I. Introduction

The Comprehensive Mine Simulator (CMS) is a mine simulator that runs on

oop, extendable, flexible

fn desc section describes concepts useful for understanding guide, i/o

type of mines, false alarm

�The CMS simulates landmines, using DIS communication protocols to support the distributed simulation of interactions among mines and other entities (such as tanks and other vehicles that might be affected by mines). It has a graphical interface that uses X Windows with Motif, reads several input files, and writes output files describing its operations. The following subsections describe the functionality of the mine simulations and the user interface.

A.	INtroduction

B.	Operating Characteristics

Inputs needed, mine, vehicle, vuln.

Output state info, interactions

Don't do gui when interacting. (Degradation with # mines not determined.)

How to use: set protocol, terrain, test mode, set i/o

false alarms

II. Mine Simulation Functional Description

A.	Fundamental Concepts

•	mine

	The CMS simulates landmines, including conventional types such as buried pressure-fuzed antitank mines and other types including offroute (side attack) mines and wide area (top attack) mines. The following Section II-B describes these mine types.

•	component

	A component is a collection of mines of one type, created together using an emplacement mechanism as described in the User Interface section. A component only has meaning within the CMS, and does not correspond to any real-world concept. However, the fact that in the real world mines of the same type are typically emplaced using standard procedures (e.g., using a dispenser, or burying a row of mines) makes it convenient to use the component concept to create realistic minefields.

•	minefield

	A minefield is collection of components (and thus a collection of mines) enclosed within its perimeter.

•	planned and simulated mines

	The CMS user interface supports a number of functions for editing mines during their creation, such as moving them or changing their type. During this editing or planning phase, the mines are not simulated (and do not interact with vehicles or countermine systems). When the user elects to simulate a minefield it begins to interact with other simulations, but can no longer be edited. (The entire minefield can, however, be deleted.)

•	on / off mine status

	A mine that is simulated can be turned off. This means that it will not attack vehicles, but it is still present in the simulated world and can be detected and destroyed.

•	projectile

	A projectile is a munition fired by a wide area mine.

•	false alarms

	A “false alarm” is something (e.g., a surface anomoly or a metal fragment) that is not a mine, but can be detected by a mine detection system as if it were a mine. False alarms are emplaced just as if they were mines, but interact only with detection systems.

B.	Mine Types and Characteristics

1.	Mine Types

The CMS defines nine generic mine types, as shown in Table x. These types are “parent” types for specific types defined in input files. A specific type (e.g., U.S. M-21 or Soviet TM-62) is defined by specifying its parent type, its name, its Entity Type, and optionally any parameter values that differ from default values for the parent generic type.

Table x. Generic Mine Types

Antitank Mines�conventional���scatterable���off route���wide area��Antipersonnel Mines�conventional���scatterable���bounding���scatterable bounding��False Alarms (false detections)��

2.	Characteristics of Mines

a.	Parameters

Table x lists mine parameters, grouped into five general categories according to how they are defined:

•	Mine type:

	These parameters define the basic mine type. They are read from input files, and for any given run are invariant for a mine type. (See the Input chapter for further information.)

•	Fuze type:

	These parameters provide fuzing variations for a basic mine type, and like the mine type parameters are read from input files. A mine may have alternative fuze options selectable by the user (e.g., a pressure fuze and a tiltrod fuze), but the fuze parameters for a given mine/fuze combination are invariant for any given run. (Two mine types may have similar fuzes with different parameter values, e.g., the pressure fuze parameters may be different for different mine types. See the Input chapter for further information.)

•	Determined by component:

	These parameters are set for all mines in a component, when the component is created (either by the user or read from an input file).

•	Individual mines:

	These parameters are unique to each mine. The location of each mine and the orientation of a directional mine is set when the mine is created, and the Entity Identification number is assigned by the CMS when the mine is simulated.

•	Dynamic:

	These dynamic parameters are determined by the CMS in the course of the simulation.

