Jay Alameda

Mary Pietrowicz

Balaji Veeraraghavan

Security Requirements and Scenarios for Problem Solving Environments

Current Operation: Managing Access to Static Set of Resources on a Web Server

Currently, portal users access resources via a browser client, communicating through a web server, to computing resources that may be on the local web server or on a remote machine. The set of resources is static, or “hard-wired” into the portal. In this architecture, the user must first authenticate with the access control mechanisms on the web server to access the web page and its associated cgi scripts. Then, the user must authenticate with the Kerberos system in order to access NCSA machines and run jobs on them. If Globus access is needed, the user must also authenticate with Globus.

Different web servers have very different built-in authentication mechanisms. The Chemical Engineering Workbench (https://sharan.ncsa.uiuc.edu/ChemEngWB) currently runs on an NT server, the Internet Information Server. This particular server uses NT authentication mechanisms and requires that the user authenticate before entering the web site. Then, the user may run programs and access resources through the web site according to the permissions associated with the user’s id. The Internet Information Server has the ability to reference user ids and passwords from other NT domains, all well as from its local scope. The Chemical Engineering Workbench server, for example, references the user ids from the NCSA domain and its own scope, so users execute scripts and programs authenticated as their NCSA NT user IDs. Many Unix httpd-based servers, in contrast, execute all scripts and programs according to the permissions assigned to the server process (typically root permission or a special id selected just for the web server, such as “httpd”). Each server script or program that needed to run with a different id would have to take steps to set the user id appropriately. These web servers typically negotiate permissions based on domains, client machines, and a separate server database of user ids and passwords, so it is not as straightforward to execute programs based on existing user ids.

The Chemical Engineering Workbench works as shown in the text and diagram below.

1. Authentication with NT Web Server

The user accesses the chemical engineering workbench through an ssl channel. The server immediately prompts the user for a user id and password, and the user logs in on the secure channel. The user is not operating according to permissions granted to the user id.

2. Kerberos Authentication

At this stage of authentication, the server drops out to the OS and runs “kinit” to get a Kerberos ticket for the authenticated user. The tickets persist until they expire. There currently is no mechanism to automatically destroy the ticket when the users leave the site.

[image: image1.png]Browser
Client

hitps ssl
channel

Kerberos tickets

User Information:
NCSA or Local

Globus authentication is currently not supported, but is being explored. This will provide an additional level of security (something the user has and something the user knows in order to authenticate), and will allow the user to access resources and services under Globus control.

A proposed Globus authentication mechanism would require the client to install Globus (or portions of it) on the client machine, implement proxy delegation, and develop a service or servelet for Globus authentication and job submission (interface to GRAM gatekeeper). Proxy delegation is necessary to protect the users’ private keys.

A proposed Globus authentication mechanism would require the implementation of proxy delegation and the development of a service or servelet for Globus authentication and job submission (interface to GRAM gatekeeper). Proxy delegation is necessary to protect the users’ private keys which might otherwise have to be stored on a public server.

Requirements Analysis

The current generation of cgi or servlet-based “workbenches” does not provide enough security support for the next-generation of problem solving environments. Workbenches are static, and support for a dynamic set of services and resources is required. Furthermore, the security services need to protect from inappropriate access, and be easy to use and maintain.

Support for Dynamic Work Groups

The next generation of problem solving environments needs to support dynamic work groups which cross functional and organizational boundaries. The National Computational Science Alliance (NCSA) [1] and the PACI program [2] were created in part to allow these cross-functional and cross-organizational work teams. These teams form for varying lengths of time, and the people in them vary according to their work goals and interests. They tend to be collaborative, dynamic, and distributed. The way the teams are managed varies, but they tend to be self-managed and evolving rather than the “traditional” command and control hierarchy where team members report up a hierarchy to a common “commander”. A group decides to work together, and the focus evolves along with the way they organize themselves. People in these dynamic, virtual work teams typically belong to other more formal organizations. The dynamic group forms because either their formal organizations are unable to address a work problem by themselves, because it is impractical for an organization to attack the problem, or because the best people for the job are scattered throughout a number of organizations.

