
Jini™ Lookup Attribute Schema
Specification
hema
The Jini™ system is a Java™ platform-centric distributed system designed around the
goals of simplicity, flexibility, and federation. The Jini Discovery protocol is used by
entities that wish to start participating in a Jini tsystem. This document specifies the sc
for attributes of registrants in the lookup service.
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
fax 415 969-9131

Revision 1.0
January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii Jini™ Lookup Attribute Schema Specification—1.0

Contents
1. Introduction . 1

1.1 Overview . 1

1.1.1 Terminology . 2

1.2 Design Issues . 2

1.3 Dependencies . 3

1.4 Comments . 4

2. Human Access To Attributes . 5

2.1 Providing a Single View of an Attribute’s Value 5

3. JavaBeans Components and Design Patterns 7

3.1 Allowing Display and Modification of Attributes 7

3.1.1 Using JavaBeans Components with Entry Classes 7

3.2 Associating JavaBeans Components with Entry Classes 9

3.3 Supporting Interfaces and Classes 11

4. Generic Attribute Classes . 13

4.1 Indicating User Modifiability . 13
Page iii

4.2 Basic Service Information . 14

4.3 More Specific Information . 15

4.4 Naming a Service . 16

4.5 Adding a Comment To a Service . 17

4.6 Physical Location . 17

4.7 Status Information . 20

4.8 Serialized Forms . 20
Page iv Jini™ Lookup Attribute Schema Specification–1.0

Introduction 1
1.1 Overview
The Jini™ Lookup service provides facilities for services to advertise their

availability, and for would-be clients to obtain references to those services

based on the attributes they provide. The mechanism it provides for registering

and querying based on attributes is centered around the Java™ platform type

system, and is based on the notion of an “entry”.

An entry is a class that contains a number of public fields of object type.

Services provide concrete values for each of these fields; each value acts as an

attribute. Entries thus provide aggregation of attributes into sets; a service may

provide several entries when registering itself in the lookup service, which

means that attributes on each service are provided in a set of sets.

The purpose of this document is to provide a framework in which ervices and

their would-be clients can interoperate. This framework takes two parts.

◆ We describe a set of common predefined entries that span much of the basic

functionality that is needed both by services registering themselves and

entities that are searching for services.

◆ Since we cannot anticipate all of the future needs of clients of the lookup

service, we provide a set of guidelines and design patterns for extending,

using and imitating this set in ways that are consistent and predictable. We

also construct some examples that illustrate the use of these patterns.
Page 1

1

1.1.1 Terminology

Throughout this document, we will use the following terms in consistent ways:

◆ service - a service that has registered, or will register, itself with the lookup

service

◆ client - an entity that performs queries on the lookup service, in order to

find particular services

1.2 Design Issues
Several factors influence and constrain the design of the lookup service

schema.

Matching Cannot Always Be Automated

No matter how much information it has at its disposal, a client of the lookup

service will not always be able to find a single unique match without

assistance, when it performs a lookup. In many instances, we expect that more

than one service will match a particular query. Accordingly, both the lookup

service and the attribute schema are geared towards reducing the number of

matches that are returned on a given lookup to a minimum, and not

necessarily to just one.

Attributes Are Mostly Static

We have designed the schema for the lookup service with the assumption that

most attributes will not need to be changed frequently. For example, we do not

expect attributes to change more often than once every minute or so. This

decision is based on our expectation that clients that need to make a choice of

service based on more frequently-updated attributes will be able to talk to

whatever small set of services the lookup service returns for a query, and on

our belief that the benefit of updating attributes frequently at the lookup

service is outweighed by the cost in network traffic and processing.
Page 2 Jini™ Lookup Attribute Schema Specification–1.0

1

Humans Need to Understand Most Attributes

A corollary of the idea that matching cannot always be automated is that

humans - whether they be users or administrators of services - must be able to

understand and interpret attributes. This has several implications:

◆ We must provide a mechanism to deal with localization of attributes

◆ Multiple-valued attributes must provide a way for humans to see only one

value (see Chapter 2)

We will cover human accessibility of attributes in a later chapter.

Attributes Can Be Changed by Services or Humans, But Not Both

For any given attribute class, we expect that attributes within that class will all

be set or modified either by the service, or via human intervention, but not

both. What do we mean by this? A service is unlikely to be able to determine

that it has been moved from one room to another, for example, so we would

not expect the fields of a “location” attribute class to be changed by the service

itself. Similarly, we do not expect that a human operator will need to change

the name of the vendor of a particular service.

This idea has implications for our approach to ensuring that the values of

attributes are valid.

