Jini-Globus Interoperation: an Overview

M. Pietrowicz

Abstract

Sun’s Jini technology is potentially very useful in building Problem Solving Environments and Portals. Its announcement and discovery protocols provide automatic discovery of services and resources over the network, and its Lookup Service provides downloadable proxies that clients use to communicate with and control remote services and resources. Jini is built on top of the Java programming language, so Jini “inherits” Java’s platform-independence and code mobility. Jini is an excellent tool for delivering platform-independent proxy code to application programs (or applets) which may run on many kinds of computing platforms. Jini may also be used to deliver platform-dependent non-Java code or CORBA-compatible code.

As an added bonus, Jini provides infrastructure for client programs to discover and communicate with remote devices such as printers, PDAs, or scientific instruments. Conversely, Jini provides infrastructure for remote devices to discover and use services and resources over the network or a scientific grid. And, Jini can be used as a mechanism for remote devices to find and download code modules (for added or upgraded capability). This technology could be investigated for integrating remote devices with scientific grids.

Jini, however, does not provide all of the features and functions that a high-performance scientific grid may require. The Globus system was designed for high-performance scientific grids, but it lacks the built-in proxy delivery, platform-independent support for clients, and discovery capabilities that Jini could provide. So, Jini may be useful in extending the functionality of Globus and simplifying client access to Globus services or resources. Three potential areas of interoperation between Jini and Globus are introduced here:

· Jini Remote Events/Proposed Globus Events

· Jini Lookup Service/Globus MDS-LDAP

· Jini/Globus Security

Interfacing Between Jini Remote Events and Proposed Globus Events

Mechanism for Event Interface

The Grid Event Service (GES) with Grid Object Markup Language (GOML) paper [1] describes a publish/subscribe event model for Globus with event description, a directory of possible events, and a mechanism for entities to discover and subscribe to possible events. In order to map Jini services (which use the Jini remote events) with GES and XML-based GOML, translation services will be required. At a minimum, standard, specific translations from GOML to Jini remote event classes, and from Jini remote event classes to GOML are required. A more generic compilation system could be developed to support translation between other XML-based formats and other Java class types. This would be helpful in addressing the differences between Jini Lookup and Globus MDS/LDAP, otherwise specific compilation will be required here also.

For Jini Services that Export Events to Globus Subscribers:

1. At startup time, Jini Service translates its possible events into GOML, and registers these events with the Globus Event Directory Service.

2. An intermediate event proxy component would be responsible for receiving a remote event from a Jini service, translating the event to GOML, and forwarding the event to a router or directly to a Globus subscriber. If the event is forwarded to a router, the router can manage subscription and do additional processing on the event before sending it to its destination. A GOML compiler capable of translating Jini remote events to GOML would be required.

3. When the Jini service terminates, it requests that its events be removed from the GES.

A leasing and renewal mechanism in Globus that removes events from the Event Directory Service would be useful to remove event registrations for Jini services that did not exit cleanly.

For Jini Services that Subscribe to Globus Events:

1. A proxy for the Jini service would query the Globus Event Directory Service for an appropriate event. The query would require support from a Commodity Grid (CoG) Kit. A CoG Kit provides mechanisms for easily interfacing with the Globus system, and it may contain additional services useful for problem solving environments or portals.

2. The Jini service proxy would register interest in the event, again using the CoG Kit for interface.

3. The Globus event would be delivered to the Jini service proxy, and the proxy would translate the event from GOML format to a Jini remote event. The service proxy could do additional processing, as needed.

4. The proxy would send the remote event to the Jini service. Note that the proxy described here is a logical representation and could be divided into separate components that handle subscription, translation, event processing, and delivery.

5. When the Jini service terminates, it requests cancellation of its event subscription.

A leasing and renewal mechanism in Globus would be useful in putting time limits on event subscription. This way, services that did not terminate cleanly and did not cancel event subscriptions will not leave permanent subscriptions in the Globus system.

Note that the JavaSpaces technology (a Jini service) may be useful in the implementation of the interface described above. This service could be used as a temporary repository for events before or after translation to GOML format.

Specific Event Services

A number of proposed, higher-level Event Services have been identified as requirements for PSEs [2]. Two of the proposed services, an Event Browser (with registration), and a Monitoring GUI, have potential for a direct interoperation with Globus. The Event Source Browser must be able to

· Query the Globus Event Directory Service,

· Interpret the events in GOML format,

· Allow a client to register interest in a Globus event, and

· Configure a proxy to receive events in GOML format. The proxy must be capable of translating GOML events into Java events and forwarding the message back to the client, or it must be capable of taking action directly on behalf of the client.

