CMS Design

I.	Requirements

A.	Mine Types

The mine types represented in the CMS are shown in Table I-1.

Table I-1. Mines Simulated in the CMS

Domain�Country�Subcategory�Specific�Extra��antiarmor�U.S.�scatterable�M75�����conventional�M21�����conventional�M15����Germany�conventional�AT2����Italy��VS 1.6������VS-HCT2������VS-HCL������SB-MV/1����USSR��TM-62P������TM-62B������TM-62D������TM-62M������TM-46������PGMDM����UK��HB876������Barmine����China��Type 84����France��HPD F2����Sweden��FFV 028������TMK-2����Yugoslavia��TMA-5������TMRP-6����Czech��PT-MI-K���������antipersonnel�Soviet��MON-200������MON-50������MON-100����Italy��Valmara 69������VS-50���������������

B.	Minefield Types

The CMS simulates the minefield types shown in Table I-2.

Table I-2. Minefields Simulated in the CMS

Type��Comments��general��Can contain any type of mine, in any arrangement��US/NATO����Soviet����

C.	Other Object Types

In addition to minefields and mines, the CMS simulates (with limited fidelity):

•	minefield objects such as lane markers and obstacles

•	standalone detection systems

•	countermine systems including ASTAMIDS, SMB, and MMCM.

D.	Protocols

The CMS can participate in network simulations using either DIS or SIMNET protocols.

E.	User Interface

The user interface is designed to be friendly. It uses windows, menus, buttons, and other visual display tools to help the user see the available options without needing to remember specific command names and syntax.

1.	General Capabilities

•	launch as a Unix process

•	Quit

	presumably using a menu command

•	Clear minefields, and any other simulates objects, either individually or all

•	Restart - allow changing simulation environment, e.g., terrain, exercise ID, or input files

•	Operator permissions

–	see emplacement patterns only (not showing errors and deviations, e.g., errors caused by artillery aiming errors or dispersion)

–	see friendly only

–	analyst - see both sides, data in real time

–	countermine capabilities

–	all

•	Save run conditions - at least, the starting conditions for the simulation run. This file could be kept open and additional information recorded, e.g., minefields emplaced or changes in operator permissions.

•	Create and display data windows, as described below

2.	Startup

All starting conditions to be settable in the startup display(s). Command line arguments may be used to define parameters or to specify a file defining paramters (that can then be changed in the startup display). Parameters include:

•	single/dual workstation operation

	If dual, other part to connect to.

•	net interface: protocol set, lower level interface

•	exercise ID

•	terrain database

•	force

•	operator permissions

•	directories for files:

–	performance parameter input

–	other input, e.g., files describing shapes of displayed objects

–	minefields (for save or restore)

–	data files (e.g., event stream as discussed below)

•	specific performance parameter input files to read

•	test mode. This allows the simulation of target vehicles, and possibly simulation faster than real time.

3.	PVD Display and Map Related Capabilities

The front end user interface will have a map display, with these features:

•	map control to include:

–	pan

–	zoom

–	switches for showing contours, other map features (?), and grid

NOTE: current status corresponding to these controls also displayed, e.g., the map scale to indicate zoom status.

•	optional color coded object state information

•	optional radio reporting data:

–	mine and minefield state

–	target detection and tracking

•	optional friendly and enemy vehicle display

•	optional countermine simulation information:

–	ASTAMIDS flight path

–	vehicles with protection (plows, rollers, MMCM, VMMD, ORSMC)

–	vehicles with mine neutralization capability (SMB, MICLIC)

4.	Data Displays

Several types of data may be displayed in different data windows, including:

•	Event stream display(s), consisting of events written as they occur

	Output flags will control the event details to be displayed, e.g., mine sensor details.

	The operator will be able to control writing the stream to a disk file.