Attributes Must Interoperate with JavaBeans™ Components

The JavaBeans™ specification provides a number of facilities relating to the

localized display, and modification, of properties, and has been widely

adopted. It is to our advantage to provide a familiar set of mechanisms for

manipulating attributes in these ways.

1.3 Dependencies
This document relies on the following other specifications:

◆ Jini™ Entry Specification

◆ Jini™ Entry Utilities Specification

◆ JavaBeans™ Specification
Page 3

1

1.4 Comments
Please direct comments to jini-comments@java.sun.com .
Page 4 Jini™ Lookup Attribute Schema Specification–1.0

Human Access To Attributes 2
2.1 Providing a Single View of an Attribute’s Value
Consider the following entry class:

A visual search tool is going to have a difficult time rendering the value of an

instance of class Bar in a manner that is comprehensible to humans.

Accordingly, to avoid such situations, entry class implementors should use the

following guidelines when designing a class that is to act as a value for an

attribute:

◆ Provide a property editor class of the appropriate type, as described in

section 9.2 of the JavaBeans Specification.

◆ Extend the java.awt.Component class; this allows a value to be

represented by a JavaBeans component or some other “active” object.

public class Foo implements net.jini.core.entry.Entry {
public Bar baz;

}

public class Bar {
int quux;
boolean zot;

}

Page 5

2

◆ Either provide a non-default implementation of the

java.lang.Object.toString method, or inherit directly or indirectly

from a class that does so (since the default implementation of

Object.toString is not useful).

One of the above guidelines should be followed for all attribute value classes.

Authors of entry classes should assume that any attribute value that does not

satisfy one of these guidelines will be ignored by some or all user interfaces.
Page 6 Jini™ Lookup Attribute Schema Specification–1.0

JavaBeans Components and Design
Patterns 3
3.1 Allowing Display and Modification of Attributes
We use JavaBeans components to provide a layer of abstraction on top of the

individual classes that implement the net.jini.core.entry.Entry
interface, and this provides us with several benefits:

◆ This approach uses an existing standard, and thus reduces the amount of

unfamiliar material for programmers

◆ JavaBeans components provide mechanisms for localized display of

attribute values and descriptions

◆ Modification of attributes is also handled, via property editors

3.1.1 Using JavaBeans Components with Entry Classes

Many, if not most, entry classes should have a bean class associated with them.

Our use of JavaBeans components provides a familiar mechanism for authors

of browse/search tools to represent information about a service’s attributes,

such as its icons and appropriately localized descriptions of the meanings and

values of its attributes. JavaBeans components also play a role in permitting

administrators of a service to modify some of its attributes, as they can

manipulate the values of its attributes using standard JavaBeans component

mechanisms.
Page 7

3

For example, obtaining a java.beans.BeanDescriptor for a JavaBeans

components that is linked to a “location” entry object for a particular service

allows a programmer to obtain an icon that gives a visual indication of what

that entry class is for, along with a short textual description of the class and the

values of the individual attributes in the location object. It also permits an

administrative tool to view and change certain fields in the location, such as

the floor number.
Page 8 Jini™ Lookup Attribute Schema Specification–1.0

3

3.2 Associating JavaBeans Components with Entry Classes
The pattern for establishing a link between an entry object and an instance of

its JavaBeans component is simple enough, as this example illustrates:

package org.example.foo;

import java.io.Serializable;
import net.jini.lookup.entry.EntryBean;
import net.jini.entry.AbstractEntry;

public class Size {
public int value;

}

public class Cavenewt extends AbstractEntry {
public Cavenewt() {
}
public Cavenewt(Size anvilSize) {

this.anvilSize = anvilSize;
}
public Size anvilSize;

}

public class CavenewtBean implements EntryBean, Serializable {
protected Cavenewt assoc;
public CavenewtBean() {

super();
assoc = new Cavenewt();

}
public void setAnvilSize(Size x) {

assoc.anvilSize = x;
}
public Size getAnvilSize() {

return assoc.anvilSize;
}
public void makeLink(Entry obj) {

assoc = (Cavenewt) obj;
}
public Entry followLink() {

return assoc;
}

}

Page 9

3

From the above, the pattern should be relatively clear:

◆ The name of a JavaBeans component is derived by taking the fully-qualified

entry class name and appending the string Bean; for example, the name of

the JavaBeans component associated with the entry class foo.bar.Baz is

foo.bar.BazBean . This implies that an entry class and its associated

JavaBeans component must reside in the same package.

◆ The class has both a public no-arg constructor and a public constructor that

takes each public object field of the class and its superclasses as parameter.

