Jini™ Technology Glossary

S

< Sun

microsystems

THE NETWORK IS THE COMPUTER"

901 San Antonio Road
Palo Alto, CA 94303 USA

415 960-1300
fax 415 969-9131

Revision 1.0
January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations of the
technology described in this Specification ("Sun IPR"). Your limited right to use this Specification does not
grant you any right or license to Sun IPR. A limited license to Sun IPR is available from Sun under a separate
Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN
SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF USING THE
SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION TO
PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR TECHNOLOGY
BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION TO LICENSE THE
SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE FUTURE, FOR
PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava, HotJava
Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava,
PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun
Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The
Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo, and Visual Java are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Pageii Jini™ Technology Glossary—1.0

Jini™ Technology Glossary

activation: The process of transforming a passive object into an active object. Activation requires that an
object be associated with a Java™ Virtual Machine (JVM), which may entail loading the class
for that object into a JVM and the object restoring its persistent state (if any). (Java Remote
Method Irvocation SpecificatigrSection 7.1.1)

activation descriptor: A class instance which holds an activatable object’s group identifier (specifies the
JVM in which it is activated), the object’s class name, a location from where to load the
object’s class code, and object-specific initialization data in marshalled form. (Javza Remote
Method Irvocation SpecificatiorSection 7.2)

activation group: The entity which receives a request to activate an object in the JVM and returns the
activated object back to the activator. (Section 7.2) A separate JVM is spawned for each
activation group. (Java Remote Method location SpecificatigrSection 7.4.7)

activator: The entity which supervises activation by being both (1) a database of information that maps
activation identifiers to the information necessary to activate an object and (2) a manager of
JVMs, that starts up JVM’s (when necessary) and forwards requests for object activation (along
with the necessary information) to the correct activation group inside a remote JVM. There is
usually only one activator per host, started by rmid . (Jasza Remote Method Wmcation Specificatign
Section 7.2)

active object: A remote object that is instantiated and exported in a JVM on some system.(Java Remote
Method Irvocation SpecificatigrSection 7.1.1)

Page 1

= Glossary

Page 2

ancestor transaction: A transaction that is the parent of a specific nested transaction (a transaction where
all its operations are contained, or executed, from within another transaction), or the parent of
such a parent, recursively (a grand-parent, a great-grand-parent, and so on). (Jini™ Transaction
Specification Section 3.5)

attribute set: A strongly-typed set of fields in a service item (represented by a

net.jini.core.entry.Entry), that describe the service or provide secondary interfaces to
the service. A single attribute is a public field of an Entry. (Jini™ Lookup Service Specificatipn
Section 1.3)

channel: The abstraction for a conduit between two address spaces, in the RMI transport layer. As such,
it is responsible for managing connections between the local address space and the remote
address space for which it is a channel. (Java Remote Method Wmcation SpecificatiorSection 3.5)

connection: The stream-oriented (Section 3.4) abstraction for transferring data (performing
input/output) in the RMI transport layer. (Javza Remote Method lmcation SpecificatigrSection
3.5)

discovering entity: One or more cooperating objects in the Java programming language on the same
host, that are about to start, or are in the process of, obtaining references to one or more Jini

lookup services. (Jini™ Discorery and Join SpecificatipSection 1.2)

discovery request service: A service which runs on a host in the djinn, and accepts requests for a remote
reference to an instance of the Jini lookup service. There are really two discovery request
services; one accepts multicast requests, and the other accepts unicast requests. Both instances
of the discovery request service are present on every system in a djinn that hosts an instance of
the Jini Lookup service.

discovery response service: A remote object which runs on a discovering entity, and accepts references to
instances of the Jini lookup service. An instance of the discovery response service is hosted on
every system that wishes to establish communications with a djinn.

distributed event adapter: An event adapter, where the event generator and the event listener instances
may exist in different virtual machines, possibly on different hosts. The distributed event
adapter is at least a remote event listener, but may also be a remote event generator (see local

event, remote event). (Jini™ Distrituted Exent SpecificationSection 3)

djinn: The group of devices, resources, and users joined by the Jini software infrastructure. (Jini™
Lookup Service SpecificatipiSection 1.1) This group, controlled by the Jini system, agrees on
basic notions of trust, administration, identification, and policy.