•	Current status displays, updated periodically (e.g., every few seconds)

–	minefield summary: number of mines, mine types, mine states, vehicles near or in the minefield

–	engagement summary: vehicles attacked, hit, apparently damaged as indicated by their entity state PDU, mines neutralized by countermeasures

•	Parameter values (e.g., mine warhead type, reliability)

5.	Minefield Emplacement

There will be a variety of minefield types, and probably several emplacement mechanisms (depending on the minefield type). When the user selects a type to emplace, the available mechanism(s) and parameters to set will be made apparent. Possibilities include:

•	for standard hand emplaced types

–	size and orientation

–	density

–	(limited) choice of mine types

•	for custom type: choice of individual emplacement, by density, by frontal linear density

•	for artillery emplaced:

–	artillery type and number of rounds

�–	choice of overall shape and size, or designation of individual aimpoints

•	for vehicle dispenser emplaced:

–	choice of overall shape and size, or designation of vehicle path (and altitude, if air vehicle).

6.	Error messages and help

II.	Design Models

The CMS must simulate mine and other minefield objects, and their interactions with vehicles. It must communicate using (SIMNET or DIS) PDUs, display, read, and store data, and respond to user commands. Figure II-1 is a top level object model, showing some of the principal interactions among these object classes.

�

Figure II-1. Top Level Object Model

A.	Control

Conceptually the simulation objects in Figure II-1 operate independently, except for a very limited number of ways in which they interact (e.g., a mine attacks a vehicle). Also, the requirement that the CMS operate with either combined or separated UI and host computers means that some of the logical interfaces may occur either within one computer or across a network. And, the decision to simulate vehicles internally, for test purposes, means that a mine may interact either with an externally or internally simulated vehicle.

The control system is designed to allow these conceptually independent and autonomous objects to operate and interact without knowing whether other objects are on the same or a separate computer. In addition it controls simulation timing, to ensure that those objects that must be simulated in real time are not delayed by less time-critical functions.

The control scheme uses messages to schedule and then execute processes that are conceptually independent. Examples of such independent processes include a vehicle moving, a mine detonating, and a scale change on the PVD (requested by the operator). When it is determined that such a process needs to be performed (either immediately, or at some later time) a message object is created and added to a message list. The control system determines when the stored messages are sent. When a message is sent, it invokes the needed process.

1.	Object Model

Figure II-2 is similar to Figure II-1, but shows the control objects. The hierarchy of control classes is shown in Figure II-3.

�

Figure II-2 Control Object Model

�

Figure II-3. Control Class Hierarchy

a.	CmsMgr

There is a single CmsMgr global static object (constructed at program startup).

CmsMgr controls the system initialization, after the construction of globals. The initialization routine is responsible for establishing the setup, as determined by the user. The user can control front/back program linkage, data files to read, etc.

The Run routine repeatedly calls the NetMgr to receive incoming PDUs, the MsgMgr to execute the next message, and X Windows to receive the next X event. In the internal test mode, if there are no pending processes the simulation time is stepped to the time of the next message.

When a process (usually an X callback from user selection of the “Quit” command) sets the termination flag, the Run function exits and the termination function is called. Termination closes files, etc.

b.	MsgMgr

There is a single MsgMgr global static object (constructed at program startup).

The message manager contains several message lists, described below. When called by the CmsMgr, it calls the message lists (in priority order) to select and send the next message to be processed. Only one message is sent in each call from the CmsMgr.

c.	MsgList

The MsgLists are global static objects (constructed at program startup).

MsgLists contain linked lists of messages. When a message list is called, it sends its next message if there is one ready: otherwise, it returns a null result code. Each message priority level has a separate list.

There are 6 lists, as shown in Table II-1. The lists differ in whether the messages need immediate or timed dispatch. The immediate lists use FIFO discipline, while the timed lists are ordered by time of dispatch. The message list for standard simulation object updates (the Updt list) is timed and has a set 1 second delay from creating the message to dispatching it, resulting in a FIFO discipline. The priority timed update list (PrUpdt) is intended to be very short, with only a few messages for objects needing priority at any given time. (If for any reason simulation objects need updates at intervals other than 1 second, the intention is to create other lists using the appropriate update interval. The purpose is to avoid list management overhead for regular update processes.)

