML fileis of aparticular kind, an XSIL file. The <comment>
element is supposed to contain text that appears in presentation of XSIL, but does not
play a part when the computer parsesthefile. Thisisfollowed by a <param> object and
and <array> object. The <param> object is an entry in a list of keyword-value pairs —
there may also be units and comments associated witpihem>. The<array> has
one dimension, with five elements, as indicated bytHe> element, and the array is
then expressed explicitly in ASCII text through #seream> tag.

2.1 Presentation

One of the advantages of basing the XSIL format on a standard language such as XML,
is that standard desktop tools can be used to view and edit the file. Figure 1 shows how
B T sl - WOML M rebapend

Fle Eill Yeea jusd Toalh Helg
.-_m_-.u_l | ke |
CEs 1
My, COMEIEHT Frve Mesnsarsnt of sobex
= [PaRAN T
& HaMk [)]
& s el
=) SARALY I
w, [5
l ETRESH |
=1 {10 WE TadIHE
% FONAT I mad
% DELIMITEF: n
W Fesl] IR R T

Fig. 1: Thefile above rendered by an XML -editor.

this file looks when viewed with an XML editor, in this case XML Notepad from
Microsoft. There can also be customized presentation of XML and XSIL files in the
browser through style sheets. Large numbers of XML tools are coming to market, for
browsing, editing, sorting, and converting XML files. Some examples are shown for a
more sophisticated XSIL example later in this document.

2.2 Parsing XSIL

In addition to providing a document that can be browsed by a human, an XSIL file is
designed to allow computers to “understand” its content. By this, we mean that the
structure defined by the XSIL file is mapped into objects on the program side—that is,
an API. The current collection of XML parsing implementations are based either on:

¢ Event based parsing: The user associates handlers with tag names, then hands

control to the parser.

» Document Object ModéP: The parser returns a document object which the
user can interrogate, a fully-formed tree with the tags and text from the XML
attached.

In both cases, access to the attributes of an element is generally through an associative
lookup: given an attribute name, there may be a corresponding value, but it may be that
the list of attribute names cannot be retreived.

3 TheXSIL Language

3.1 Objectsand Sreams

In the XSIL language, there avbjects andstreams. An object defined in the XSIL API
implements thestLobject interface, which has the metheehdstream(), as well as

other methods to get the name and type of an object. While XSIL itself is designed for
flexibility rather than speed, it is expected that streams may be implemented with an
opposite sensibility: as powerful, high-bandwidth, possibly parallel, data streams. A
stream is defined in the XSIL file with &tream> element, which may contain data
explicitly, or may be a link to data stored elsewhere through a URL-like syntax.

Streams provide a separation between control and data; XSIL is the control and its
Stream carries the data. Just as the anchor chain of a ship is pulled to shore with a small
rope, so the flexible, low-bandwidth XSIL can be used to set up high-performance data
channels.

When an object is read in to a program, it may have an input stream attached to it, from
which it may read data. For example, in the implementation of the Array class,
dimensions of the Array are used to allocate an appropriate amount of memory, then the
data can then be read in through thedstream method of the underlying XSILObject.

3.2 XML

XML is much more than “glorified HTML”, but rather it is a “language for creating
languages”. It is a hierarchical structure of elements that may contain other elements.
An element generally consists of start tag, a body, and anend tag, for example:
<Fruit>Banana</Fruit>, Where start and end tags are distinguished by the presence of
a slash. An element may empty, meaning that there is only a single tag, with no body,

for example<emptyElement/>; note the position of the slash. Elements may contain
attributes, for examplexrruit color="yellow”>. We should point out that XML is
case-sensitive, so thatpple>, <apple> and<appLE> are all different tags.

Finally we distinguishpresentation and parsing: When an XML document is
presented, the element structure is used to generate formatting information so that a
human can visualize its content—conversion to HTML, TeX, VRML, etc. When it is
parsed, a computer reads the file and the elements are converted to objects that are
returned from the API.