Jini™ Technology Glossary—1.0

Glossary =

dynamic class loading: The capability of the Java application environment to download files (classes for
the Java platform, audio, and images) from a httpd server at runtime, if they are not already
available to the client JVM. Dynamic class loading may be used by the RMI runtime to
download: stub classes; skeleton classes; classes that are passed as sub-types of declared
method parameters; and classes that are passed as subtypes of declared method return types.
(See dynamic stub loading)

dynamic stub loading: A subset of dynamic class loading, used to support client-side stubs which
implement the same set of remote interfaces as a remote object itself. (Java Remote Method

Invocation SpecificatigrSection 3.1)

endpoint: The abstraction used to denote an address space or JVM in the RMI transport layer. In the
implementation, an endpoint can be mapped to its transport. That is, given an endpoint, a
specific transport instance can be obtained. (Jasza Remote Method lmcation SpecificatigrSection

3.5)

entry: An entry is a typed group of object references, expressed as a class for the Java platform that
implements the net.jini.core.entry.Entry interface. Entry fields must all be references
to Serializable objects.(Jini™ Entry SpecificationSection 1)

event: Something that happens in an object, corresponding to some change in the abstract state of the
object. Events are abstract occurrences that are not directly observed outside of an object, and
may not correspond to a change in the actual state of the object that advertises the ability to
register interest in the event. (Jini™ Distributed Ewent SpecificationSection 2.1)

event generator: An object that has some kinds of abstract state changes that might be of interest to other
objects, and allows other objects to register interest in those events. This is the object that will
generate notifications when events of this kind occur, sending those notifications to the event
listeners that were indicated as targets in the calls that registered interest in that kind of event.

(Jini™ Distributed Ewent SpecificationSection 2.1)

event listener: An object that an has interest in being notified when a particular event type occurs. The
event listener (1) implements the appropriate interface, and (2) registers with an event
generator. (See remote event listener)

export, -ed, -ing: The process of making a remote object available to accept incoming calls, on a specific
port. An object can be exported (1) if the object is a sub-class of
java.rmi.server.UnicastRemoteObiject, through the constructor, (2) by passing the
object to the static UnicastRemoteObject method, exportObject (Section 5.3.1), (3) if the

Page 3

= Glossary

Page 4

object is a sub-class of java.rmi.activation.Activatable , through the constructor, or
(4) by passing the object to the static Activatable method, exportObject. (Java Remote
Method Irvocation SpecificatiarSection 7.3)

faulting remote reference: A faulting remote reference to a remote object, sometimes referred to as a fault
block, “faults in” the active object’s reference upon the first method invocation to the object.
Each faulting reference, contained in the remote object’s stub, maintains both a persistent
handle (a java.rmi.activation.ActivationID) and a transient remote reference to the
target remote object. (Javta Remote Method location SpecificatigrSection 7.1.2)

host: A hardware device that may be connected to one or more networks. An individual host may
house one or more JVMs. (Jini™ Discorery and Join SpecificatipSection 1.2)

inferior transaction: The inverse of the transactional ancestor relationship: Transaction T; is an inferior of
T4 if and only if T, is an ancestor of T;. (Jini™ Transaction Specificatigi$ection 3.5)

joining entity: One or more cooperating objects in the Java programming language on the same host
that have just received a reference to the Jini Lookup service and are in the process of obtaining
services from, and possibly exporting services to, a djinn. (Jini™ Discoery and Join Specification
Section 1.2)

join protocol: The protocol which allows entities to start communicating usefully with services in a
djinn, through the Jini lookup service. (Jini™ Discovery and Join SpecificatioSection 1.1)

lazy activation: The activation mechanism that the RMI system uses, which defers activating an object
until a client's first use (i.e., the first method invocation). Lazy activation of remote objects is
implemented using a faulting remote reference. (Javza Remote Method ocation Specificatign
Section 7.1.1)

lease: A grant to use a resource, offered by one object in a distributed system, to another object in
that system for a certain period of time. The duration of the lease is negotiated by the two
objects when access to the resource is first requested and given. (Jini™ Distributed Leasing
SpecificationSection 1) A lease ensures that the lease holder will have access to some resource
for a period of time. During the period of a lease, a lease can be cancelled by the entity holding
the lease. A lease holder can request that a lease be renewed, or a lease can expire. (Jini™
Distributed Leasing SpecificatioSection 2.1) In the current RMI implementation, a lease term is
not negotiated, as described by the Jini™ Distributed Leasing Specificatipthe lease term is
mandated by the implementation server. Another difference is that in RMI, there is no notion
of explicit lease cancellation; lease cancellation is implicit when a remote reference becomes
unreferenced by a specific client. (Java Remote Method Umcation SpecificatiorSection 9.1)