Table II-1. Message Lists

list�priority�order�interval�typical use��PrEvent�1�FIFO�immediate�Entity State or Detonation PDU��PrUpdt�2�time order�variable�Mine detonation, sublet flight��Event�3�FIFO�immediate�Important PDUs, such as Data Query for mine detection��Updt�4�FIFO,timed�1 sec�SimObj updates��DispUpdt�5�FIFO,timed�3 sec ?�PVD and tabular data displays��LowPrEvent�6�FIFO�immediate�Low priority PDUs (minefield creation)��d.	Message

A message is a temporary object that exists to invoke a function in another class, typically to perform a simulation function or to update displays. Message itself is an abstract class, with a descendent class defined for each specific message.

Messages are highly customizable and may contain a great deal of knowledge about their purpose. For example, most messages correspond to PDUs and know how to create and fill the PDUs. Thus, the messages contain the knowledge to interface the network simulation data with CMS internal data. Messages also know whether and how to distribute information internally. For example, a position update message for an internally generated vehicle calls the vehicle manager as well as creating a VAP or Entity State PDU.

In general, major simulation functions are controlled by messages. For example, a message object can invoke an update function for a mine or a display. Simulated objects also communicate using messages, e.g., when a mine detonates it creates a message that in turn causes a Detonate PDU to be sent.

This message structure is a very general technique to delay and to queue processes. Any process can be invoked by a message, by creating a descendent class (of cMessage) that calls the process. For example, the simulation class cNewSimClass could create a message of type cNewMsgClass. The Send function of cNewMsgClass could be defined to call cNewSimClass::AnyFunction(). The main uses for messages are:

•	Incoming PDUs: When a PDU is read, it creates a message to process the PDU. This message class knows what message list to place itself in, and who to call to process the message. (For example, an Entity State PDU will create an EntityStateMsg, that will call the vehicle manager when it is sent.)

	This allows all PDUs to be read before processing any of them, and higher priority PDUs to be processed first. Lower priority PDUs can even be processed after priority updates.

•	Outgoing PDUs: When a simulation object needs to send a PDU, it uses a message. The message knows how to route the message, both externally and internally.

•	Updates: Each update for a simulation object is invoked by a message. When an object finishes an update, it creates a message for its next update.

•	User Requests: User actions are received using X callback functions. For example, the selection of a menu item is directed to a callback function associated with that item. The exact processing of X events varies, but in general a callback that sets parameters is processed immediately while one that requires substantial processing creates a message to invoke the processing. For example, when the user is emplacing a minefield, the designation of the minefield type or of a mine type can be done immediately. When the minefield definition is complete and the user clicks “OK,” a message is created telling the simulator to actually create the minefield (with the selected parameters).

In some cases the object creating a message need not know much about how messages are processed. For example, a mine that detonates sends a detonate message, without knowing whether the message is translated into a (SIMNET or DIS) PDU and sent externally, sent to an internally simulated vehicle, or sent to the PVD for display. This structure allows the simulation objects to remain ignorant of whether DIS or SIMNET protocols are used, whether the front and back ends are running on the same or separate machines, and the type of information the operator wants displayed on the PVD.

There are many classes of messages, that are described along with the classes that create them and that are invoked by them. Tables II-2, II-3, and II-4 below summarize all messages.

Table II-2. Messages Generated by Pdus

Message�Queue�Creator(s)�Target(s)��VehMsg�PrEvent�VAP Pdu�Entity State Pdu�vehicle manager�������

Table II-3. Messages Generated by Simulation Objects

Message�Generator��Outgoing PDU�Msg List�Target����DIS�SIMNET����UpdateFoMsg�Fixed Object���UpdtProc�self��UpdateMfMsg�minefield���UpdtProc�self��PrUpdateMsg�mine, sublet���PrUpdtProc�self��VehMsg�SimVeh���PrEventProc�vehicle manager, PDU out��FireMsg�mine�Fire�Fire�PrEventProc�PDU out, PVD��DetonMsg�mine, possibly SMB�Detonation�Impact�PrEventProc�PDU out, PVD, possibly mine/field��TransMsg�WAM, Gateway�Transmitter��EventProc�PDU out, mf or mine��SignalMsg�WAM, Gateway�Signal��EventProc�PDU out, mf or mine��MinefieldStateMsg�minefield�Minefield State�Minefield�EventProc�PDU out��MineStateMsg�minefield�Minefield Response�?�EventProc�PDU out��

Table II-4. Messages Generated by the User, with X Callbacks

Message�Generator��Outgoing PDU�Msg List�Target����DIS�SIMNET����PVDMsg����LowPrProc�PVD��DataDispMsg����LowPrProc�data window��NewFieldMsg����EventProc�minefield mgr��TransMsg��Transmitter��EventProc�PDU out, mf or mine��SignalMsg��Signal��EventProc�PDU out, mf or mine��

2.	Dynamic Model

The CMS control system operates continuously in a “run” state. Other states are initialization and termination. While running, the PduMgr, MsgMgr, and DispMgr are invoked to receive input PDUs, process messages, and process X Window events. Figure II-4 shows the control system dynamic model.

�

Figure II-4. Control System Dynamic Model

3.	Functional Model

Control processes:

•	initialization

•	run

•	termination

•	message list service

•	sending messages

B.	Network Interface

The network interface is responsible for receiving and sending DIS and SIMNET PDUs, and for certain other actions such as sending acknowledgments and screening incoming PDUs. It includes two base classes, NetMgr and Pdu, with Pdu subclasses corresponding to each type of PDU that is processed. Figure II-5 is the network interface object model.

�

Figure II-5. Network Interface Object Model

1.	NetMgr

The network manager initializes the network interface, and receives and sends all PDUs.

On initialization, the NetMgr initializes the protocol and access method under user direction. It makes this information available to messages, so that they know whether to create SIMNET or DIS Pdus. It uses the PktValve library (from ModSAF), and provides the sole CMS interface to PktValve�.

The network manager’s GetPdus function is called by the CmsMgr to receive PDUs. It repeatedly asks for the next PDU, until no more are available. As each is received, a corresponding Pdu object is created (which then creates a corresponding message object).

When a message needs to send a PDU, it creates a Pdu object and calls the NetMgr Send function.

2.	Pdus

Pdus are objects corresponding to external PDUs. For the most part it is an inert, internal copy of a network PDU (all PDUs must be copied into local space before accessing their data).

When the network manager creates a Pdu object, the Pdu constructor copies the PDU into simulation space and then creates a message to send the Pdu information. The Pdu constructor knows how to fill the message content, but the message constructor places itself on the appropriate list and later determines which simulation object functions to call.

When the simulation needs to send a PDU, a message creates the appropriate Pdu object and call the network manager to send it.

Figure II-6 shows the Pdu class hierarchy, and Table II-5 shows the messages created by incoming PDUs.

�

Figure II-6. Pdu Class Hierarchy

Table II-5. Incoming PDUs Processed

�PDU�Message�New�Msg List�Target��DIS��������Entity State�VehMsg��PrEventProc�Vehicle Manager���Fire�FireMsg��SlowProc�PVD���Detonation�DetonMsg��PrEventProc�minefield mgr, vehicle mgr, PVD���Transmitter�TransMsg��EventProc�minefield or mine���Signal�SignalMsg��EventProc�minefield or mine���MineDataQuery�DataQueryMsg�√�EventProc�minefield���Create Minefield�NewFieldMsg�√�EventProc�minefield mgr���Cms Exchange������SIMNET��������VAP�VehMsg������Fire�FireMsg������Impact�DetonMsg������Indirect Fire�DetonMsg������Deactivate Request�������

Exercise Status�������Simulator Status�������Status Query�������Cms Exchange������

C.	Simulation

1.	Object Model

CMS simulation objects include mines, minefields, and associated objects such as controllers and standalone sensors. The design allows for these associated objects to include markers and obstacles. Selected countermine systems have been modeled in rudimentary ways, and are continued for the time being (at least, in developmental versions of the CMS). Primarily for development and testing purposes, rudimentary versions of vehicles (such as tanks) are modeled. And, externally simulated objects that interact with mines are represented (although their actions are not modeled). Figure II-7 shows the object model for these simulation objects. In labeling the relationships between objects, “detects,” “neutralizes,” “damages,” and “detonates” refer to actions of other systems on mines, while “senses” and “attacks” refer to actions of mines on other systems. Figure II-8 shows the simulation class hierarchy, and Table II-6 defines the simulation classes.

