Jini™ Lookup Attribute Schema
Specification

The Jini™ systemis a Java™ platform-centric distributed system designed around the
goals of simplicity, flexibility, and federation. The Jini Discovery protocol is used by

entities that wish to start participating in a Jini tsystem. This document specifies the schema
for attributes of registrants in the lookup service.

S

< Sun

microsystems

THE NETWORK IS THE COMPUTER"

901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300

fax 415 969-9131

Revision 1.0
January 25, 1999

Pageii

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, Hotlava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, Personallava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Jini™ Lookup Attribute Schema Specification—1.0

Contents =

1. Introduction i
1.1 OVEIVIEW ..
111 Terminology i

1.2 DesignISsuUeSt

1.3 Dependencieso

1.4 COmMMENTS ..ot

1
1
2
2
3
4
2. Human Access To Attributes 5
2.1 Providing a Single View of an Attribute’s Value 5

3. JavaBeans Components and Design Patterns 7
3.1 Allowing Display and Modification of Attributes 7
3.1.1 Using JavaBeans Components with Entry Classes 7

3.2 Associating JavaBeans Components with Entry Classes 9

3.3 Supporting Interfacesand Classes 11

4. Generic Attribute Classes i, 13

4.1 Indicating User Modifiability 13

Page iii

Pageiv

4.2 Basic Service Information
4.3 More Specific Information
4.4 NamingaService,
45 AddingaCommentToaService
4.6 Physical Location
4.7 Status Information

4.8 Serialized Forms

Jini™ Lookup Attribute Schema Specification-1.0

1.1 Overview

Introduction 1

The Jini™ Lookup service provides facilities for services to advertise their
availability, and for would-be clients to obtain references to those services
based on the attributes they provide. The mechanism it provides for registering
and querying based on attributes is centered around the Java™ platform type
system, and is based on the notion of an “entry”.

An entry is a class that contains a number of public fields of object type.
Services provide concrete values for each of these fields; each value acts as an
attribute. Entries thus provide aggregation of attributes into sets; a service may
provide several entries when registering itself in the lookup service, which
means that attributes on each service are provided in a set of sets.

The purpose of this document is to provide a framework in which ervices and
their would-be clients can interoperate. This framework takes two parts.

O We describe a set of common predefined entries that span much of the basic
functionality that is needed both by services registering themselves and
entities that are searching for services.

O Since we cannot anticipate all of the future needs of clients of the lookup
service, we provide a set of guidelines and design patterns for extending,
using and imitating this set in ways that are consistent and predictable. We
also construct some examples that illustrate the use of these patterns.

Page 1

1]l
H

1.1.1 Terminology

1.2 Design Issues

Throughout this document, we will use the following terms in consistent ways:

O service - a service that has registered, or will register, itself with the lookup
service

O client - an entity that performs queries on the lookup service, in order to
find particular services

Several factors influence and constrain the design of the lookup service
schema.

Matching Cannot Always Be Automated

No matter how much information it has at its disposal, a client of the lookup
service will not always be able to find a single unique match without
assistance, when it performs a lookup. In many instances, we expect that more
than one service will match a particular query. Accordingly, both the lookup
service and the attribute schema are geared towards reducing the number of
matches that are returned on a given lookup to a minimum, and not
necessarily to just one.

Attributes Are Mostly Static

We have designed the schema for the lookup service with the assumption that
most attributes will not need to be changed frequently. For example, we do not
expect attributes to change more often than once every minute or so. This
decision is based on our expectation that clients that need to make a choice of
service based on more frequently-updated attributes will be able to talk to
whatever small set of services the lookup service returns for a query, and on
our belief that the benefit of updating attributes frequently at the lookup
service is outweighed by the cost in network traffic and processing.

Page 2 Jini™ Lookup Attribute Schema Specification-1.0

[EEN
i

1.3 Dependencies

Humans Need to Understand Most Attributes

A corollary of the idea that matching cannot always be automated is that
humans - whether they be users or administrators of services - must be able to
understand and interpret attributes. This has several implications:

O We must provide a mechanism to deal with localization of attributes

0O Multiple-valued attributes must provide a way for humans to see only one
value (see Chapter 2)

We will cover human accessibility of attributes in a later chapter.

Attributes Can Be Changed by Services or Humans, But Not Both

For any given attribute class, we expect that attributes within that class will all
be set or modified either by the service, or via human intervention, but not
both. What do we mean by this? A service is unlikely to be able to determine
that it has been moved from one room to another, for example, so we would
not expect the fields of a “location” attribute class to be changed by the service
itself. Similarly, we do not expect that a human operator will need to change
the name of the vendor of a particular service.