3.3 TheContainer Object

In the XSIL language, there is a generic <xs1L> element which can contain other
elements, including other <xs1L> elements, thus inducing a hierarchy. Each of these
may have aname attribute, to provide hierarchical naming that is visible from the API.
Furthermore, the XSIL file must be enclosed in <xs1L>...</xsIL> tags, so that when
thefileisparsed, it isalwaysasingle XSIL object that is passed back. Hereisan XSIL
fragment that consists of a container hierarchy with an array at the second level and a
parameter at the third level:
<XSIL Name="Fruit”>
<XSIL Name="YellowFruit”>
<Array><Dim>7</Dim></Array>
<XSIL Name="Banana”>
<Param Name="Inductance”>1.34</Param>
</XSIL>

</XSIL>
</XSIL>

3.4 Object Representation in XSIL

In general, we would like to attach data and metadata to the branches and leaves of the

tree of containers, presumably in the form of objects. We may point out here that the

terms “object” and “element” have similar meanings here: except that “object” implies
a program perspective (the API), whereas “element” implies the document perspective
(XML). Thus in this paper these points of view may be somewhat loosely interchanged.

The basic data element of XSIL is simplybject>, corresponding to the base-class
xsIiLobject in the API. All XSIL elements may contain the following elements:

e <comment>: this text is not parsed, it is presumably natural language.

e <param>: to define associations between names and values that are specific to
the containing object, and that are not accessible to other objects.

* <stream>: a definition of the input data stream that the object may draw upon
from the API.

Also, most XSIL objects can have certain attributes:

e Name: A string representing the name of the object; defaults to the null string.

e Type: The type of the object or of the relevant primitive type: defaults to
“double”

e unit: A string representing the physical units associated with a number or
parameter, for example “Hz” or “km”; defaults to the null string.

In addition to these common properties, perhaps the most important aspect of the
generic object is that it may have access to a Stream object, if one has been defined. A
generic object might be used to reference a binary file, with the assumption that the
meaning is in the metadata or in natural-language text (such behavior is condoned, not
encouraged). The generic object may refer to a MIME-typed object, in which case it is
expected that the information about interpreting the stream is contained in the MIME-
type, which is available at the beginning of the stream.

For more specific objects, we expect the tags of the XSIL definition to provide enough
metadata to the implementation that it knows how to read the associated stream.

3.5 Some XSIL Objects

XSIL isan extensible language, meaning that users can implement their own objects or
subclass the existing objects. There are mechanismsin XSIL for this through addition
of extra handlersin the parsing API, through addition of extra sectionsin the DTD for
syntax checking (see below), and though addition of extrapartsto the style language for
presentation. In thislist are some common scientific objects that many applications can
use, such as Parameter, Time, Array, Table. We will extend XSIL with a format that
may be less popular: expressing the metadata from the IGWD-Frame file, which is a
standard file format for recording data from Gravitational-Wave detectors.

351 Parameter

A parameter in XSIL is an association between a name and a value, perhaps with
additional attributes such as Unit and Type. For example:

<Param Name="Fruit_Mass” Unit="kg”>0.387</Param>

Asmay be obvious, the meaning here is"Fruit_mass = 0.387 kg", which is the kind of

thing usually found in "parameter files" or “header files” in scientific computing. At the
API level, there is a dictionary of these parameters available, perhaps with unit
conversion, allowing an easy lookup of critical parameters.

All XSIL objects may contain Parameters, as well as Comments. Thus the Parameter
object is different from other objects: while a container may contain a Table element,
which in turn may contain Parameters, but the Table may not contain other Tables.

352 Time

In the LIGO experiment, as with many other experiments in physical science, it is
critical that timing information be not only accurate, but also easy to understand. The
<Time> element in XSIL can represent either “natural” time (ISO-8601 standard,
YYYY-MM-DD HH:MM:SS.mmmuuunnn), or GPS time, or “Unix time” (seconds
since 1/1/1970). The different formats are differentiated byyihe attribute in the tag:

<Time Type="1S0-8601">1998-11-08 17:40:00.032</Time>

353 Array

An array is a collection of numbers (or other primitive type) referenced by subscripts,
which is a list of integers whose maximum values are given by the list of Dimensions
of the Array. This definition is very close conceptually to a Fortran or C array, with the
Type attribute of thecarray> tag specifying which primitive type is contained in the
array (float, int, etc.). The XSIL element specifies the dimensions of the array, but it
does not specify the subscript ranges. For a dimension of 5, a Fortran binding of the API
would label subscripts from 1 to 5, but a C binding would have subscripts from 0 to 4.

As with other XSIL objects, the Array tag may has@e andType attributes, and the

Array element may contain Comment, Parameter, and Stream elements. The only
element specific to this classis <pim>, for example:
<Array Type="int”>

<Dim>5</Dim>

<Dim>3</Dim>
</Array>
which specifies a 5x3 array of integers, with the last dimension changing fastest. The
presumption isthat 15 integers may be read from the Stream associated with this Array.