�

Figure II-7. Simulation Object Model

�

Figure II-8. Simulation Class Hierarchy

Table II-6. Simulation Class Dictionary

class�description��SimObj�DIS simulation entities, that have a representation in the CMS. This abstract base class provides the basic functions for �	– updating�	– displaying on the PVD�	– providing data, e.g. for a status window��Minefield�A collection of fixed objects, generally mines.��Vehicle�An independent moving entity. This includes life forms. In general their state is updated by DIS Entity State PDUs or SIMNET VAPs.��SimVeh�A vehicle that is simulated within the CMS��ExtVeh�A vehicle simulated externally.��Sublet�Sublet fired by smart mine��TestVeh�Internally simulated “target” vehicle��VehPart�Attached or articulated part, such as a plow��MfObject�Stationary object that is part of a minefield��Controller�Controls one or more mines, external to the mine itself��Mine���SASensor�Standalone sensor��Lane�Probably only a display object, created by external marking actions��Obstacle�Probably only a display object, interactions handled by dynamic terrain server��Marker���

MfObjects

Dynamic Model

MfObjects have several state variables, including:

•	selected (applies only to gui objects)

•	on

•	simulated (applies only to host objects)

D.	Display

Displays include the PVD map, dialogs needed to get user input (e.g., minefield emplacement information), and a variety of data displays (e.g., status or events occurring in the simulation). These displays all use X Windows and Motif�. X Window widgets are “objects”, but are not C++ objects and do not directly correspond to C++ objects. In general, the CMS uses C++ objects to manage logically grouped widgets, e.g., a window or a section of a window. The C++ object contains as fields any widget references that it needs, callbacks or other functions to control widgets, and references to simulation objects.

The object model shown in Figure II-9 is a generic representation of the major types of display objects. In this diagram “pull data” means that the display object accesses another object to get the data that it displays. It does this during an update of the display object, which is initiated by an update message. For example, an object that displays a vehicle on the PVD may be updated every few seconds. During an update, it gets the current vehicle position data to update the map location. “Accept data” means that the other (simulation) object writes directly to the display, generally during an update of the simulation object. For example, a mine may write changes in its status if certain output flags are turned on. “Mirror data” represents two-way data flow, in which simulation object data may be shown, but edited and transmitted back to the simulation object. This technique is used to set or edit values of a simulation object.

�

Figure II-9. Display Object Model

1.	Windows

There are two kinds of main windows, the main map display (used when running the front end alone, or front and back together) and the main back end display (used when running the back end separately). The main map display is the principle gui (front end) display and uses X Windows, while the back end display is used only when running a standalone back end and uses a terminal (not X) window.

a.	PVD Window

The main map display contains:

•	Menu Bar, with menus described below

•	Simulation status area

•	Map area

•	Map controls

Menus:

•	Simulation

Save objects

Read object file

Delete objects…

Delete all objects

Quit

•	Display

	Create data window

	objects

	minefields

	mines

	forces

	(countermine - ASTAMIDS, vehicle protection, detections)

•	Emplace

	create new minefield

	modify minefield

	simulate minefield

•	Control

	issue command

	control display?