Different organizations are likely to have deployed different authentication and authorization mechanisms. The dynamic work group cannot depend on a single set of these mechanisms being in place. It isn’t practical for the group to try to expect their different organizations to adopt a common set of prescribed mechanisms [3]. Yet, problem solving environments need a simple, reliable, consistent way of enforcing authentication and authorization. Programmatically, the interface to security services needs to be common. Functionally, the security services must ensure a common set of features and functions, even if the underlying security mechanisms are different.

Support for a Dynamic Set of Services and Resources

Since problem solving environments will be supporting dynamic work groups, or “virtual teams”, the set of resources and services required by the teams is likely to change over time as well. Resources may come and go with the group members, and at the very least, group members will want to make new serivces and resources available to their team members. Problem solving environments, then, will not be well-service by hard-wiring a static list of resources and services into a workbench and presenting this static list on a web page. Instead, these environments need to discover dynamically the appropriate set of resources and services and present them to the user.

Security services must be able to protect a dynamic set of services and resources from inappropriate access, while enabling convenient use to those clients and other services that have access.

Simple to Use and Deploy

Users will not adopt tools and systems that are difficult to use or difficult to install. The goal here should be zero installation effort for the user. This is a general goal that also applies to security services.

The “applet” and “plug-in” models are good conceptual examples. Applets download what they need over the network when they need it without any additional intervention from the user. And, most browsers will offer to download plug-ins automatically when they are needed but not available locally. Clients should be able to automatically download and install the necessary security service components. Any components that cannot be automatically downloaded should be supported by easy-to-use, gui-assisted, web-based administration utilities. In general, all problem solving environment components should operate on the principles of automatic download and installation. This will simplify maintenance of the PSE as it evolves, and it will allow users to move easily from machine to machine and platform to platform.

Any components that cannot be automatically downloaded should be supported by easy-to-use, gui-assisted, web-accessible administration utilities. Examples of these kinds of components may include acquiring a private key or certificate, or setting up a local security policy file.

When possible, security services should support single sign-on. A user’s identity should be consistently and uniquely verifiable anywhere in the dynamic work group. The user may have a multiplicity of passwords into different physical systems and environments. But, the user should be able to log in just once in order to use services and access resources that they have access to in the dynamic work group.

Once authenticated, the user will access any resources and services permissible throughout the work group. Some of the services will execute programs, and these programs may need the ability to execute with the initiating user’s permissions, so the security service must be able to delegate some or all of the user’s permissions to the program. As a result, these capabilities need to be supported by the problem solving environment’s lookup, discovery, and service access mechanism. And, these capabilities need to be integrated into commonly-used tools such as telnet, rlogin, ftp, etc.[3]

Minimal Restrictions and Maximum Flexibility for the User

Users will not adopt tools and systems that prevent them from working the way they like to work, or that restrict them from using other tools. In addition to providing flexibility in underlying authentication and authorization mechanisms (discussed above), the security services should be browser-independent and platform-independent. Minimally, the platform-independence extends to the choice of OS or desktop machine (scientists will use the platforms where they are most productive). More generally, platform independence extends to PDAs and other devices. For example, a user may want to upload a data file from a wireless PDA to a data store on a network. Or, a user may want to control a camera or telescope from a desktop machine.

Security permissions need to be fine-grained enough to grant different permissions to different users, clients, services, and service proxies. The set of permissions needs to be flexible with a useful set of recognized default permissions, such as read, write, execute, and update. A fixed set of permissions, however, is not sufficient for the longer-term vision. The ability to define new permissions specific to different application domains and services must be supported. For example, a service providing access to a computational resource (e.g., Gaussian, Fidap, or other tool) may itself need permission to write output files, access data stores, etc. It may be convenient to define and use application-specific permissions such as database update, output file create, etc.

Users or administrators should have the ability to define security policies (programmatically readable) for users, clients, and services. These policies both provide protection and allow a flexible set of permissions to trusted, authenticated entities.

Safe

Above all, security services should protect sensitive information and protect against unauthorized access to machines, resources, and services.