The former constructs an empty instance of the class, and the latter

initializes each field of the new instance to the given parameter.

◆ The class implements the net.jini.core.entry.Entry interface,

preferably by extending the net.jini.entry.AbstractEntry class, and

the JavaBeans component implements the

net.jini.lookup.entry.EntryBean interface.

◆ There is a one-to-one link between a JavaBeans component and a particular

entry object. The makeLink method establishes this link, and will throw an

exception if the association is with an entry class of the wrong type. The

followLink method returns the entry object associated with a particular

JavaBeans component.

◆ The no-arg public constructor for a JavaBeans component creates and makes

a link to an empty entry object.

◆ For each public object field foo in an entry class, there exist both a set Foo
and a get Foo method in the associated JavaBeans component. The set Foo
method takes a single argument of the same type as the foo field in the

associated entry, and sets the value of that field to its argument. The get Foo
method returns the value of that field.
Page 10 Jini™ Lookup Attribute Schema Specification–1.0

3

3.3 Supporting Interfaces and Classes
The following classes and interfaces provide facilities for handling entry

classes and their associated JavaBeans components.

The EntryBeans class cannot be instantiated. Its sole method, createBean ,

creates and initializes a new JavaBeans component, and links it to the entry

object passed in as its parameter. If a problem occurs in instantiating the

JavaBeans component, this method throws either a java.io.IOException or

a java.lang.ClassNotFoundException .

The createBean method uses the same mechanism for instantiating a

JavaBeans component as the java.beans.Beans.instantiate method. It

will initially try to instantiate the JavaBeans component using the same class

loader as the entry it is passed, and if that fails, it will fall back to using the

default class loader.

The getBeanClass method returns the class of the JavaBeans component

associated with the given attribute class. If the class passed in does not

implement the net.jini.core.entry.Entry interface, a

java.lang.IllegalArgumentException is thrown. If no class can be

found for the given attribute class, a java.lang.ClassNotFoundException
is thrown.

The EntryBean interface must be implemented by all JavaBeans components

that are intended to be linked to entry objects. The makeLink method

establishes a link between a JavaBeans component object and an entry object,

package net.jini.lookup.entry;

public class EntryBeans {
public static EntryBean createBean(Entry e)

throws ClassNotFoundException, java.io.IOException;

public static Class getBeanClass(Class c)
throws ClassNotFoundException;

}

public interface EntryBean {
void makeLink(Entry e);
Entry followLink();

}

Page 11

3

and the followLink method returns the entry object linked to by a particular

JavaBeans component. Note that objects that implement the EntryBean
interface should not be assumed to perform any internal synchronization in

their implementations of the makeLink or followLink methods, or in the

set Foo or get Foo patterns.
Page 12 Jini™ Lookup Attribute Schema Specification–1.0

Generic Attribute Classes 4
This chapter describes some attribute classes that are generic to many or all

services, and the JavaBeans components that are associated with each. Unless

otherwise stated, all classes defined here live in the

net.jini.lookup.entry package. The definitions assume the following

classes to have been imported:

◆ java.io.Serializable

◆ net.jini.entry.AbstractEntry

4.1 Indicating User Modifiability
In order to indicate that certain entry classes should only be modified by the

service that registered itself with instances of these entry classes, we annotate

them with the ServiceControlled interface.

Authors of administrative tools that modify fields of attribute objects at the

lookup service should not permit users to either modify any fields or add any

new instances of objects that implement this interface.

public interface ServiceControlled {
}

Page 13

4

4.2 Basic Service Information
The ServiceInfo attribute class provides some basic information about a

service.

Each service should only register itself with one instance of this class.

The fields of the ServiceInfo class have the following meanings:

◆ The name field contains a specific product name, such as “Ultra 30” (for a

particular Sun Microsystems™ workstation) or “JavaSafe™” (for a specific

configuration management service). This string should not include the name

of the manufacturer or vendor.

public class ServiceInfo implements ServiceControlled
extends AbstractEntry {

public ServiceInfo();
public ServiceInfo(String name, String manufacturer,

String vendor, String version,
String model, String serialNumber);

public String name;
public String manufacturer;
public String vendor;
public String version;
public String model;
public String serialNumber;

}

public class ServiceInfoBean implements EntryBean, Serializable {
public String getName();
public void setName(String s);
public String getManufacturer();
public void setManufacturer(String s);
public String getVendor();
public void setVendor(String s);
public String getVersion();
public void setVersion(String s);
public String getModel();
public void setModel(String s);
public String getSerialNumber();
public void setSerialNumber(String s);

}

Page 14 Jini™ Lookup Attribute Schema Specification–1.0

4

◆ The manufacturer field provides the name of the company that “built”

this service. This might be a hardware manufacturer or a software authoring

company.