Table x. Mine Parameters

Parameter Category �Parameter�Comment��Mine type�CMS (internal) type����type name�name as it appears to user ���detection type�Entity Type used in DIS state PDUs���detonation type�Entity Type used in DIS Detonation PDUs���warhead�warhead type used in Detonation PDUs������Fuze type�type name�Pressure, Tiltrod, etc.���type enumeration�fuze type used in DIS Detonation PDUs���firing offset�target proximity to detonate mine���dud probability�probability mine will never detonate���detonation probability�probability of detonation in each encounter���arming time delay�delay from emplacement to arming���probability of detonating on emplacement����time delay when detonating on emplacement����tracking range�used internally, not meaningful to user������Mines in component�burial depth����age����parent component����parent minefield�������Individual mines�location����orientation�set only for directional (offroute) mines���Entity ID number�set when simulated������Dynamic�state����thermal contrast�for CP protocol testing only���change sequence number�for CP protocol testing only������

The available fuze types are:

•	AT pressure

•	AT tiltrod

•	AT magnetic

•	AT side attack acoustic/seismic/IR

•	AT top attack acoustic/seismic

•	AP pressure

•	AP trip wire

2.	Specialized Characteristics of Offroute Mines

In addition to the normal mine and fuze parameters associated with all mines, the offroute fuze uses the parameters shown in Table x.

Table x. Offroute Mine Fuze Parameters

Parameter�Comment��minimum range�will not launch at targets at closer ranges��maximum range�will not launch at targets at greater ranges��minimum target speed�will not launch at slower targets��maximum target speed�will not launch at faster targets��detection probability�given a target in line-of-sight��hit probability�given a launch��rocket speed�used in Detonation PDU��

3.	Specialized Characteristics of Wide Area Mines

In addition to the normal mine and fuze parameters associated with all mines, the wide area mine has a parameter that identifies the type of projectile that it fires, and its fuze uses the parameters shown in Table x. These parameters are explained in Chapter VI, describing the Wide Area Mine tracking algorithm.

Table x. Wide Area Mine Fuze Parameters

Parameter��self defense range��maximum range error factor��maximum velocity error factor��maximum azimuth error factor��probability of target type classification error��multiplier when a target type classification error occurs��

C.	Projectiles

Projectiles are munitions fired by wide area mines. There is a generic projectile type, with parameters for specific types defined in input files. Like a mine, a projectile has a fuze with parameters defined in input files. Table x lists projectile parameters, and table x lists projectile fuze parameters.

Table x. Projectile Parameters

Parameter�Comment��type�Entity Type used in DIS Entity State PDUs��type name�name used by mine, to identify its projectile��detonation type�Entity Type used in DIS Detonation PDUs, when attacking target��ground impact type�Entity Type used in DIS Detonation PDUs, when missing target and hitting ground��warhead�warhead type used in Detonation PDUs��impact speed�speed used in DIS Detonation PDUs, when attacking target��

D.	Vehicles

The CMS establishes a tree (hierarchial list)) of vehicle types containing vehicle dimension data, used when determining mine interactions with vehicles. Vehicle dimension parameters are shown in Table x. There is a default tree structure, shown in Figure x, that lists generic vehicle types (e.g., tanks). Input files are used to define specific vehicle types (e.g., U.S. M1 tanks) and their dimensions.

Table x. Vehicle Parameters

Parameter��Entity Type��length��width��height��track inner edge distance from centerline��track outer edge distance from centerline��

�SUBSCRIBER @EditionMgr @EditionClient @039BA99C \a ����

Figure x. Default Vehicle Tree Structure

E.	Mine Interactions with Target Vehicles

A mine’s interaction with a target is controlled by its fuze. First, the fuze determines whether an entity is a target type that causes the mine to detonate: antitank mines attack all land vehicles, while antipersonnel mines attack land vehicles and life forms. Next, the fuze determines whether a nearby target detonates the mine.

•	full width fuzes (tiltrod, magnetic, and trip wire) detonate when a target comes within an specified distance (the “offset” fuze parameter) of the mine.

•	track width fuzes (pressure) detonate when a target’s tracks come within a specified distance (the “offset” fuze parameter) of the mine.

•	off-route mine fuzes detonate when a target crosses the line of sight of the mine, and is within the range and target speed limitations.

•	a wide area mine fires its sublet projectile a result of an algorithm that is intended to intercept the target at its point of closest approach.

F.	Mine Interactions with Countermine Systems

CMS mines are vulnerable to explosive and non-explosive (called mechanical) countermeasures. Depending on the particular countermeasure (see below), a determination is made of whether the countermeasure interacts with the mine. If so, the result of the interaction is determined randomly based on a table of outcome probabilities. A table entry contains probabilities for four possible countermine results:

•	detonation,

•	neutralization,

•	displacement to the side of the countermeasure vehicle’s track, or

•	displacement with rollback behind the vehicle.