A Monitoring GUI presents events received in a format that is meaningful to the user. One potentially interesting monitoring GUI would be one that interacts with the Globus Heartbeat Monitor.

Interfacing Between the Jini Lookup Service and Globus MDS/LDAP

A system and language-independent way to describe resources and services available under lookup is required. The Grid Object Markup Language will be useful in providing an interface between Globus MDS and the Jini Lookup Service. A client could express the description of a resource or service in generic GOML Furthermore, a client could express an entire request in GOML format (or an extension to it). GOML standards should be developed so that an entire platform and system-independent XML-based interface between a client and the Globus system could be defined. Components capable of processing the extended GOML would translate the request into the desired system-specific format commands, objects, and queries. For example, GOML may be potentially translated into Jini discovery and lookup for a specified service, or for a Globus MDS/LDAP lookup. Or, another GOML sequence could be translated into Globus Resource Specification Language (RSL) that runs a job on a particular machine.

Standards for describing software resources and their proxies in GOML will be needed, as well as translators between the GOML representation and the Globus MDS/LDAP and Jini Lookup representations.

The big question for a possible Jini Lookup and Globus MDS/LDAP interface is the question of where information should be stored. Jini’s greatest strengths are 1) support for automatic discovery, 2) platform-independent proxy delivery, and 3) potential for interacting with devices. Yet, Jini is not a distributed computing system for high-performance grids, and it lacks many of the features that Globus supports. We want to leverage Jini’s strengths without compromising Globus’s strengths. Some design goals include:

· Avoid duplication of information in multiple directories (efficient, and avoids consistency problems)

· Take advantage of Jini discovery and group scoping mechanisms

· Take advantage of Jini’s proxy delivery capabilities

· Performance (fast lookup and proxy delivery)

· Application of security policies to protect service providers and service users

· Simple administration of software services

· Delivery of proxies in multiple formats, depending on client identity and capabilities

One alternative would be to place the service description under Globus primarily, along with descriptors (possibly GOML) for locating the service proxy, which is stored under Jini lookup. Minimal service description in placed within Jini lookup, but proxy use requirements are included here. The client would authenticate with the Globus system and query MDS/LDAP first. Then, the client would use the Jini reference to locate an appropriate proxy for the service. If the client did not have a reference to a Globus MDS/LDAP system in the beginning, the client could obtain a reference to this service via Jini discovery (the Globus MDS/LDAP service itself is registered under Jini lookup).

Security Issues for Interfacing between Jini and Globus

Jini provides minimal security. The Java 2 security mechanisms may be used to define permissions for discovery of remote Jini services. Jini Lookup Services belong to groups, and discovery requests are made with a reference to a list of desired groups to discover (e.g., all groups, the unnamed default group, or a specific list of named groups). Discovery permissions are also set based on groups. For example, the following entry in a policy file restricts discovery to those services that belong to the “chemistry” group:

Permission net.jini.discovery.DiscoveryPermission “chemistry”

Additional permissions may be set in the policy file to restrict or enable permissions based where a service proxy came from, or based on who digitally signed the service proxy.

This essentially protects the client against rogue services; it doesn’t provide a mechanism for preventing a service from being discovered and used by an entity (person or agent) with illicit intentions.

The current implementation of Jini doesn’t provide authentication on the discovery requests or the responses. Sun intends to extend Jini’s security capabilities in the next release. [3]

Globus, on the other hand, provides significant existing and proposed security mechanisms [4,5]. It would be possible to 1) investigate the application of proposed GSS-API Java bindings and its potential interface with the Grid Security Infrastructure (GSI) [7], or 2) explore a potential interface between Globus authentication and the Java Authentication and Authorization Service (JAAS) [6]. It may be a better idea, however, either to hand off security enforcement to the Globus system, or to investigate the Jini security extensions in the next release and then consider design alternatives for Jini/Globus security interoperation.

References

[1]
I. Foster, S. Tuecke. A Grid Event Service and Grid Object Markup Language.

[2]
M. Pietrowicz. Event Service Requirements for Problem Solving Environments.

[3]
W. K. Edwards, Core Jini, p. 244.

[4]
Butler, Engert, Foster, Kesselman, Tuecke, Volmer, and Welch. Design and Deployment of a National-Scale Authentication Infrastructure.

[5]
The Grid Security Infrastructure (GSI), http://www.globus.org/security/v1.1

[6]
C. Lai, L. Gong, L. Koved, A. Nadalin, R. Schemers. User Authentication and Authorization in

the Java ™ Platform. To appear in Proc. 15th Annual Computer Security Applications

Conference.

[7]
Jack Kabat and Mayank Upadhyay. Generic Security Service API Version 2: Java Bindings.

http://playground.sun.com/~mdu/JGSS

