
 sys-

ple, sec-

on to:
sages

) on the

ared

by the
essary

 remote

nts

igure 1.
format
ARMCI: A portable Aggregate Remote Memory Copy Interface
Jarek Nieplocha

02.06.1998

Motivation and Background
• A lightweight portable remote memory copy interface is needed in parallel libraries and compiler run-time

tems.
• A simple API that follows the memory copy interfacememcpy(addr1, addr2, nbytes) can lead to poor perfor-

mance on the high latency networks for applications that require noncontiguous data transfers (for exam
tions of dense multidimensional arrays or scatter/gather operations).

• A more general API should describe a noncontiguous layout of data in memory to allow the implementati
1) minimize the number of underlying network messages by packing distinct blocks of data into as few mes
as possible and 2) take advantage of any available shared memory optimizations (prefetching/poststoring
shared memory systems.

• ARMCI operations should map directly to the native high-performance memory copy operations when sh
memory is used.

• Lower-level than the MPI-2 one-sided communication (no epochs, windows, datatypes, Fortran API etc.).
• Simple progress rules: ARMCI operations are truly one-sided and complete regardless of the actions taken

remote process(or). In particular, polling can be helpful (for performance reasons); however, it is not nec
to assure progress.

• Compatibility with message-passing libraries (MPI or PVM) is needed.
• The copy operations should be ordered (complete in order they were issued) when referencing the same

process(or). Operations issued to different processors can complete in an arbitrary order.
• Both blocking and non-blocking API is needed.

ARMCI Data Structures
Two types of data format are offered to describe noncontiguous layouts of data in memory.

1. Generalized I/O vector. It is the most general format intended for multiple sets of equally-sized data segme
moved between arbitrary local and remote memory locations. It extends the format used in the UNIXreadv/
writev operations. It uses two arrays of pointers: one for source and one for destination addresses, see F
The length of each array is equal to the number of segments. Some operations that would map well to this
include scatter and gather.
typedef struct {
 void *src_ptr_ar;
 void *dst_ptr_ar;
 int bytes;
 int ptr_ar_len;
} armci_giov_t;

src_ptr_ar[0]

src_ptr_ar[1]

src_ptr_ar[2]

dst_ptr_ar[0]

dst_ptr_ar[1]

dst_ptr_ar[2]

Figure1: Source and destination pointer arrays
1

age
 seg-
be com-

s of

f data.
e speci-

t the data
ce B in a
tion of
 bytes.

nding

estina-

ut has

essor
Fence

d

2. Strided. This format is an optimization of the generalized I/O vector format. It is intended to minimize stor
required to describe sections of dense multidimensional arrays. Instead of including addresses for all the
ments, it specifies only an address of the first segment in the set. The addresses of the other segments can
puted using the stride parameter.
typedef struct{
 void *src_ptr;
 void *dst_ptr;
 int src_stride;
 int dst_stride;
 int bytes;
 int count;
}armci_strided_t;

For example, with the generalized I/O vector format aputoperation that copies data to the process(or)procmem-
ory has the following interface:

int ARMCI_PutV(armci_giov_t *dscr_arr, int arr_len, int proc)

The first argument is an array of sizearr_len. Each array element specifies a set of equally-sized segment
data copied from the local memory to the memory at the remote process(or)proc.

Figure 2 illustrates storage requirements in the ARMCI formats used to describe two similar sequences o
Both sequences contain three sets of equally-sized data segments. With the generalized I/O vector format, th
fications of both sequences require the same amount of storage. The difference between sequences is tha
segments in a set are evenly spaced in sequence B but not in A. Based on this fact, we can describe sequen
more compact strided format. Assuming a 4-byte representation for pointers and integers, the specifica
sequence A requires 144 bytes while sequence B can be described with the strided format that uses only 76

ARMCI Operations
Both blocking and non-blocking interfaces are available. The non-blocking versions (with theNb prefix) add a

handle argumentreq that identifies an instance of the non-blocking request. The maximum number of the outsta
nonblocking operations is given by the ARMCI_MAX_NUM_REQUESTS constant. Agetoperation transfers data
from the remote process(or) memory (source) to the calling process(or) local memory (destination). Aput operation
transfers data from local memory of the calling process(or) (source) to the memory of a remote process(or) (d
tion).