These effects are mutually exclusive, and a single pseudo-random draw is used to determine which, if any, results from a given interaction. If none occurs, the countermeasure has no effect. Not all outcomes are possible for all countermeasures, e.g., a vehicle with a roller cannot displace a mine.

d.	Vulnerability to Mechanical Countermeasures

Mechanical countermeasures include full and track width plows, track width rollers, the dogbone assembly between track plows or rollers, and generic magnetic signature generators. (Response to a full width mine rake is not completely implemented.) Table x shows which types of interaction results are allowed for each countermeasure.

Table x. Allowable Countermeasure Results

Countermeasure�Neutralization�Detonation�Displacement�Rollback��Full width plow�√�√�√�√��Track width plow�√�√�√�√��Track width roller�√�√����Dogbone�√�√����Magnetic�√�√����

Determining whether a vehicle with an attached mechanical countermeasure interacts with a mine is essentially the same as the target engagement procedure described above. It uses the vehicle geometry, including an offset to allow countermeasures to extend beyond the edge of the vehicle, and considers whether the countermeasure is effective for the full vehicle width, the tracks, or the belly (between the tracks).

There are vulnerability tables for each countermeasure against mines with various fuze types. For plows and rollers the fuze type categories are pressure, tiltrod, magnetic, antipersonnel, and other. For the dogbone the fuze type categories are tiltrod, magnetic, and other, while for magnetic countermeasures the fuze types are magnetic and other.

e.	Vulnerability to Detonations

There are vulnerability tables indexed by range and mine burial depth for categories of detonation types against categories of mine fuze types. The pre-defined detonation types are:

•	MICLIC

•	ESMB

•	Large blast

•	Medium blast

•	Small blast

•	Large fragmentation

•	Small fragmentation

•	Other

The pre-defined fuze types are:

•	Pressure

•	Blast-hardened pressure

•	Tiltrod

•	Anti-personnel

•	Other

Each time a detonation occurs, each mine within the effective range of that detonation against its fuze type makes a pseudo-random determination of the effect, by consulting the appropriate effects table. The allowable results are that the mine is detonated, that it is neutralized, or that there is no affect.

There are default values for each table, or the probabilties can be read from input files.

III. Network Interface

III. User's Guide

The interface includes a startup window used to set run parameters, a main window with subwindows for a Plan-View Display (PVD) of the battlefield and for mine emplacement and status displays, and various dialog windows to provide information and receive input.

fonts used, conventions

assume familiar with Unix, X, Motif

using input files, need to set them up, directory structure, xrdb

launching

setting startup parameters

using the PVD

minefields (top level) display

creating and editing minefields

creating and editing components

reviewing status of minefields and components

on/off control

saving and loading minefields

controlling status and interaction output

using the test mode

summary of mouse actions

limitations

IV. Input

CMS 1.5 reads several types of input files, including

•	cms files

	These files contain parameter and other inputs, and are described below.

•	terrain data

	CMS terrain data processing is adapted from ModSAF 1.4. Terrain data files are in version 3 of the compact terrain database format, identified by the “.ctb” file extension.

•	miscellaneous files adapted from ModSAF

	Several “rdr” files are distributed with CMS in the “data” folder. These should not be modified by most users.

A.	General CMS FIle Structure

There are several kinds of CMS input files, that have similar structures. Some of their characteristics are:

•	Ascii text

	They consist of ascii text, and can be edited by any text editor.

•	Keywords

	A keyword identifies the type of information to follow. Each keyword is associated with a specific format for the data to follow (e.g., floating point number). The keyword must exactly match one the CMS is seeking to read at this point in the file. Except for the block identifier (described below) the keyword is followed by "=", then the parameter value, then a closing ";" symbol.

•	Data blocks

	Data is separated into blocks, e.g., blocks of parameters descibing a particular mine type. Each block contains individual parameters, or groups of parameters within subblocks (level two blocks).

	Level one blocks use a unique grammer, because each has a name associated with the block (e.g., the name of a mine type) as well as a value (the parameter data to follow). The name is given between the keyword and the value. Thus, they are identified by a key word, named by text within quotes (without an "=" separating the key word and name), and followed by a block delineated by the starting symbol “<” and ended by “>” (with no closing “;”).

	Level two blocks, or subblocks, follow the grammer for individual parameters. The keyword is followed by “=“, then the value which consists of a set of individual parameter definitions enclosed within brackets (“[“ and “]”), then the symbol “;”.

•	Comments

	C++ style comments can be included. Two slashes indicate that the rest of the line is a comment, and is not processed.

•	File type

	The first information contained in each file, other than leading comments and blanks, is a file type identifier. The key word "fileType" is followed by the specific file type. The different file types are described below.