Jini™ Technology Glossary—1.0

Glossary =

lease grantor: The object granting access to a resource for some period of time. (Jini™ Distributed Leasing
Specification Section 2)

lease holder: The object asking for the leased resource. (Jini™ Distributed Leasing SpecificatioSgction 2)

live reference: The concrete representation of a remote object reference (in the RMI transport layer)
which consists of an endpoint and an object identifier. Given a live reference for a remote
object, a transport can use the endpoint to set up a connection to the address space in which
the remote object resides. On the server side, the transport uses the object identifier to look up
the target of the remote call. (Java Remote Method lmmcation SpecificatigrSection 3.5)

local event: An event object that is fired from an event generator to an event listener, where both the
generator and the listener instances exist in the same virtual machine. (See event, remote event)

(Jini™ Distributed Eent SpecificationSection 1.1)

lookup discovery protocol: The protocol that governs the acquisition of a reference to one (or more)
instances of the Jini lookup service. (Jini™ Discovery and Join Specificatip8ection 1.1)

lookup service: The Jini lookup service provides a central registry of service items, representing services,
available within the djinn. This Jini Lookup service is a primary means for programs to find
services within the djinn, and is the foundation for providing user interfaces through which
users and administrators can discover and interact with services in the djinn. (Jini™ Lookup
Service Specificatigrbection 1.1)

marshal streams: Input/output streams, used by the RMI remote reference layer, that employ object
serialization to enable objects in the Java programming language to be transmitted between
address spaces. (Java Remote Method Wmcation SpecificatigrSection 3.3)

marshalled object: A container for an object that allows that object to be passed as a parameter in an RMI
call, but postpones deserializing the object at the receiver until the application explicitly
requests the object (via a call to the container object). The serializable object contained in the
MarshalledObject is serialized and deserialized (when requested) with the same semantics
as parameters passed in RMI calls (Java Remote Method Wrocation SpecificatiorSection 7.4.8),
which means that any remote object in the MarshalledObject is represented by a serialized
instance of its stub. The object contained by the MarshalledObject may be a remote object, a
non-remote object, or an entire graph of remote and non-remote objects.

notification filter: A distributed event adapter which can be used by either the generator of a notification
or the recipient to intercept notification calls, do processing on those calls, and act in accord
with that processing (perhaps forwarding the notification, or even generating new
notifications). (Jini™ Distributed Exent SpecificationSection 3.2) This filter may be used as an
event multiplexer or demultiplexer.

Page 5

= Glossary

notification mailbox: A distributed event adapter which can be used to store the notifications sent to an
object until such time as the object for which the notifications were intended desires delivery.
Such delivery can be in a single batch, with the mailbox storing any notifications received after
the request for delivery until the next request is given. Alternatively, a notification mailbox can
be viewed as a faucet, with notifications turned on (delivering any that have arrived since the
notifications were last turned off) and then delivering any subsequent notifications to an object
immediately, until told by that object to hold the notifications. (Jini™ Distributed Eent
Specification Section 3.3)

object serialization: The system which allows a bytestream to be produced from a graph of objects, sent
out of the Java application environment (either saved to disk or sent over the network) and
then used to re-create an equivalent set of objects with the same state. (Jara Object Serialization
Specification Section A.1) In RMI, objects transmitted using the object serialization system are
passed by copy to the remote address space, unless they are remote objects, in which case they
are passed by reference. (Javza Remote Method lmcation SpecificatigrSection 3.3)

passive object: A remote object that is not yet instantiated (or exported) in a JVM, but which can be
brought into an active state (see active object). (Java Remote Method location Specificatigrection
7.1.1)

pure transaction: A transaction in which all access to shared mutable state is performed under
transactional control. (Jini™ Transaction Specificatioi$ection 3)

reference list: A reference list for a remote object is a list of client JVMs that hold references to that remote object.
A client JVM is removed from the object’s reference list when that client no longer references that object.