354 Table

A table is an unordered set of records, each of the same format, where a record is an
ordered list of values. The contents of arecord are defined by column headings, each of
which may have a unit and a type. This definition of a table should be thought of as
similar to the table object that isfound in arelational database; we should point out that
thisis not the complex and exotic typographical beast of TeX or HTML.

The only tag specific to the Table object is <coTumn>, which specifies the name, type,
and possibly units associated with one of the columns of the table. It can be thought of
as the heading of a column in atable. In Figure 2 is shown a small table definition,
together with a presentation of the tablein HTML.

<Table>
<Column Name="Fruit”/> :
<column Name="color”/> —]]
<Column Name="Mass” Unit="kg”/>

<Stream> |
<Metalink Format="Text” Delimiter=",\n"/> Frt |Coor [Muz | |
Banana,Yellow,0.43 Sarmm | Valas 043 | |
Cherry,Red,0.01 “terre | Fnd 001 | |
</Stream> : |
</Table> - =

Fig. 2: An XSIL fragment expressing a Table of Fruit. To the right is a presentation of the
table using HTML viewed in a browser: because XSIL isan XML dialect, such trandations
can be done with great facility.

355 IGWD Frame

We areimplementing an XML definition of the metadatafound in alGWD Frame®, the

principle data object of the LIGO® (USA) and VIRGO* (France/Italy) gravitational-

wave observatories. The idea is that an XSIL file can contain the metadata for these

objects, such as cataloguing information, perhaps with embedded content summaries.

The Frame object in XSIL will also include a Stream that provides access to the actual

binary file. The metadataincludestiming information, the observatory at which the data

was taken, natural language “history” records, together with the list of data channels
that are recorded in the file. Each named data channel represents a stream of data from
a particular instrument at the observatory, and has a status, data rate, gain, offset, etc.

When the parser sees a <tGwpFrame> element, it should pass control to a Frame reader
modul e, which assumes the existence of an XSIL Stream object from which it can read
the data. For more detail, see section 7.

4 Sreams

When an XSIL element is parsed, the implementation of the resulting object may use
the readstream() method of the object, for example an Array object would first read
the type and dimensionality of the Array, then proceed to read in the data from its
Stream. Thus a Stream may be thought of as a data socket, together with metadata about
the link: data encoding, recommended timeout values, permission information,
delimiter characters, and so on. The data may be contained in the XSIL file directly,
either as readable text or as binary that is encoded to text by uuencode or base64.

4.1 A Sack of Sreams

Asthefileis parsed, a stack of stream objectsis created, with a new Stream pushed on
the stack whenever such an element is encountered, and the stack is popped from the
stcak and closed when certain end-tags are encountered. When an element is parsed into
an object, it is given access to the Stream which is at the top of the stack. Many objects
may then be read serially from the same Stream. For example:

<Stream Name="Yangtze”>...</Stream>

<XSIL>
<Array Name="Panda”>....</Array>
<Stream Name="Thames”>..... </Stream>
<Array Name="Quince”>....</Array>
<Array Name="Pumpkin”>....

<Stream Name="Hudson”>....</Stream>

</Array>

</XSIL>

<Array Name="Bamboo”>....</Array>

Here the Array named “Panda” is read from the only open Stream, “Yangtze”. A new
stream, “Thames” is then pushed on to the stack, from which the Array “Quince” is
read. The Array “Pumpkin” comes with its own Stream, called “Hudson”, which is
closed and popped as soon as the Array has been read. When the final Array in the
example is reached, “Bamboo”, only one Stream is still on the stack, which is
“Yangtze”, from which it is read.

4.2 Sream Element

A Stream element may contain actual data or a link to the data.

42.1 <Data>: Explicit Data

If the data is present explicitly, it is assumed to be unparsed character data; either as
delimited text (as specified in theelimiter attribute of themetalink tag);
alternatively it may binary encoded as text in one of various ways.

422 <Link>: External Data

Another way to specify adata stream is by an external reference, whichisdonein XSIL
with a <Link> element. The content of the Link element has a URL-like syntax:

protocol://hostname:port/filename

wherethe datamay beon alocal file (fi1e), on aweb- or ftp server (http, ftp), or other
idiosyncratic words like tape. From the APl perspective, the protocol list can be
extended by suitable handlers.

423 Metalink

There may be aso be a <metalink> element associated with the <stream> or with
<Link> elements. This empty element provides metadata about the link itself: how
binary has been encoded to text, the delimiter character between numbers in a text
stream, the recommended timeout when accessing this data, access protocols, access
restriction information, etc. etc.