•	Data formats

	The data format expected for each input parameter (e.g., character string or floating point number) is identified by a data type. The data types and their associated data formats are shown in Table 1. Most of these are C or C++ data types. The more complex types (that have syntax restrictions) are:

–	Point values

	Some parameters (such as locations) are either two or three dimensional points. The coordinate values are enclosed in parentheses.

–	Lists

	Other than points, parameters that have multiple values are lists, enclosed in brackets ("{" and "}"). Examples include parameters with a variable number of values, such as a list of perimeter points, or a parameter with a fixed number of values such as the DIS Entity Type (which has seven integer values).

–	Character strings

	Character strings containing spaces or other delimiters should be enclosed in quotes. In some cases the string must match one of a set of options (e.g., a fuze type must be “Pressure”, “Tiltrod”, etc.) In other cases the string allows the user to name something (e.g., a user-defined mine type).

Table 1. Data Formats

Data Type�Format�Example��ekeyString�character string�textString (or "text string")��ekeyQuotedString�character string�textString (or "text string")��ekeyFloat�floating point number�1.15��ekeyDouble�floating point number�23445.88888��ekeyInt�integer�3��ekeyChar�character�t��ekeyLong�integer�-11111��ekeyUnsignedInt�positive integer�333��ekeyUnsignedLong�positive integer�4444��ekey3DPoint�three floating point numbers�(1.0, 2.0, 3.0)��ekey2DPoint�two floating point numbers�(1.0, 2.0)��ekey3DPointList�list of ekey3DPoint�{ (1.0,2.0,3.0), (1.5, 2.5, 3.5), (1,2,-3) }��ekey2DPointList�list of ekey2DPoint�{ (1.0,2.0), (1.5, 2.5), (1,2) }��ekeyIntList�list of integers�{ 1, 1, 2, 3, 5, 8, 13 }��ekeyFloatList�list of floating point numbers�{ -10., -9., -8., 25. }��ekeyLev1Struct�name, then block of data�“AT Conventional” < block data >��ekeyLev2Struct�name, then subblock of data�[subblock data]��

Figure 1 is an example showing the format of input files. The keywords used on this example are not actual keywords recognized by the CMS, but are for illustrative purposes.

// This is a comment line

fileType = "file type";	 // "fileType" is manditory key word

	// indentation and blank lines are used for clarity,

	// but are not required

firstblockKeyWord "block name"

<

	parameterOneKeyWord = 1.0;		// more comments

	pointValueKeyWord = (1.0, 2.0);

	listValueKeyWord = { 1, 2, 3, 4, 5, 6 };

	subblock1ParamKeyWord = [

		subblock1ParamOneKeyWord = "Text Value";

		subblock1ParamTwoKeyWord = textWithoutSpace;

];

	subblock2ParamKeyWord = [

		subblock2ParamOneKeyWord = t

];

>

secondblockKeyWord "block two name"

<

	parameterOneKeyWord = 5.0;

>

Figure 1. General Input File Format

B.	Mine, Vehicle, and Projectile Parameters

Parameters for mines, vehicles, and projectiles fired by mines are read from files of type “PerfParams.2”.

•	Mine parameters control simulated mines, and include variables such as failure rates and fuze types.

•	Vehicle parameters consist of the dimensions of potential target vehicles, that are used in geometry calculations to determine if a vehicle encounters a mine.

•	Projectile parameters include such variables as launch speed and target detection probability.

An input file can contain parameters for any of these object types, and any number of input files can be used. The CMS keeps a hierarchial database for each object type. The top levels of these databases are initialized to provide default parameter values. Specific descendent object types (e.g., specific mine types) can then be defined by the input files. Descendent types are initialized with parameter values from their parents, so that only changed parameters need be specified in the input files. The default parameter values for parent types can also be changed. If this is done, descendent types defined before the change will inherit different values from those defined after the change. Thus, the order of reading parameters may by significant. CMS searches all files in the mine parameters directory, and reads those of type “PerfParams.2” in alphabetical order.

Appendix A contains tables describing the blocks and parameters. There are six types of top level blocks, one each for re-defining default parameters for mines, vehicles, and projectiles, and one each for defining new objects of each class.

1.	Mine Parameters

The keywords “minetype” and “newminetype” start blocks that define parameters for a mine type. The block name following the keyword must be the name of a previously defined mine type. If the keyword is “minetype” the parameters in the block override the existing parameters for the named type. If the keyword is “newminetype” the named type is the parent of a new user-defined mine type. The parameters of the parent type initialize the new type, and parameters in the block override these values.