Sensitive information such as user passwords and private keys should not be stored in a concentrated area on a networked machine. This is a giant target and potential security hole. Instead, security services should implement a mechanism such as proxy delegation that allows this information to stay under the control of the individual users and physically distributed.

Sensitive information should never be sent in the clear. Security services must support a secure transfer of user passwords, private key information, or other secret information.

In a service-based problem solving environment, clients no longer interact with a fixed set of servers or server proxies. And, services may themselves be active requestors or users of other services. They may have the ability to act in ways beyond just responding to a user’s request for service. Clients may interact with other clients, clients with services, services with services, etc. Two-way (or n-way) authentication is required so that each entity knows what it can accept from and provide to the other entity.

Technological Alternatives for Investigation (Partial List)

Several technical alternatives exist or are under development. Some of these include the Grid Security Infrastructure (GSI) [4], the Java Authentication and Authorization Service (JAAS) [5], and a Java GSS-API binding [6]. The Java language (JDK 1.2 and later versions) security model supports fine-grained permissions, user-definable permission, certificates, JAR signing, and flexible definition of security policies [7].

Summary List of Security Requirements

1.0 Support for Dynamic Work Groups

1.1 Authentication mechanism works on top of diverse set deployed authentication mechanisms

1.2 Authorization mechanism works on top of diverse set of deployed authorization mechamism

1.3 Common programming interface for authentication and authorization

2.0 Support for a Dynamic Set of Services and Resources

2.1 Security services applied to the service lookup and discovery process

3.0 Simple to Use and Deploy

3.1 Goal of zero installation effort for the user

3.2 Security (and other) software components automatically downloaded or installed when needed

3.3 Single sign-on

3.4 Delegation of permissions

4.0 Maximum Flexibility

4.1 Does not restrict user’s choice to platform

4.2 Will provide infrastructure to support PDAs and other devices

4.3 Fine granularity of security permissions

4.4 User or administrator-defined permissions supported

4.5 Flexible user or administrator-defined security policies supported

5.0 Safe

5.1 Protects against unauthorized access and use of machines, resources, and services

5.2 Protects sensitive information such as passwords and security keys

5.3 Does not require concentrated storage of sensitive information in one location

5.4 Two-way (or n-way) authentication to support dynamic interaction among clients and services.

Applicable Jini Capabilities

Jini currently does not have built-in authentication support for either discovery or responses returned from a discovery process. Sun plans to add security capabilities to the next release of Jini[8].

Java, however, does provide some general support for security. Java 2 SDK version 1.2 and above supports a fine granularity of security permissions, user-definable permission, flexibility in establishing security policies (via policy files), flexibility in creating and applying a SecurityManager that will enforce security policies, and support for code-signing with certificates (particularly bean components and generic JARs).

Jini service proxies could be signed, however. Then, security policies could be used to restrict or grant permissions to the service at the location where it executes.

The Java Authentication and Authroization Service (JAAS) provides additional support for Java 2 SDK, version 1.3 beta and above.

References

[1]
National Computational Science Alliance (NCSA), http://www.ncsa.uiuc.edu

[2]
Partnerships for Advanced Computational Infrastructure (PACI), http://www.interact.nsf.gov/cise/html.nsf/html/paci?OpenDocument

[3]
Butler, Engert, Foster, Kesselman, Tuecke, Volmer, and Welch. Design and Deployment of a National-Scale Authentication Infrastructure.

[4]
The Grid Security Infrastructure (GSI), http://www.globus.org/security/v1.1

[5]
C. Lai, L. Gong, L. Koved, A. Nadalin, R. Schemers. User Authentication and Authorization in

the Java ™ Platform. To appear in Proc. 15th Annual Computer Security Applications Conference.

[6]
Jack Kabat and Mayank Upadhyay. Generic Security Service API Version 2: Java Bindings. http://playground.sun.com/~mdu/JGSS

[7]
Java Security Documentation, http://java.sun.com/products/jdk/1.2/dos/guide/security/index.html

[8]
W. K. Edwards, Core Jini, p. 244.