(Java Remote Method tmmcation SpecificatigrSection 9.1)

registry: A remote object that maps names to remote objects. The java.rmi.Naming class provides
methods for lookup, binding, rebinding, unbinding, and listing the contents of a registry.
(Section 6.1) A registry can be used in a virtual machine with other server classes or
standalone.The methods of java.rmi.registry.LocateRegistry may be used to get a
registry operating on a particular host or host and port. (Java Remote Method Umcation

Specification Section 6)

remote event: An object that is passed from an event generator to a remote event listener to indicate that
an event of a particular kind has occurred. The remote event generator and the remote event
listener instances may exist in different virtual machines, possibly on different hosts. (Jini™
Distributed Exent SpecificationSection 2.1)

remote event generator: An object that is the source of remote events.

Page 6 Jini™ Technology Glossary—1.0

Glossary =

remote event listener: An object that has implemented the
net.jini.core.event.RemoteEventListener interface, which is interested in the
occurrence of remote events in some other object. The major function of a remote event listener
is to receive notifications of the occurrence of a remote event in some other object (or set of

objects). (Jini™ Distributed Eent SpecificationSection 2.1)

remote interface: An interface written in the Java programming language that extends
java.rmi.Remote , either directly or indirectly, which declares the methods of a remote
object. (Java Remote Method liocation SpecificatigrSection 2.1)

remote method invocation (RMI): The action of invoking a method of a remote interface on a remote
object. (Java Remote Method limcation SpecificatigrSection 2.1)

remote object: An object whose methods can be invoked from another JVM, potentially on a different
host. An object of this type is described by one or more remote interfaces. (Javza Remote Method

Invocation SpecificatigrSection 2.1)

remote reference layer (RRL): The layer of the RMI system that supports remote reference behavior (such
as invocation to a single object or to a replicated object) and carries out the semantics of
method invocation. This layer sits between the RMI stub/skeleton layer and the RMI transport
layer. Also handled by the remote reference layer are the reference semantics for the server.
(Java Remote Method ocation SpecificatigrSection 3.2)

rmic. The stub and skeleton compiler used to generate the appropriate stubs and skeletons for a
specific remote object implementation. The compiler is invoked with the package-qualified
class name of the remote object class. The class must previously have been compiled
successfully. (Java Remote Method Wimcation SpecificatiorSection 5.11)

rmid: The activation system daemon which provides an implementation of the activation system
interfaces. In order to use activation, you must first run rmid . This is the JVM with which
activation descriptions get registered. (Java Remote Method liocation SpecificatigrSection 7.2)

rmiregistry: The RMI system command that provides an implementation of the
java.rmi.registry.Registry interface. The rmiregistry, run on a remote host, can be
accessed by calling methods of the java.rmi.Naming class.

semantic transaction: A transaction with specific, associated semantics, as opposed to the protocol
specified by the TransactionManager interface which does not specify transaction
semantics. A semantic transaction is contractual in nature, and implies a particular usage
pattern, so if a program operates within the constraints of the contract, assumptions can be
safely made about the transaction’s behavior or state. (Jini™ Transaction Specificatigi®ection
1.2)

Page 7

= Glossary

Page 8

serializable: Any data type that may be read from java.io.ObjectinputStreams and written to

Service:

java.io.ObjectOutputStream s. This includes primitive data types in the Java
programming language, remote objects in the Java programming language, and non-remote
objects in the Java programming language that implement the java.io.Serializable

interface. (Java Remote Method location SpecificatigrSection 2.6)

Something that can be used by a person, a program, or another service. It can be
computational, storage, a communication channel to another user, or another service.
Examples of services include devices such as printers, displays, disks; software such as
applications or utilities; information such as databases and files; and users of the system.
Services will appear programmatically as objects in the Java programming language, perhaps
made up of other objects in the Java programming language. A service will have an interface,
which defines the operations that can be requested of that service. The type of the service
determines the interfaces that make up that service. (Jini™ Architecture Specificatigrsection 2.1)

service items: Each service item represents an instance of a service available within the djinn. The item

contains the stub (if the service is implemented as a remote object) or serialized object (if the
service makes use of a local proxy) that programs use to access the service, and an extensible
collection of attribute sets that describe the service or provide secondary interfaces to the
service. A new service item is created in the Jini Lookup service when a new service is added
to the djinn. (Jini™ Lookup Service SpecificatipBection 1.2)

service registrar: A synonym for Jini Lookup service. (See lookup service) (Jini™ Lookup Service

