Data Management Requirements for Problem Solving Environments

Mary Pietrowicz

Overview and Current Operation

Currently, most scientists manage data manually. In the example scenario given in the overview paper [3], users created Gaussian input files on their local machines. Then, they manually transferred the file to a machine where the computation would run. During computation, output files had to be monitored manually. Frequently, the computation had to be run again and again with variations on the initial input file. And, sharing of input or output files had to be pre-arranged and done manually. Users had to be aware of the low-level details of the specific machine, location, data transfer utilities, security restrictions, networking limitations relating to creating, storing, and moving, finding, and sharing data files. This low level of detail is burdensome to the user.

The problem becomes more complicated when the size and complexity of the dataset increases. Large files are difficult to move around the network, access, store, and manipulate [2]. These operations need to be handled in a way that makes optimum use of costly resources.

A mechanism for describing PSE objects currently does not exist and is at the very core of PSE requirements. Without a language and system-independent object description mechanism, we cannot integrate or apply component technology into PSEs. And, we cannot do object, service, or resource lookup and discovery effectively.

Furthermore, data management is not currently integrated into other problem solving environment functions, such as security, notification and event monitoring, or lookup and discovery. This means that the users are required to be aware of all low-level details relating to these areas as they apply to data or data services.

Requirements Analysis

Data Description
A programming language and system independent mechanism is required for describing PSE objects. The objects to be described include a list of pre-defined data types, such as files, collections (of instances of objects), aggregates (composition of lower-level objects into a higher level object), scripts or jobs, script templates, events, and services. The system, however, will support definition and registration of new data types. XML is a good candidate technology for describing data objects because it is 1) language-neutral, 2) easy to transport, and 3) translatable into language-specific object representations. Standards for 1) describing PSE objects, 2) translating the generic representation into language or system-dependent representations, and 3) transporting object descriptions will be required. Given the diversity of services, resources, and tools likely to be present in a PSE and used by a distributed, dynamic work team, this requirement is a core PSE requirement. Its design will impact all other areas of PSE, including service lookup and discovery, event and notification services, PSE presentation, and security. Stated another way, the PSE infrastructure and core PSE services require effective data description, transport, and translation in order to work effectively. The proposed Grid Object Markup Language (GOML) [1] addresses many of these issues.

Large and Ordinary-Scale Data Set Sizes

PSE data will range in size from relatively small, to very large (terabytes). And, data will be used in different ways, ranging from infrequently-written/frequently-read, to frequently-read and written. In the example given in the requirements overview paper (a Gaussian computation) [3], the input files are relatively small, created at the local desktop, transported to the computation machine, and frequently adjusted for variation on a previous computation run. This differs sharply from the case of a large dataset (e.g., cosmology data) that is collected infrequently (even just once), stored, and analyzed or read frequently. Both of these extremes need to be supported.

Large data sets require special considerations for data movement, data replication, and data access.

Mechanism Neutral and Policy Neutral [2]

The PSE data services that store, access, and move data need to be independent of specific mechanisms that store, access, and move data and metadata. This will provide a common (as common as possible) interface on top of a number of potential storage systems and catalogs. Users should be able to move objects from one PSE data store to another seamlessly, without having to know about the low-level storage system details. This may be accomplished with proxies or GUIs that hide the details of the underlying service from the user. A better approach would be to build the proxies and GUIs on top of infrastructure which abstracts away the underlying mechanisms.

Sometimes, it may be beneficial to expose the underlying implementation of a data service to improve performance. This is particularly useful for experimental or higher-level data services, where users may “tune” them for performance (e.g., replication policies[2]).

Data Services

PSEs require data storage (ordinary to large in scale), movement (seamless transfer from one location to another), access (transfer from storage to an application) services. They also require data administration, which includes 1) standardized description services and type definition services, so that data objects may be searched, discovered, and looked up, 2) publication, 3) update, 4) delete, 5) version, and 6) type definition. For large data sets, replication and instance management is required. The importance of each of these data services will vary according to the nature of the PSE.

Easy to Use

Data management is an area where users have many requests. All potential users of PSE currently do manual data management. They have been forced to manage input files, output files, computations, large data sets, replication, data transfer, etc. manually. They require a small set of data management applications (built on top of the proposed data services) which include a Data Storage Manager and a set of Data Administration Tools.

A Data Storage Manager would provide a simple GUI interface to underlying software which would discover data storage areas accessible by the user (or that otherwise match a user’s discovery criteria). The user could then browse the content of each storage area, and manipulate the objects (move data around or view their metadata) easily via a drag and drop GUI interface. Data Administration tools, which could be integrated into the Data Storage Manager, include GUI-assisted tools for describing data objects, “publishing” them into a storage area, updating (files or metadata), deleting objects, defining new storage areas, managing replicas, defining data types, etc. Thought must be given to packaging and security so that different classes of users have different administrative capabilities.