Mine input requirements to remember are:

•	Block Name

	The block name (e.g., newminefrom “block name”) must be a mine type already in the database. . The predefined mine database hierarchy is shown below, in Figure 2.

•	Database Hierarchy

	The predefined hierarchy contains mine subcategories (e.g., conventional antitank mines), not specific mine types that can actually be simulated. Specific mine types must be defined in input files.

•	Required Parameters

	There are two required parameters for user-defined mine types: the name and Entity Type. Other parameters are inherited from the parent type, and only changed parameters need appear in the block.

•	Fuze Types

	Conventional mines (but not off route or wide area mines) can have multiple fuze types selectable by the user (e.g, pressure or tiltrod fuzes). The input file may have multiple fuze subblocks for a mine. If a fuze block with a new fuze type is read for a mine, that fuze type is added to those available for the mine.

•	Fuze Options

	The parameters read in a fuze subblock include a specification of whether the user can select options for mines with that fuze. Options can include antihandling protection, blast hardening, self-destruct times, and target counting capability (to let a number of targets pass before attacking one).

Figure 2 shows the initial mine database hierarchy. New mine types should be descendents of the lowest hierarchial level: “AT Conventional”, “AT Scatterable”, “False Alarm”, etc. Table 2 shows the DIS Entity Type structure, and the values defined for the leaves in the pre-defined CMS mine database. New mine types must define two fields:

•	country

	A list of countries and their numeric values is in Appendix A.

•	specific

	These are arbitary 8-bit integers (1 thru 255) that are usually sequential. Because existing DIS enumerations are incomplete and inconsistent, the CMS allows the user to specify a different Entity Type to be used in DIS interactions, but the type used internally to the CMS must follow the scheme shown in Table x.

� EMBED Word.Picture.6 ���

Figure 2. Initial Mine Database Hierarchy

Table 2. Entity Types for Mines

�Entity Type Structure��CMS Mine�kind�domain�country�category�subcategory�specific�extra��AT Conventional�2�2�*�3�1�*�0��AT Scatterable�����2����AT Offroute�����3����AT Wide Area�����4����AP Conventional��8���1����AP Scatterable�����2����AP Conv Bounding�����3����AP Scat Bounding�����4����False Alarm��12��3�*�0���	* Must be defined for actual mine type

 	 Values continue down columns, until re-defined. E.g., all CMS mines have kind = 2.

V. Output

VI. Algorithm Description

b.	Tracking

Each component keeps track of vehicles in proximity to the component, and passes the list of nearby vehicles to each of its mines. Each mine uses this list to determine if any vehicle interacts with the mine, either by triggering its fuze or by mechanically affecting it (e.g., by plowing it. Both the component’s and individual mine’s tracking logic are executed periodically, normally at one second intervals. When a vehicle approaches a mine the mine’s update is exectuted more often, usually at one-tenth second intervals.

The mine’s tracking algorithm computes the relative geometry between a vehicle and the mine, including down and cross range distances in a coordinate system centered on the mine but oriented along the vehicle’s path (see Figure x). An exception to this is that offroute mines track vehicles using the mine’s pointing direction as the x-axis.

�SUBSCRIBER @EditionMgr @EditionClient @039E5018 \a ����

Figure x. Tracking Coordinate System

Tiltrod, magnetic, and trip wire fuzes all operate similarly. They determine if a vehicle detonates the mine by adjusting the vehicle offset (as determined by the tracker) to allow for the size of the vehicle and the firing offset of the mine (e.g., the length of a trip wire). The pressure fuze only detonates if it is under the vehicle’s tracks, plus the allowed firing offset.

Appendix A�Mine, Vehicle, and Projectile�Input Description Tables

A.	File Level

A parameter file begins with the file type identifier, and contains named blocks identified by a keyword:

	fileType = "PerfParams.2";

	keyword "block name" <

	>

Keywords and block types are shown in Table A-1.

Table A-1. Parameter File Keywords

Keyword�Data Type�Block Name�Description��minetype�ekeyLev1Struct�mine type name�parameters for a pre-defined mine type��vehicletype�ekeyLev1Struct�vehicle type name�parameters for a pre-defined vehicle type��projectiletype�ekeyLev1Struct�projectile type name�parameters for a pre-defined projectile type��newminefrom�ekeyLev1Struct�parent mine type name�parameters for a user-defined mine type��newvehiclefrom�ekeyLev1Struct�parent vehicle type name�parameters for a user-defined vehicle type��newprojectilefrom�ekeyLev1Struct�parent projectile type name�parameters for a user-defined projectile type��

A. Mine Block Parameters

1. Mine Block

Blocks identified by the keywords “minetype” and “newminefrom” have the same keywords, shown in Table A-2.