This idea has implications for our approach to ensuring that the values of
attributes are valid.

Attributes Must Interoperate with JavaBeans™ Components

The JavaBeans™ specification provides a number of facilities relating to the
localized display, and modification, of properties, and has been widely
adopted. It is to our advantage to provide a familiar set of mechanisms for
manipulating attributes in these ways.

This document relies on the following other specifications:
0 Jini™ Entry Specification
0O Jini™ Entry Utilities Specification

O JavaBeans™ Specification

Page 3

1]l
H

1.4 Comments

Page 4

Please direct comments to jini-comments@java.sun.com

Jini™ Lookup Attribute Schema Specification-1.0

Human Access To Attributes 2

2.1 Providing a Single View of an Attribute’s Value

Consider the following entry class:

public class Foo implements net.jini.core.entry.Entry {
public Bar baz;

}

public class Bar {
int quux;
boolean zot;

A visual search tool is going to have a difficult time rendering the value of an
instance of class Bar in a manner that is comprehensible to humans.
Accordingly, to avoid such situations, entry class implementors should use the
following guidelines when designing a class that is to act as a value for an
attribute:

O Provide a property editor class of the appropriate type, as described in
section 9.2 of the JavaBeans Specification.

0 Extend the java.awt.Component class; this allows a value to be
represented by a JavaBeans component or some other “active” object.

Page 5

1]l
N

Page 6

O Either provide a non-default implementation of the
java.lang.Object.toString method, or inherit directly or indirectly
from a class that does so (since the default implementation of
Object.toString is not useful).

One of the above guidelines should be followed for all attribute value classes.
Authors of entry classes should assume that any attribute value that does not
satisfy one of these guidelines will be ignored by some or all user interfaces.

Jini™ Lookup Attribute Schema Specification-1.0

JavaBeans Componentsand Design
Patterns 3

3.1 Allowing Display and Modification of Attributes

We use JavaBeans components to provide a layer of abstraction on top of the
individual classes that implement the net.jini.core.entry.Entry
interface, and this provides us with several benefits:

0O This approach uses an existing standard, and thus reduces the amount of
unfamiliar material for programmers

0 JavaBeans components provide mechanisms for localized display of
attribute values and descriptions

O Modification of attributes is also handled, via property editors

3.1.1 Using JavaBeans Components with Entry Classes

Many, if not most, entry classes should have a bean class associated with them.
Our use of JavaBeans components provides a familiar mechanism for authors
of browse/search tools to represent information about a service’s attributes,
such as its icons and appropriately localized descriptions of the meanings and
values of its attributes. JavaBeans components also play a role in permitting
administrators of a service to modify some of its attributes, as they can
manipulate the values of its attributes using standard JavaBeans component
mechanisms.

Page 7

i
w

Page 8

For example, obtaining a java.beans.BeanDescriptor for a JavaBeans
components that is linked to a “location” entry object for a particular service
allows a programmer to obtain an icon that gives a visual indication of what
that entry class is for, along with a short textual description of the class and the
values of the individual attributes in the location object. It also permits an
administrative tool to view and change certain fields in the location, such as
the floor number.

Jini™ Lookup Attribute Schema Specification-1.0

w
1]

3.2 Associating JavaBeans Components with Entry Classes

The pattern for establishing a link between an entry object and an instance of
its JavaBeans component is simple enough, as this example illustrates:

package org.example.foo;

import java.io.Serializable;
import net.jini.lookup.entry.EntryBean;
import net.jini.entry.AbstractEntry;

public class Size {
public int value;

}

public class Cavenewt extends AbstractEntry {
public Cavenewt() {

public Cavenewt(Size anvilSize) {
this.anvilSize = anvilSize;
}

public Size anvilSize;

}

public class CavenewtBean implements EntryBean, Serializable {
protected Cavenewt assoc;
public CavenewtBean() {
super();
assoc = new Cavenewt();

public void setAnvilSize(Size x) {
assoc.anvilSize = x;
}

public Size getAnvilSize() {
return assoc.anvilSize;

public void makeLink(Entry obj) {
assoc = (Cavenewt) obj;
}

public Entry followLink() {
return assoc;

}

Page 9

i
w

Page 10

From the above, the pattern should be relatively clear:

0

The name of a JavaBeans component is derived by taking the fully-qualified
entry class name and appending the string Bean; for example, the name of
the JavaBeans component associated with the entry class foo.bar.Baz is
foo.bar.BazBean . This implies that an entry class and its associated
JavaBeans component must reside in the same package.