424 Fault Tolerance

There may be multiple <Link> elements for a given Stream, with the assumption being
that any of the links can supply the data. In this way we can provide transparent fault-
tolerance for access to the data: one link may be to volatile disk (with asmall timeout),
and another may link to an archival tape-robot, with along timeout. The datamay also
be on atape offlineif both of thesefail.

5 An Example XSIL File

To illustrate some of the capabilities of the XSIL format, we have created a fairly
comprehensive example, which is page from an “eletronic logbook” for computational
scientists:

<?xml version="1.0"7>
<!DOCTYPE XSIL SYSTEM "XSIL.dtd">
<XSIL Name="Sample XSIL File">
<Comment>LIGO power spectrum of 32 magnetometers</Comment>
<Comment>Created by 3Ji11 and Sue</Comment>
<Param Name="LIGOType">Power Spectrum</Param>
<Time Name="StartTime" Unit="GPS">609847463.78237325</Time>
<Param Name="FreqSamp" Unit="Hz">
<Comment>This is the sampling frequency</Comment>
1024
</Param>

<Stream>
<!-- Open a Stream: this data is at Cacr, Hanford, and on a tape in the
fireproof vault. The implication is to open ONE of them -->
<Link><Metalink Format="bigend" Timeout="600" Protocol="DCE”/>
file://hpss.cacr.caltech.edu/magval_09_25_97.bin
</Link>
<Link><Metalink Format="base64"/>
file://hanford.ligo.caltech.edu/magval_09_25_97.base64
</Link>
<Link>tape://347846-6/756473</Link>

</Stream>
<!-- Here is an Array object, the data comes from the stream above -->
<Array Name="Magread" Type="double">
<Comment>Magnetometer Readings from Sept. 19</Comment>
<Param Name="Gain”>40.76</Param>
<Dim>1024</Dim>
<Dim>32</Dim>
</Array>
<!-- This Array has its own data -->
<Array Name="Magcal" Type="Float">
<Comment>Magnetometer Calibration from Sept. 19</Comment>
<Dim>32</Dim>
<Stream><Metalink Format="Text" Delimiter=" \n"/>
1.28374 1.23453 1.94847 2.148474 2.39484 2.84746 3.10928 4.92827
5.28374 5.23453 5.94847 6.148474 6.39484 6.84746 7.10928 8.92827
9.28374 9.23453 9.94847 10.18474 10.3984 10.8446 11.1928 12.9827
13.2874 13.2453 13.9847 14.18474 14.3984 14.8446 15.1928 16.9827
</Stream>
</Array>
<!-- Nested containers -->
<XSIL Name="Magnet parameters'>
<Ccomment>This is the magnetic value and offset</Comment>
<Param Name="Magname">BerthasQuUID</Param>
<Array Name="Magvalue" Type="Complex">
<Dim>32</Dim>
<Stream><Link><Metalink Format="bigend"/>
file://hpss.cacr.caltech.edu/magval.bin
</Link></Stream>
</Array>
</XSIL>
<!-- A table expressed in XSIL -->
<Table>
<Column Name="ChannelName" Type="String"/>
<Column Name="site" Type="Float" Unit="meter"/>
<Column Name="Clock" Type="Float" unit="hour"/>
<Column Name="Description" Type="string"/>
<Stream><Metalink Format="Text" Delimiter=",\n"/>
BOX_01_09, 2770, 3, Temperature for the apple
BOX_01_17, 3880, 6, Pressure inside the banana
BOX_01_23, 3990, 8, Pressure in the Banana Cryopump
</Stream>
</Table>
<!-- Finally a generic XSIL object. Here Type means MIME-Type -->
<Object Name="ExcelChannels" Type="application/vnd.ms-excel">
<Comment>Same table in Excel format</Comment>
<Stream><Link>
http://www.1igo.caltech.edu/bertha/channels.xls
</Link></Stream>
</0bject>
</XSIL>

5.1 Attributesand Elements

In many ways attributes and elements are treated equally by presentation and parser
mechanisms. The major difference seems to be that whereas attributes are simpler—
only a string is returned, but elements can be arbitrarily extended. We shall provide
element-based versions of the Name, Type, and Unit attributes.to allow their
extendability.

10

6 DTD Definition of XSIL

An XML filemay be associated with aDocument Type Definition (DTD) which defines
the allowed tag names in the document, and how thesefit together: which elements may
contain which other elements, and how many of each element there may be. For
example, an <Array> element may have multiple <pim> element to specify its
dimensionality, but it cannot contain <table> or <object> elements.