◆ The vendor field contains the name of the company that sells the software

or hardware that provides this service. This may be the same name as is in

the manufacturer field, or it could be the name of a VAR. This field exists

so that in cases where VARs rebadge products built by other companies,

users will be able to search based on either name.

◆ The version field provides information about the version of this service. It

is a free-form field, though we expect that service implementors will follow

normal version-naming conventions in using it.

◆ The model field contains the specific model name or number of the product,

if any.

◆ The serialNumber field provides the serial number of this instance of the

service, if any.

4.3 More Specific Information
The ServiceType class allows an author of a service to deliver information

that is specific to a particular instance of a service, rather than to services in

general.

Each service may register itself with multiple instances of this class, usually

with one instance for each type of service interface it implements.

This class has no public fields and, as a result, has no associated JavaBeans

component.

public class ServiceType implements ServiceControlled
extends AbstractEntry {

public ServiceType();

public java.awt.Image getIcon(int iconKind);
public String getDisplayName();
public String getShortDescription();

}

Page 15

4

The getIcon method returns an icon of the appropriate kind for the service; it

works in the same way as the getIcon method in the

java.beans.BeanInfo interface, with the value of iconKind being taken

from the possibilities defined in that interface. The getDisplayName and

getShortDescription methods return a localized human-readable name

and description for the service, in the same manner as their counterparts in the

java.beans.FeatureDescriptor class. Each of these methods returns null

if no information of the appropriate kind is defined.

In case the distinction between the information this class provides and that

provided by a JavaBeans component’s metainformation is unclear, the

ServiceType class is meant to be used in the lookup service as one of the

entry classes with which a service registers itself, and so it can be customized

on a per-service basis. By contrast, the FeatureDescriptor and BeanInfo
objects for all EntryBean classes provide only generic information about those

classes, and none about specific instances of those classes.

4.4 Naming a Service
People like to associate names with particular services, and may do so using

the Name class.

Services may register themselves with multiple instances of this class, and

either services or administrators may add, modify or remove instances of this

class from the attribute set under which a service is registered.

The name field provides a short name for a particular instance of a service (for

example, “Bob’s toaster ”).

public class Name extends AbstractEntry {
public Name();
public Name(String name);

public String name;
}

public class NameBean implements EntryBean, Serializable {
public String getName();
public void setName(String s);

}

Page 16 Jini™ Lookup Attribute Schema Specification–1.0

4

4.5 Adding a Comment To a Service
In cases where some kind of comment is appropriate for a service (for example,

“this toaster tends to burn bagels ”), the Comment class provides an

appropriate facility.

A service may have more than one comment associated with it, and comments

may be added, removed or edited by either a service itself, administrators, or

users.

4.6 Physical Location
The Location and Address classes provide information about the physical

location of a particular service.

Since many services have no physical location, some have one, and a few may

have more than one, it may make sense for a service to register itself with zero

or more instances of either of these classes, depending on its nature.

public class Comment extends AbstractEntry {
public Comment();
public Comment(String comment);

public String comment;
}

public class CommentBean implements EntryBean, Serializable {
public String getComment();
public void setComment(String s);

}

Page 17

4

The Location class is intended to provide information about the physical

location of a service in a single building or on a small, unified campus. The

Address class provides more information, and may be appropriate for use

with the Location class in a larger, more geographically distributed,

organization.

public class Location extends AbstractEntry {
public Location();
public Location(String floor, String room, String building);

public String floor;
public String room;
public String building;

}

public class LocationBean implements EntryBean, Serializable {
public String getFloor();
public void setFloor(String s);
public String getRoom();
public void setRoom(String s);
public String getBuilding();
public void setBuilding(String s);

}

Page 18 Jini™ Lookup Attribute Schema Specification–1.0

4

We believe the fields of these classes to be self-explanatory, with the possible

exception of the locality field of the Address class, which would typically

hold the name of a city.

public class Address extends AbstractEntry {
public Address();
public Address(String street, String organization,

String organizationalUnit, String locality,
String stateOrProvince, String postalCode,
String country);

public String street;
public String organization;
public String organizationalUnit;
public String locality;
public String stateOrProvince;
public String postalCode;
public String country;

}

public class AddressBean implements EntryBean, Serializable {
public String getStreet();
public void setStreet(String s);
public String getOrganization();
public void setOrganization(String s);
public String getOrganizationalUnit();
public void setOrganizationalUnit(String s);
public String getLocality();
public void setLocality(String s);
public String getStateOrProvince();
public void setStateOrProvince(String s);
public String getPostalCode();
public void setPostalCode(String s);
public String getCountry();
public void setCountry(String s);

}

Page 19

4

4.7 Status Information
Some attributes of a service may constitute long-lived status, such as an

indication that a printer is out of paper. We provide a class, Status , that

implementors can use as a base for providing status-related entry classes.