•	Countermine

i.	Dynamic Model

The state of the PVD display is determined by the type of status or editor subwindow showing in the lower part of the entire PVD display, and the type of current selections (of minefields, components, and minefield entities). Minefields and components have both status and editor subwindow , with the editor used for objects that are not yet simulated (and for which further editing is allowed) while the status is used for objects that are being simulated (and for which no further editing is allowed). The status and editor subwindows include:

•	battlefield status (summary of minefields)

•	minefield editor (for creating and editing a single minefield)

•	component editors, including perimeter editor, individual editor, grid editor, row editor, and potantially others

•	minefield status (summary of a particular minefield)

•	component status

Minefields, components, or minefield objects can be selected. If an object is selected its parent is also selected (e.g., if a component is selected its parent minefield is selected). Multiple objects with the same parent may be selected. Thus, selection status possibilities are:

•	no selection

•	single object (e.g., single minefield)

•	multiple objects within a single higher level object (e.g., several components of a minefield)

Because of the multiplicity of status/editor subwindows and selection options, a complete dynamic state transition model would be large and hide the basic simplicity of the transitions. In general, transitions between subwindows are made in a few uniform ways and by messages activated by button or menu commands (e.g, create new component results in a transition to display the appropriate component editor) while transitions between selection states follow the same pattern for all display subwindow states.

Figure x shows the general dynamic model for selection states.

Figure x. Selection State Dynamic Model

The options available to transition between subwindows is determined by the current subwindow and the selection state. The options are shown in Table x.

Table x. PVD State Transition Options

Current Subwindow�Selection State�Command�New Selection�New Subwindow��battlefield status�none�create minefield� new minefield, and its perimeter�minefield editor���single (minefield)�create minefield�new minefield, and its perimeter�minefield editor����edit/status�same minefield�minefield editor, or minefield status����zoom�same minefield�no change����save�same minefield�no change����duplicate�new minefield�no change���multiple�save�same minefields�no change����duplicate�new minefields�no change��minefield editor�no component (minefield only)�create component� new component�componenteditor����done�same minefield (?)�battlefield status����cancel�same minefield (?)�battlefield status���single (component)�create component�new component�componenteditor����edit component�same component�minefield editor, or minefield status����done�same minefield (?)�battlefield status����cancel�same minefield (?)�battlefield status����duplicate component�new component�componenteditor?�no change?���multiple�duplicate components�new components�no change����done�same minefield (?)�battlefield status����cancel�same minefield (?)�battlefield status��component editor�no object (component only)�create object(s)� new object�no change����done�same component (?)�minefield editor����cancel�same component (?)�minefield editor���single (mf object)�create object(s)� new object�no change����edit object�same object�no change����done�same component (?)�minefield editor����cancel�same component (?)�minefield editor���multiple�create object(s)� new object�no change����done�same component (?)�minefield editor����cancel�same component (?)�minefield editor��

ii.	Functional Model

III.	Class Reference

A. Control Classes

1.	cCmsMgr

Description

Variables

attribute�type�name�description��static����������public����������protected����������private�����

Functions

����parameters����attribute�V�name�return�type�name�description��static����������������public��cCmsMgr ��������~cCmsMgr ��������CmsInitialize������protected����������������private��������

2.	cMsgMgr

Description

Variables

attribute�type�name�description��static����������public����������protected����������private�����

Functions

����parameters����attribute�V�name�return�type�name�description��static����������������public��cMsgMgr��������~cMsgMgr��������Send Nxt�boolean�����protected����������������private��������

3.	cMessage

Description

Variables

attribute�type�name�description��static�EListProc�fList�message list to subscribe to�������public����������protected�cMessage *�fpNext�next message in list���cMessage *�fpPre�preceding message��private�����

Functions

����parameters����attribute�V�name�return�type�name�description��static����������������public��cMessage��������~cMessage��������Send������protected����������������private��������

a.	cVehMsg

Description

Variables

attribute�type�name�description��static����������public����������protected����������private�����

Functions

����parameters����attribute�V�name�return�type�name�description��static����������������public������������������������protected����������������private��������

Coding Conventions

initial letters, variables:

c	class

g	global

p	pointer

f	class variable

b	boolean

e	enumeration variable

Functions:

Xc	X callback function

�	PktValve provides numerous services that are not used by the CMS, such as preemption and shared memory. It is based on callbacks to client provided functions, that are registered with PktValve by the client. In the CMS, the NetMgr makes all registration calls and receives all callbacks. It provides the PDU routing function for the CMS.

�	The back end running separately may use just the terminal window that launches it, in order to reduce system overhead.