Table A-2. Mine Block Keywords

Keyword�Data Type�Description��entityName�ekeyQuotedString�mine type name��entityTypeStruct�ekeyLev2Struct�entity type, in subblock format��entityType�ekeyIntList�entity type, in list format��mineParam�ekeyLev2Struct�subblock of general parameters��fuzeParam�ekeyLev2Struct�subblock of fuze parameters��

2. Mine Subblocks

a.	Entity Type Subblock

Table A-3. Subblock “entityTypeStruct” Keywords

Keyword�Data Type�Description��kindInt�ekeyInt�kind, integer value��domainInt�ekeyInt�domain, integer value��countryInt�ekeyInt�country, integer value��categoryInt�ekeyInt�category, integer value��subcategoryInt�ekeyInt�subcategory, integer value��specificInt�ekeyInt�specific, integer value��extraInt�ekeyInt�extra, integer value��kind�ekeyString�kind, string value��domain�ekeyString�domain, string value��country�ekeyString�country, string value��category�ekeyString�category, string value��subcategory�ekeyString�subcategory, string value��

Table A-4. String Values for “entityTypeStruct” in the Munition Kind

Field�String�Value��kind�Munition�2������domain�Other�0���AAir�1���AT�2���AP�8������category�Other�0���Guided�1���Ballistic�2���Fixed�3������subcategory�Other�0���AT_Conventional�1���AT_Scatterable�2���AT_Off-route�3���AT_Wide_Area�4���AP_Conventional�1���AP_Scatterable�2���AP_Conv_Bounding�3���AP_Scat_Bounding�4������country�Other�0���China�45���France�71���Germany�78���Italy�106���USSR�222���United Kingdom�224���United States�225���Yugoslavia�240��	Not all countries are listed

b.	Mine Parameters Subblock

The mine parameters subblock defines general parameters for a mine. These include:

•	Detonation Type

	This is the Entity Type used for the mine in Detonation PDUs, when it detonates.

•	Detection Type

	This is the Entity Type used for the mine in Mine/Countermine detection interactions.

•	Warhead Type

	This is the DIS warhead enumerated value, used in Detonation PDUs.

•	Orientation

	This is the default mine orientation. Conventional mines default to pointing up. The direction can be changed by inputs, but not by the user during execution. Offroute mine default to pointing east, and the direction can be edited by the user.

•	Sublet Type

	This is the type of projetile fired by wide area mines. The string must match the name of a defined projectile.

Table A-5 shows the keywords and default parameter values in the “mineParam” subblock. The values are inherited, i.e., a value shown for “Mine” applies to all mine descendent types unless overridden at a lower level.

Table A-5. Subblock “mineParam” Keywords

keyword�data type��Default Value�����Mine�AT Off Route�AT Wide Area��detonationType�ekeyIntList�mine entity type����detectionType�ekeyIntList�mine entity type����warheadType�ekeyInt�6000����orientation�ekey3DPoint�(0, 1.57, 0) �(0, 0, 0) ���subletType�ekeyQuotedString���"WAM sublet"��	[Unless specified, value defaults to value of higher level mine type]

c.	Fuze Parameters Subblock

The fuze parameter subblock defines both the fuze type (e.g., pressure or tiltrod), and the parameters for that fuze. Many mines can have alternative fuze, and for these mines a fuze block should be defined for each fuze type. The user will then be able to select a fuze type during emplacement. By default, a single fuze type for each mine is inherited from the parent mine subcategory in the pre-defined mine database. (E.g., a mine in the AT scatterable subcategory has a magnetic fuze.) When a fuze subblock is read for a fuze type that is already defined for a mine, the parameters that are read override the default values. When a fuze subblock is read for a new fuze type, that type is added to the types available for the mine. Fuze parameters are:

•	fuzeType

	The text name of the fuze type. Available types are shown below, in Table A-7.

•	fuzeEnum

	The DIS enumeration value for the fuze, used in Detonation PDUs.

•	fireOffset

	A point giving the x and y distances of the engagement range from a target to a mine. A value of (0,0) indicates the target must be collocated with the mine, and is used for simple collocation fuzes (pressure, tiltrod, magnetic

•	dudProb

	The probability the fuze never functions.

•	detonProb

	The probability the fuze does not function for a particular engagement. This does not affect the probability of functioning during a subsequent engagement.

•	armingDelay

	Delay from emplacement to arming.