Specification Section 2.5)

skeleton: The server-side entity that reads parameters from incoming method requests and dispatches

calls to the actual remote object implementation. Note that in the Java Development Kit 1.2,
skeleton functionality is now handled by the remote object stub, but skeletons may still be
used for compatibility with earlier releases of the JDK. (Javta Remote Method immcation
Specification Section 3.3)

store-and-forward agent: A distributed event adapter that enables the object generating a notification to

stub:

hand the actual notification of those who have registered interest off to a separate object. This
agent can implement various policies for reliability. (Jini™ Distrituted Exent SpecificationSection
3.1)

The proxy for a remote object, which implements all the interfaces that are supported by the
remote object implementation and forwards method invocations to the actual remote object
instance. (Java Remote Method Wimcation SpecificatigrSection 3.3)

Jini™ Technology Glossary—1.0

Glossary =

stub/skeleton layer: The layer of the RMI system that aids in carrying out method invocation. The
stub/skeleton layer is the interface between the application layer and the rest of the RMI
system. (Java Remote Method Wmcation SpecificatiorSection 3.3) This layer does not deal with
specifics of any transport, but transmits data to the remote reference layer via the abstraction of
marshal streams. This layer contains client-side stubs (proxies) and server-side skeletons. (Java

Remote Method Wocation SpecificatigrSection 3.2)

template: An entry object that has some or all of its fields set to specified values. Templates may be used
to find matching entries. A template will match an entry if and only if the template’s non-null
public fields match the entry’s non-null public fields exactly. Remaining fields (those set to null)
are not used in the matching process, but are left as wildcards.(Jini™ Entry SpecificationSection
1.5)

transaction: In general, a transaction is a tool that allows a set of operations to be grouped in such a
way as to make them all appear to either all succeed or all fail; further, the operations in the set
appear from outside the transaction to occur simultaneously. In this model, the concrete
representation of a transaction is encapsulated in an object. (Jini™ Transaction Specification
Section 1.1)

transaction client: An object that does either, or both, of the following: (1) requests that a transaction
manager create a transaction (2) invokes the commit or abort method to complete a
transaction. A single transaction may have more than one client, since the object that completes
a transaction may be different from the object that requested its creation. An object that is a
transaction client may also be a transaction manager or participant. (Jini™ Transaction
Specification Section 1.2)

transaction manager: An object that (1) services requests from transaction clients to create transactions
and (2) tracks and manages the completion state of those transactions, by implementing the
TransactionManager interface. An object that is a transaction manager may also be a
transaction client or participant. (Jini™ Transaction Specificatigi$ection 1.2)

transaction participant: An object that executes operations of a transaction, and is able to interact with
the manager to complete transactions properly. An object providing this service may

implement the TransactionParticipant interface. An object that is a transaction
participant may also be a transaction manager or client. (Jini™ Transaction Specificatigi$ection
1.2)

transport: The abstraction that manages channels in the RMI transport layer. Each channel is a virtual
connection between two address spaces. Within a transport, only one channel exists per pair of
address spaces (the local address space and a remote address space). Given an endpoint to a
remote address space, a transport sets up a channel to that address space. The transport

Page 9

= Glossary

abstraction is also responsible for accepting calls on incoming connections to the address space,
setting up a connection object for the call, and dispatching to higher layers in the system. (Java
Remote Method Wocation SpecificatigrSection 3.5)

transport layer: The layer of the RMI system that is responsible for connection set up, connection

management, and remote object tracking. (Java Remote Method Umcation SpecificatigrSection
3.2) The transport layer sits below the RRL.

weak reference: When a remote object is not referenced by any client, the RMI runtime refers to it using
a weak reference. The weak reference allows the JVM'’s garbage collector to discard the object
if no other strong references to the object exist. The distributed garbage collection algorithm
interacts with the local JVM’s garbage collector in the usual ways by holding normal or weak
references to objects; thus, a weak reference allows the RMI runtime to reference a remote
object, but not prevent the object from being garbage collected. (Java Remote Method mcation

Specification Section 3.7)

Page 10 Jini™ Technology Glossary—1.0

	Jini™ Technology Glossary
	Jini™ Technology Glossary