We define a separate StatusType class in order to make it possible to write a

property editor that will work with the StatusBean class (we do not currently

provide a property editor implementation).

4.8 Serialized Forms
For each attribute class (Address , Comment, Location , Name, ServiceInfo ,

ServiceType , Status), the serializable fields are the declared public fields.

Each corresponding JavaBeans component class has a single serializable field

named assoc , with the attribute class as the declared type. For example,

AddressBean has a serializable field named assoc of type Address ,

CommentBean has a serializable field named assoc of type Comment, and so

on.

public abstract class Status extends AbstractEntry {
protected Status();
protected Status(StatusType severity);

public StatusType severity;
}

public class StatusType implements Serializable {
private final int type;
private StatusType(int t) { type = t;}
public static final StatusType ERROR = new StatusType(1);
public static final StatusType WARNING = new StatusType(2);
public static final StatusType NOTICE = new StatusType(3);
public static final StatusType NORMAL = new StatusType(4);

}

public abstract class StatusBean implements EntryBean,
Serializable {

public StatusType getSeverity();
public void setSeverity(StatusType i);

}

Page 20 Jini™ Lookup Attribute Schema Specification–1.0

4

StatusType has a single serializable field:

◆ int type

The serialVersionUID for each class is as follows:

◆ Address : 2896136903322046578

◆ AddressBean : 4491500432084550577

◆ Comment: 7138608904371928208

◆ CommentBean: 5272583409036504625

◆ Location : -3275276677967431315

◆ LocationBean : -4182591284470292829

◆ Name: 2743215148071307201

◆ NameBean: -6026791845102735793

◆ ServiceInfo : -1116664185758541509

◆ ServiceInfoBean : 8352546663361067804

◆ ServiceType : -6443809721367395836

◆ Status : -5193075846115040838

◆ StatusBean : -1975539395914887503

◆ StatusType : -8268735508512712203
Page 21

4

Page 22 Jini™ Lookup Attribute Schema Specification–1.0

	Jini™ Lookup Attribute Schema Specification
	The Jini™ system is a Java™ platform-centric distr...

	Contents
	1. Introduction 1
	1.1 Overview 1
	1.1.1 Terminology 2

	1.2 Design Issues 2
	1.3 Dependencies 3
	1.4 Comments 4

	2. Human Access To Attributes 5
	2.1 Providing a Single View of an Attribute’s Valu...

	3. JavaBeans Components and Design Patterns 7
	3.1 Allowing Display and Modification of Attribute...
	3.1.1 Using JavaBeans Components with Entry Classe...

	3.2 Associating JavaBeans Components with Entry Cl...
	3.3 Supporting Interfaces and Classes 11

	4. Generic Attribute Classes 13
	4.1 Indicating User Modifiability 13
	4.2 Basic Service Information 14
	4.3 More Specific Information 15
	4.4 Naming a Service 16
	4.5 Adding a Comment To a Service 17
	4.6 Physical Location 17
	4.7 Status Information 20
	4.8 Serialized Forms 20

	Introduction
	1
	1.1 Overview
	1.1.1 Terminology

	1.2 Design Issues
	Matching Cannot Always Be Automated
	Attributes Are Mostly Static
	Humans Need to Understand Most Attributes
	Attributes Can Be Changed by Services or Humans, B...
	Attributes Must Interoperate with JavaBeans™ Compo...

	1.3 Dependencies
	1.4 Comments
	Human Access To Attributes
	2

	2.1 Providing a Single View of an Attribute’s Valu...
	JavaBeans Components and Design Patterns
	3

	3.1 Allowing Display and Modification of Attribute...
	3.1.1 Using JavaBeans Components with Entry Classe...

	3.2 Associating JavaBeans Components with Entry Cl...
	3.3 Supporting Interfaces and Classes
	Generic Attribute Classes
	4

	4.1 Indicating User Modifiability
	4.2 Basic Service Information
	4.3 More Specific Information
	4.4 Naming a Service
	4.5 Adding a Comment To a Service
	4.6 Physical Location
	4.7 Status Information
	4.8 Serialized Forms