•	emplaceDetProb

	Probability the mine detonates (self-destructs) following emplacement, presumably because of arming errors.

•	emplaceDetTime

	If the mine detonates following emplacement, the time delay.

•	selfDestTimes

	A list of alternative self-destruct times, selectable during emplacement by the operator.

•	targetCounterOpt

	An indicator of whether the operator should be able to set a target counter, for the number of targets a mine will let pass before engaging one (“yes” or “no”).

•	antihandlingOpt

	An indicator of whether the fuze has an antihandling device, does not have one, or that the operator should be able to set if it has one (“yes”, “no”, or “choice”).

•	blasthardOpt

	An indicator of whether the fuze is blast hardened, is not blast hardened, or that the operator can set if it is blast hardened (“yes”, “no”, or “choice”).

•	deleteFuzeType

	This is used to remove a fuze type from the list of those available (“yes” or “no”). E.g., if a particular AT scatterable mine does not have a magnetic fuze, a fuze block for the magnetic fuze should be defined with deleteFuzeType = yes in order to delete the fuze inherited from the parent type.

•	trackRange

	This parameter is not intended to be set by the user. It is used by the CMS as the range at which it keeps track of which vehicles are close to which mines.

In addition, fuzes for offroute mines (fuze type acousticTrigger) have the following parameters:

•	tgtRangeGate

	The minimum and maximum range for engaging a target.

•	tgtSpeedGate

	The minimum and maximum target speed to engage.

•	detectProb

	Target detection probability.

•	hitProb

	Probability of hitting the target, given an engagement.

•	missileSpeed

	The impact speed of the missile (m/s), used in the Detonation PDU.

Fuzes for wide area mines (fuze type acousticTracker) have the following parameters:

•	selfDefenseRange

	The close range, at which the mine will engage all vehicles.

•	rangeErrMax

	The maximum range error multiplier (see the algorithm description for a complete definition of this parameter).

•	velErrMax

	The maximum velocity error (see the algorithm description for a complete definition of this parameter).

•	azimuthErrMax

	The maximum azimuth error (see the algorithm description for a complete definition of this parameter).

•	probTypeErr

	The maximum type classification error probability (see the algorithm description for a complete definition of this parameter).

•	typeErrMultiplier

	The maximum error multiplier when a type classification error occurs (see the algorithm description for a complete definition of this parameter).

•	fireWindow

	This parameter is not intended to be set by the user. It is used internally to determine an interval in which a wide area mine may fire.

Table A-6 gives the data formats and default values for fuze parameters. There is no single default fuze type: instead, each mine type has a default fuze and corresponding DIS enumeration as shown in Table A-7

Table A-6. Sublock “fuzeParam” Keywords

Keyword�Data Type��Default Value�����fuzes�offroute�wide area��fuzeType�ekeyString�[see below]�[see below]�[see below]��fuzeEnum�ekeyUnsignedInt�[see below]�[see below]�[see below]��fireOffset�ekey2DPoint�(0, 0)�(20, 100)�(0, 100)��dudProb�ekeyFloat�0.0����detonProb�ekeyFloat�1.0����armingDelay�ekeyFloat�0.0����emplaceDetProb�ekeyFloat�0.0����emplaceDetTime�ekeyFloat�0.1����trackRange�ekeyFloat�30.0�200.0�200.0��selfDestTimes�ekeyFloatList�none����targetCounterOpt�ekeyString1�no����antihandlingOpt�ekeyString2�no����blasthardOpt�ekeyString2�no����deleteFuzeType�ekeyString1�no����tgtRangeGate�ekey2DPoint��(20.0, 100.0)���tgtSpeedGate�ekey2DPoint��(0.833, 13.89)���detectProb�ekeyDouble��0.95���hitProb�ekeyDouble��0.8���missileSpeed�ekeyDouble��100.0���selfDefenseRange�ekeyDouble���5.0��rangeErrMax�ekeyDouble���0.2��velErrMax�ekeyDouble���0.2��azimuthErrMax�ekeyDouble���0.1��probTypeErr�ekeyDouble���0.05��typeErrMultiplier�ekeyDouble���0.5��fireWindow�ekeyDouble���0.1��1 “yes” or “no”,

2 “yes”, “no”, or “choice”

Table A-7. Fuze Types

Fuze Type�Enumeration�Default Fuze for Mine Type��Other�na���Pressure�8000�AT Conventional��Tiltrod�3000���Magnetic�3200�AT Scatterable��AcousticTopAttack�7000�AT Wide Area��AcousticSideAttack�7000�AT Offroute��TopAttackSublet�3000�Projectile��ApPressure�8000�AP Mine��ApTripWire�3000���

3. Sample Input File with Mine Definitions

// mine parameter file

fileType = "PerfParams.2";

newminefrom "False Alarm"

<

 entityName = "ASTAMIDS false alarm";

	entityTypeStruct = [

		country = Other;

		subcategoryInt = 1;

		specificInt = 0;

];

>

 // sample of redefining default params

minetype "AT Conventional"

<

 mineParam = [

 warheadType = 6000;

];

 fuzeParam = [

 fuzeType = Pressure;

 fuzeEnum = 8000;

 dudProb = 0.05;

 detonProb = 0.98;

];

>

newminefrom "AT Conventional"

<

 entityName = "US M15";

	entityTypeStruct = [

		country = "United States";

		specificInt = 1;

];

 mineParam = [

 detonationType = { 2, 2, 225, 3, 1, 0, 0 };

 detectionType = { 2, 2, 225, 3, 1, 0, 0 };

];

 fuzeParam = [

 fuzeType = Tiltrod;

];

>

newminefrom "AT Conventional"

<

 entityName = "US M21";

	entityType = { 2, 2, 225, 3, 1, 2, 0 };

 fuzeParam = [

 fuzeType = Tiltrod;

];

>

newminefrom "AT Conventional"

<

 entityName = "USSR TM62";

	entityTypeStruct = [

		country = USSR;

		specificInt = 1;

];

>

newminefrom "AT Conventional"

<

 entityName = "USSR TM46";

	entityTypeStruct = [

		country = USSR;

		specificInt = 2;

];

 fuzeParam = [

 fuzeType = Tiltrod;

];

>

newminefrom "AT Scatterable"

<

 entityName = "US M75";

	entityTypeStruct = [

		country = "United States";

		specificInt = 1;

];

>

newminefrom "AT Offroute"

<

 entityName = "Generic OffRoute";

	entityTypeStruct = [

		country = Other;

		specificInt = 1;

];

>

newprojectilefrom "WAM sublet"

<

 entityName = "Generic Sublet";

	entityTypeStruct = [

		country = Other;

		subcategoryInt = 1;

];

 projectileParam = [

 entityType = { 2, 2, 225, 2, 1, 0, 0 };

];

>

newminefrom "AT Wide Area"

<

 entityName = "Generic Wide Area";

	entityTypeStruct = [

		country = Other;

		specificInt = 1;

];

 mineParam = [

 subletType = "Generic Sublet";

];

 fuzeParam = [

 fuzeType = AcousticTopAttack;

 fireOffset = (0.0, 150.0);

 rangeErrMax = 0.0;

 velErrMax = 0.0;

 azimuthErrMax = 0.0;

 probTypeErr = 0.0;

 dudProb = 0.05;

 detonProb = 0.98;

];

>

newminefrom "AP Conv Bounding"

<

 entityName = "Italy Valmara 69";

	entityTypeStruct = [

		country = Italy;

		specificInt = 1;

];

>

Appendix B�Test Mode

Appendix C�Limitations and Future Development Plans

no flyout for sideattack

submuntions not vulnerable

no environment, dyn terrain

just mines, not complex obstacles

single computer, limited info on overload

can't control output very well

mine detectability characteristics not simulated

all mines in component at same depth

no antihandling

limited emplacement

no intelligent minefield, messages to minefields

limited protocol set

algorithms not validated, vulnerabilities not validated

needs vehicle data

mine enumeration, fuze and warhead enumeration

limited offroute and antipersonnel options and algorithms

terrain tool, intervis set at 2.5 m height. Side attack set at 1 m.

ctdb early version, could update to 4 / 5

mine vuln to deton, deton types not dynamically defineable

mine vuln to mechanical cm, now limited to default, set fuze categories, no input

change vuln to twmp, dogbone, etc., to reflect actual geom of cm system

DRAFT		�

	�

		DRAFT

�PAGE \# "'Page: '#'�'" �Page: 1���Features:

•	simulates mines: attacks on vehicles, vulnerability to plows, detonations

•	mine features and parameters: different fuzes, burial depth, detonation types, detection types, etc

•	displays PVD, selection highlighting, display on/off

•	emplacement options

•	input and output

•	editing aids, shortcuts

•	startup window

•	single computer: warning about using X user interface

Concepts:

•	minefield

•	component

•	planned / simulated

•	on / off

•	mine type hierarchy, definition of individual types

•	editing / status hierarchy