The class has both a public no-arg constructor and a public constructor that
takes each public object field of the class and its superclasses as parameter.
The former constructs an empty instance of the class, and the latter
initializes each field of the new instance to the given parameter.

The class implements the net.jini.core.entry.Entry interface,
preferably by extending the net.jini.entry.AbstractEntry class, and
the JavaBeans component implements the

net.jini.lookup.entry.EntryBean interface.

There is a one-to-one link between a JavaBeans component and a particular
entry object. The makeLink method establishes this link, and will throw an
exception if the association is with an entry class of the wrong type. The
followLink method returns the entry object associated with a particular
JavaBeans component.

The no-arg public constructor for a JavaBeans component creates and makes
a link to an empty entry object.

For each public object field foo in an entry class, there exist both a set Foo
and a get Foo method in the associated JavaBeans component. The set Foo
method takes a single argument of the same type as the foo field in the
associated entry, and sets the value of that field to its argument. The get Foo
method returns the value of that field.

Jini™ Lookup Attribute Schema Specification-1.0

w
1]

3.3 Supporting Interfaces and Classes

The following classes and interfaces provide facilities for handling entry
classes and their associated JavaBeans components.

package net.jini.lookup.entry;

public class EntryBeans {
public static EntryBean createBean(Entry e)
throws ClassNotFoundException, java.io.IOException;

public static Class getBeanClass(Class c)
throws ClassNotFoundException;

}

public interface EntryBean {
void makeLink(Entry e);
Entry followLink();

The EntryBeans class cannot be instantiated. Its sole method, createBean ,
creates and initializes a new JavaBeans component, and links it to the entry
object passed in as its parameter. If a problem occurs in instantiating the
JavaBeans component, this method throws either a java.io.|OException or
a java.lang.ClassNotFoundException

The createBean method uses the same mechanism for instantiating a
JavaBeans component as the java.beans.Beans.instantiate method. It
will initially try to instantiate the JavaBeans component using the same class
loader as the entry it is passed, and if that fails, it will fall back to using the
default class loader.

The getBeanClass method returns the class of the JavaBeans component
associated with the given attribute class. If the class passed in does not

implement the net.jini.core.entry.Entry interface, a
java.lang.lllegalArgumentException is thrown. If no class can be
found for the given attribute class, a java.lang.ClassNotFoundException

is thrown.

The EntryBean interface must be implemented by all JavaBeans components
that are intended to be linked to entry objects. The makeLink method
establishes a link between a JavaBeans component object and an entry object,

Page 11

i
w

Page 12

and the followLink method returns the entry object linked to by a particular
JavaBeans component. Note that objects that implement the EntryBean
interface should not be assumed to perform any internal synchronization in
their implementations of the makeLink or followLink methods, or in the
set Foo or get Foo patterns.

Jini™ Lookup Attribute Schema Specification-1.0

Generic Attribute Classes 4

This chapter describes some attribute classes that are generic to many or all
services, and the JavaBeans components that are associated with each. Unless
otherwise stated, all classes defined here live in the

net.jini.lookup.entry package. The definitions assume the following
classes to have been imported:

O java.io.Serializable

O net.jini.entry.AbstractEntry

4.1 Indicating User Modifiability

In order to indicate that certain entry classes should only be modified by the
service that registered itself with instances of these entry classes, we annotate
them with the ServiceControlled interface.

public interface ServiceControlled {

}

Authors of administrative tools that modify fields of attribute objects at the
lookup service should not permit users to either modify any fields or add any
new instances of objects that implement this interface.

Page 13

A

4.2 Basic Service Information

The Servicelnfo attribute class provides some basic information about a
service.

public class Servicelnfo implements ServiceControlled
extends AbstractEntry {
public Servicelnfo();
public Servicelnfo(String name, String manufacturer,
String vendor, String version,
String model, String serialNumber);

public String name;

public String manufacturer;
public String vendor;

public String version;
public String model;

public String serialNumber;

}

public class ServicelnfoBeanimplements EntryBean, Serializable {
public String getName();
public void setName(String s);
public String getManufacturer();
public void setManufacturer(String s);
public String getVendor();
public void setVendor(String s);
public String getVersion();
public void setVersion(String s);
public String getModel();
public void setModel(String s);
public String getSerialNumber();
public void setSerialNumber(String s);

Each service should only register itself with one instance of this class.

The fields of the Servicelnfo class have the following meanings:

0O The name field contains a specific product name, such as “Ultra 30” (for a
particular Sun Microsystems™ workstation) or “JavaSafe™” (for a specific
configuration management service). This string should not include the name
of the manufacturer or vendor.