Interoperation with Other PSE Services

In order for data management services to work well, they must be integrated with other PSE infrastructure and key PSE services. For example, users must authenticate and be authorized in order to access data storage areas and objects within. The data object description mechanism should be consistent and applicable to the service discovery and lookup (the importance of this cannot be overstated). And, the description mechanism should be consistent with selected component technology [4] so that we can create builder tools for defining and executing computation. And, events themselves are describable objects.

Summary List of Data Management Requirements for PSEs

1.0 Data description mechanism, language and system dependent

1.1 Standards for supported data types (possibly done in xml)

1.1.1 File (many subtypes)

1.1.2 Collection

1.1.3 Aggregate (composition)

1.1.4 Script or Job

1.1.5 Script Template

1.1.6 Event

1.1.7 Service

1.2 User-defined Data Types

1.3 Translation from neutral xml description to specific systems, such as MDS [3] or RSL[4]

1.4 Transport of data descriptions

2.0 Support for Large and Ordinary-scale Data Sets

3.0 Mechanism neutrality

4.0 Policy neutrality

5.0 Data Services

5.1 Storage (ordinary and large)

5.2 Transfer or movement among storage areas

5.3 Access (transfer from storage to application)

5.4 Replication and Instance Management

5.5 Search & Discovery

5.6 Administration (publish/add, update, annotate, remove, describe, version, define type)

6.0 Ease of Use

6.1 Data Storage Browser/Manager (GUI tool)

6.2 Administrative GUI tools

7.0 Integration with other PSE/Grid Services

7.1 Security

7.2 Scripting (requires component technology)

7.3 Notification and other Event-related Services

7.4 Lookup and Discovery

8.0 Application of Component Technology

8.1 Data components as computation inputs/outputs

8.2 Assembly of composite data components

Applicable Jini Capabilities

Data Description

The Jini Lookup Service provides the mechanism for describing a service, registering it in the system, processing lookup requests, and returning service proxies for successful lookup requests. When a Jini service is registered with the Lookup Service, descriptive information about the service is placed in the system along with a service proxy. The default class net.jini.core.lookup.ServiceItem shows the default information placed under lookup [5]. The default information includes a unique service identifier (of Java type ServiceID), the service proxy (a java Object), and a set of attributes (of interface type Entry). When a client does a lookup, it submits a template that the Jini lookup services uses to check for matches against the registration information of all of its services. The default class net.jini.core.lookup.ServiceTemplate shows the default template fields, which includes a service identifier (of Java type ServiceID), a set of service types (of Java type Class), and an array of attribute sets. The template is filled in with specific data or wildcards. Matches occur if there are exact matches between the template fields and the fields in the registered service data, taking into account that wildcards will always create matches in a given field.

Jini provides convenience classes for attribute description, some of which include the following:

· net.jini.entry.AbstractEntry

· net.jini.entry.ServiceInfo

· net.jini.lookup.entry.ServiceControlled

· net.jini.lookup.entry.EntryBean

· net.jini.ookup.entry.EntryBeans

The AbstractEntry class is an abstract class which implements the Entry interface. ServiceInfo extends AbstractEntry and contains a standard set of attributes useful in describing a service. The ServiceControlled interface specifies that the attribute should only be changed by the service that added the attribute. The EntryBean and EntryBeans classes provide a way to associated bean classes with particular Entry classes. The bean classes will provide introspection and GUIs associated with the entry.

Essentially, any kind of object that can be wrapped as a Java object of some sort (preferably as a Bean component, but other components and binaries are fine, too) can be placed under Jini Lookup and treated as a service. This includes data objects, services, scripts, events, files, etc. This capability should be explored for application in PSEs, along with other technologies.

A generic service description mechanism could be expressed in XML and translated into the Jini classes described above.

Mechanism and Policy Neutrality

Jini will not provide mechanism and policy neutrality by itself. Jini may present data services which appear to be mechanism and policy-neutral to the user. True mechanism and policy neutrality, however, requires another layer of infrastructure.

Data Services

Data services and applications all may be registered as services under Jini lookup. For example, services proxies for accessing all kinds of file systems, databases, mass storage, etc. are placed under Jini lookup. The users then apply a Jini discovery process to locate data services, look them up, run the proxies, and use the services.

Higher level applications such as data browsers and admin tools also map into Jini as services.

Other PSE & Grid Services

Jini Security, Lookup and Discovery, and Event services are described in the corresponding papers.

Component Technology

Services that are registered within Jini or are descriptive attributes can be components (Beans or other kind of component). The one requirement is that the proxy components must be wrapped within a Java object in order to be looked up

References

[1]
Ian Foster, Steven Tuecke. A Grid Event Service and Grid Object Markup Language.

[2]
A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke. The Data Grid: Towards an

Architecture for the Distributed Management and Analysis of Large Scientific Data Sets.

[3]
J. Alameda, M. Pietrowicz, B. Veeraraghavan. Scenarios for Requirements Analysis of Problem

Solving Environments.

 [4]
R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, B. Smolinski. Toward a Common Component Architecture for High-Performance Scientific Computing

[5]
K. Edwards, Core Jini, Ch 8, pp 294-301.