When a blockingput operation completes, the data has been copied out the calling process(or) memory b
not necessarily arrived to the destination. This is alocal completion. Aglobalcompletion of the outstandingputoper-
ations can be achieved by calling ARMCI_Fence or ARMCI_AllFence. ARMCI_Fence blocks the calling proc
until all put operations it issued to the specified remote process(or) complete at the destination. ARMCI_All
does the same for all outstandingput operations issued by the calling process(or) regardless of the destination.

A

B

storage requirements with the generalized I/O vector API: 20 pointers (source+destination pointers for 10 segments) and 6 +1 ints

storage requirements in the strided API: 6 pointers (source+destination pointes for 3 sets) and 12+1 ints

Figure 2: Storage requirements to describe two sequences of data, each containing three sets of equally-size
segments. The distance between segments in each set is the same for the sequence B but not A.
2

ry. This
ns of
e if
llocate
ystems
ory allo-

ds) that
f

The
On shared memory systems, ARMCI operations require the remote data to be located in the shared memo
restriction greatly simplifies an implementation and improves performance. It can be lifted in the future versio
ARMCI if required by the applications. However, most likely the performance of ARMCI will be more competitiv
shared memory is used. As a convenience to the programmer, ARMCI provides two collective operations to a
and free memory that can be used in the context of the ARMCI copy operations. They use local memory on s
that do not support shared memory and shared memory on those that do. The programmer can perform mem
cation on its own using other means (e.g., withmalloc/freeon distributed memory systems andshmget/shmator
mmapon shared memory systems). ARMCI_Cleanup releases any system resources (like Sys V shmem i
ARMCI can be holding. It is intended to be usedbeforeterminating a program (e.g., by calling MPI_Abort) in case o
an error.

1. Initialization
int ARMCI_Init
int ARMCI_Finalize

2. Copy operations using the generalized IO vector format
int ARMCI_PutV(armci_giov_t *dscr_arr, int arr_len, int proc)
int ARMCI_NbPutV(armci_giov_t *dscr_arr, int arr_len, int proc, int *req)
int ARMCI_GetV(armci_giov_t *dscr_arr, int arr_len, int proc)
int ARMCI_NbGetV(armci_giov_t *dscr_arr, int arr_len, int proc, int *req)

3. Copy operations using the strided format
int ARMCI_PutS(armci_strided_t *dscr_arr, int arr_len, int proc)
int ARMCI_NbPutS(armci_strided_t *dscr_arr, int arr_len, int proc,int *req)
int ARMCI_GetS(armci_strided_t *dscr_arr, int arr_len, int proc)
int ARMCI_NbGetS(armci_strided_t *dscr_arr, int arr_len, int proc,int *req)

4. Local completion of nonblocking operations
int ARMCI_Wait(int req)

5. Global completion of nonblocking operations
int ARMCI_Fence(int proc)
int ARMCI_AllFence()

6. Polling operation (optional-- not required for progress)
void ARMCI_Poll()

7. Memory allocation and release
void* ARMCI_Malloc(int bytes)
int ARMCI_Free(void *address)
void ARMCI_Cleanup()
All operations except for ARMCI_Poll, ARMCI_Malloc and ARMCI_Cleanup return an integer error code.

zero value is successful, other values represent a failure (described in the release notes).
3

	ARMCI: A portable Aggregate Remote Memory Copy Interface
	Motivation and Background
	ARMCI Data Structures
	1. Generalized I/O vector. It is the most general format intended for multiple sets of equally-si...
	2. Strided. This format is an optimization of the generalized I/O vector format. It is intended t...

	ARMCI Operations
	1. Initialization
	2. Copy operations using the generalized IO vector format
	3. Copy operations using the strided format
	4. Local completion of nonblocking operations
	5. Global completion of nonblocking operations
	6. Polling operation (optional-- not required for progress)
	7. Memory allocation and release