Page 14 Jini™ Lookup Attribute Schema Specification-1.0

4

0O The manufacturer field provides the name of the company that “built”
this service. This might be a hardware manufacturer or a software authoring
company.

0O The vendor field contains the name of the company that sells the software
or hardware that provides this service. This may be the same name as is in
the manufacturer field, or it could be the name of a VAR. This field exists
so that in cases where VARS rebadge products built by other companies,
users will be able to search based on either name.

O The version field provides information about the version of this service. It
is a free-form field, though we expect that service implementors will follow
normal version-naming conventions in using it.

0 The model field contains the specific model name or number of the product,
if any.

O The serialNumber field provides the serial number of this instance of the
service, if any.

4.3 More Specific Information

The ServiceType class allows an author of a service to deliver information
that is specific to a particular instance of a service, rather than to services in
general.

public class ServiceType implements ServiceControlled
extends AbstractEntry {
public ServiceType();

public java.awt.Image getlcon(int iconKind);
public String getDisplayName();
public String getShortDescription();

Each service may register itself with multiple instances of this class, usually
with one instance for each type of service interface it implements.

This class has no public fields and, as a result, has no associated JavaBeans
component.

Page 15

Il
I

The getlcon method returns an icon of the appropriate kind for the service; it
works in the same way as the geticon method in the

java.beans.Beaninfo interface, with the value of iconKind being taken
from the possibilities defined in that interface. The getDisplayName and
getShortDescription methods return a localized human-readable name
and description for the service, in the same manner as their counterparts in the
java.beans.FeatureDescriptor class. Each of these methods returns null
if no information of the appropriate kind is defined.

In case the distinction between the information this class provides and that
provided by a JavaBeans component’s metainformation is unclear, the
ServiceType class is meant to be used in the lookup service as one of the
entry classes with which a service registers itself, and so it can be customized
on a per-service basis. By contrast, the FeatureDescriptor and Beaninfo
objects for all EntryBean classes provide only generic information about those
classes, and none about specific instances of those classes.

4.4 Naminga Service

Page 16

People like to associate names with particular services, and may do so using
the Nameclass.

public class Name extends AbstractEntry {
public Name();
public Name(String name);

public String name;

}

public class NameBean implements EntryBean, Serializable {
public String getName();
public void setName(String s);

Services may register themselves with multiple instances of this class, and
either services or administrators may add, modify or remove instances of this
class from the attribute set under which a service is registered.

The name field provides a short name for a particular instance of a service (for
example, “Bob’s toaster ™).

Jini™ Lookup Attribute Schema Specification-1.0

DS
1]

4.5 Addinga Comment To a Service

In cases where some kind of comment is appropriate for a service (for example,
“this toaster tends to burn bagels), the Commentclass provides an
appropriate facility.

public class Comment extends AbstractEntry {
public Comment();
public Comment(String comment);

public String comment;

}

public class CommentBean implements EntryBean, Serializable {
public String getComment();
public void setComment(String s);

A service may have more than one comment associated with it, and comments
may be added, removed or edited by either a service itself, administrators, or
users.

4.6 Physical Location

The Location and Address classes provide information about the physical
location of a particular service.

Since many services have no physical location, some have one, and a few may
have more than one, it may make sense for a service to register itself with zero
or more instances of either of these classes, depending on its nature.

Page 17

Il
I

The Location class is intended to provide information about the physical
location of a service in a single building or on a small, unified campus. The
Address class provides more information, and may be appropriate for use
with the Location class in a larger, more geographically distributed,
organization.

public class Location extends AbstractEntry {
public Location();
public Location(String floor, String room, String building);

public String floor;

public String room;

public String building;
}

public class LocationBean implements EntryBean, Serializable {
public String getFloor();
public void setFloor(String s);
public String getRoom();
public void setRoom(String s);
public String getBuilding();
public void setBuilding(String s);

Page 18 Jini™ Lookup Attribute Schema Specification-1.0

DS
1]

public class Address extends AbstractEntry {

}

public Address();

public Address(String street, String organization,
String organizationalUnit, String locality,
String stateOrProvince, String postalCode,
String country);

public String street;

public String organization;
public String organizationalUnit;
public String locality;

public String stateOrProvince;
public String postalCode;

public String country;

public class AddressBean implements EntryBean, Serializable {

public String getStreet();

public void setStreet(String s);

public String getOrganization();

public void setOrganization(String s);
public String getOrganizationalUnit();
public void setOrganizationalUnit(String s);
public String getLocality();

public void setLocality(String s);

public String getStateOrProvince();
public void setStateOrProvince(String s);
public String getPostalCode();

public void setPostalCode(String s);
public String getCountry();

public void setCountry(String s);