<!ELEMENT XSIL((XSIL|Comment|Object|Param|Stream|Array|Table)*)>

<!ATTLIST XSIL Name CDATA "" Type CDATA "">

<!ELEMENT Comment(PCDATA)>

<!ELEMENT Object(Comment | Stream)*>
<!ATTLIST Object Name CDATA "" Type CDATA " >

<!ELEMENT Param((PCDATA | Comment)*)>
<!ATTLIST Param Name CDATA ""

unit CDATA >

<!ELEMENT Stream((PCDATA | Link | Metalink)*)>

<!ELEMENT Link((PCDATA | Metalink)*)>

<!ELEMENT Metalink(#PCDATA)>

<!ATTLIST Metalink
Format CDATA ""

nn nn

Timeout CDATA Delimiter CDATA >

<!ELEMENT Array((Dim | Param | Stream | Comment)*)>
<!ATTLIST Array Name CDATA "" Type CDATA "">
<!ELEMENT Dim(PCDATA)>

<!ATTLIST Dim Name CDATA "">

<!ELEMENT Table((CoTlumn | Param | Stream | Comment)*)>
<!ELEMENT Column EMPTY>
<!ATTLIST Column Name CDATA

nn un nn

Type CDATA Unit CDATA "">

When a parser sees a document that is supposedly XSIL, it can first use the DTD to
check that it meets the specification, that some object does not have two names, that an
Array does not contain a Table. This part of the validation can be done with any
validating XML parser. After this the parser can check X SIL-specific validation, such
as making sure that the dimension of an array isinteger.

A DTD may also be thought of as a collaboration mechanism. The members of the
collaboration jointly agree on a DTD, then each side can implement against this
specification—this is analogous to the collaboration mechanism with object-orented
programming, where there is joint agreement on objects and their methods, followed by
independent implementation.

7 Extending XSIL

After years of developement, object-oriented languages such as C++ and Java are very
good at defining inheritance; unfortunately, XML has not come so far, and the DTD
mechanism is not structured for element inheritance and subclassing. Other
specifications of document type are under discus&idn

As an illustration, let us consider how XSIL will be extended to include the IGWD

11

Frame. In the Document Object Model, a document object has been passed back

through the API representing the X SIL file, and an element has been found whose name

iS <IGwpFrame>. Control isthen passed to an xs1L-Frame object whose functionitisto

interface between the Frame and the X SIL. This object readsin the metadata associated

with the Frame—provenance, timing, size, channel list, etc.—then returmsihe

Frame object to the application. The application may usextr -rFrame object as
metadata, to present, to choose, to update the catalogue, or it may actually open the
Frame file and read in all of its data. From the XSIL Stream object can be extracted a
C++ stream or a C file descriptor, which can be passed to the existing Frame library for
reading.

8 References

[1] XML resources:
http://www.xml.com

[2] Web Distributed Data Exchange (Allaire Corp.)
http://www.allaire.com/developer/wddx/

[3] LIGO (Laser Interferometric Gravitational wave Observatory)
http://www.1igo/caltech.edu/

[4] VIRGO Gravitational wave Observatory
http://www.pg.infn.it/virgo

[5] G. Aloisio, M. Cafaro, R. Williams, Digital Puglia Synthetic Aperture Radar Atlas,
Proceedings of HPCN99, Amsterdam, April 12-16

[6] A Center for the Dynamic Response of Materials,
http://www.cacr.caltech.edu/ASAP/

[7] Document Object Model Specification (W3C)
http://www.w3.0rg/TR/WD-DOM/Tevel-one-xm]l

[8] Document Object Model Resources
http://www.xml.com/xml/pub/DOM

[9] IGWD-Frame Class Library
http://www.ligo.caltech.edu/~wmajid/fcl/index.html

[10] Document Content Description for XML
http://w3c.org/TR/NOTE-dcd

[11] XML-Data, a Schema Definition Language for XML written in XML
http://www.w3.0rg/TR/1998/NOTE-XML-data/

12

	1 Introduction
	1.1 Applications

	2 Presentation and Content
	2.1 Presentation
	2.2 Parsing XSIL

	3 The XSIL Language
	3.1 Objects and Streams
	3.2 XML
	3.3 The Container Object
	3.4 Object Representation in XSIL
	3.5 Some XSIL Objects

	4 Streams
	4.1 A Stack of Streams
	4.2 Stream Element

	5 An Example XSIL File
	5.1 Attributes and Elements

	6 DTD Definition of XSIL
	7 Extending XSIL
	8 References