We believe the fields of these classes to be self-explanatory, with the possible

exception of the locality
hold the name of a city.

field of the Address class, which would typically

Page 19

A

4.7 Status Information

Some attributes of a service may constitute long-lived status, such as an
indication that a printer is out of paper. We provide a class, Status , that
implementors can use as a base for providing status-related entry classes.

public abstract class Status extends AbstractEntry {
protected Status();
protected Status(StatusType severity);

public StatusType severity;

}

public class StatusType implements Serializable {
private final int type;
private StatusType(int t) { type =t;}
public static final StatusType ERROR = new StatusType(1);
public static final StatusType WARNING = new StatusType(2);
public static final StatusType NOTICE = new StatusType(3);
public static final StatusType NORMAL = new StatusType(4);

}

public abstract class StatusBean implements EntryBean,
Serializable {
public StatusType getSeverity();
public void setSeverity(StatusType i);

We define a separate StatusType class in order to make it possible to write a
property editor that will work with the StatusBean class (we do not currently
provide a property editor implementation).

4.8 Serialized Forms

For each attribute class (Address , Comment, Location , Name Servicelnfo
ServiceType , Status), the serializable fields are the declared public fields.
Each corresponding JavaBeans component class has a single serializable field
named assoc , with the attribute class as the declared type. For example,
AddressBean has a serializable field named assoc of type Address
CommentBean has a serializable field named assoc of type Comment, and so
on.

Page 20 Jini™ Lookup Attribute Schema Specification-1.0

DS
1]

StatusType has a single serializable field:

0

int type

The serialVersionUID for each class is as follows:

I O s I |

Address : 2896136903322046578
AddressBean : 4491500432084550577
Comment 7138608904371928208
CommentBean: 5272583409036504625
Location :-3275276677967431315
LocationBean :-4182591284470292829
Name 2743215148071307201
NameBean -6026791845102735793
Servicelnfo :-1116664185758541509
ServicelnfoBean : 8352546663361067804
ServiceType :-6443809721367395836
Status : -5193075846115040838
StatusBean :-1975539395914887503
StatusType :-8268735508512712203

Page 21

i
I~

Page 22

Jini™ Lookup Attribute Schema Specification-1.0

	Jini™ Lookup Attribute Schema Specification
	The Jini™ system is a Java™ platform-centric distr...

	Contents
	1. Introduction 1
	1.1 Overview 1
	1.1.1 Terminology 2

	1.2 Design Issues 2
	1.3 Dependencies 3
	1.4 Comments 4

	2. Human Access To Attributes 5
	2.1 Providing a Single View of an Attribute’s Valu...

	3. JavaBeans Components and Design Patterns 7
	3.1 Allowing Display and Modification of Attribute...
	3.1.1 Using JavaBeans Components with Entry Classe...

	3.2 Associating JavaBeans Components with Entry Cl...
	3.3 Supporting Interfaces and Classes 11

	4. Generic Attribute Classes 13
	4.1 Indicating User Modifiability 13
	4.2 Basic Service Information 14
	4.3 More Specific Information 15
	4.4 Naming a Service 16
	4.5 Adding a Comment To a Service 17
	4.6 Physical Location 17
	4.7 Status Information 20
	4.8 Serialized Forms 20

	Introduction
	1
	1.1 Overview
	1.1.1 Terminology

	1.2 Design Issues
	Matching Cannot Always Be Automated
	Attributes Are Mostly Static
	Humans Need to Understand Most Attributes
	Attributes Can Be Changed by Services or Humans, B...
	Attributes Must Interoperate with JavaBeans™ Compo...

	1.3 Dependencies
	1.4 Comments
	Human Access To Attributes
	2

	2.1 Providing a Single View of an Attribute’s Valu...
	JavaBeans Components and Design Patterns
	3

	3.1 Allowing Display and Modification of Attribute...
	3.1.1 Using JavaBeans Components with Entry Classe...

	3.2 Associating JavaBeans Components with Entry Cl...
	3.3 Supporting Interfaces and Classes
	Generic Attribute Classes
	4

	4.1 Indicating User Modifiability
	4.2 Basic Service Information
	4.3 More Specific Information
	4.4 Naming a Service
	4.5 Adding a Comment To a Service
	4.6 Physical Location
	4.7 Status Information
	4.8 Serialized Forms

