Introduction

Rapid Internet expansion in resent years brought completely new means of communication and information distribution. Internet connected world in a way so much richer and more interesting, providing possibilities to express people’s thoughts simply and efficiently, totally ignoring their geographical location. It allowed humans living on the opposite sides of the globe to collaborate on the same projects, combining theirs skills and knowledge.

However, paradoxically the most common methods of human communication turned out to be most difficult to accomplish in the Internet environment. Audiovisual techniques of information exchange still cause many problems to network application developers. This very advanced network structure just seems not to be designed for real-time applications purposes. Moreover, its modification is so strenuous to achieve that probably for a next few years we will have to do without it.

It provided huge motivation to develop technologies and products to overcome obstacles mentioned above. Many compression algorithms, transport and control protocols emerged on the market. Videoconferencing products, having been rare and expensive attraction a few years ago, now appear in variety of offered capabilities and options. Yet, Internet community has a lot of work to do. None of existing products presents features that fully meet the conditions of simple and effective, audiovisual communication.

Therefore, we decided to create a videoconferencing tool that offers functionality going beyond what is available on the market, thus far. Partially, our solution is based on existing technologies and standards. Nevertheless, many problems were solved in unique way, that based on the analysis of the difficulties met and our experience seemed to be most appropriate.

This thesis presents results of this work. It is divided into three parts. First one briefly describes available technologies, that are currently most important for real-time, network applications. Second part shows existing videoconferencing products with the analysis of their strengths and weaknesses. Based on that we created system goals presented in part three. Part three also includes system design and implementation stage description. This stage objective was to meet the assumed requirements. Final analysis of created product concludes the thesis.

Technology

The purpose of this chapter is to briefly present technologies and standards used currently for videoconferencing applications. It will allow to show the environment in which our system was designed and justify utilization of some technologies and rejecting others.

Chapter is divided into two parts: data compression and multimedia standards. The former describes the most crucial element of modern multimedia applications, without which creating any videoconferencing system would be impossible. The latter presents several existing multimedia standards, which definitely facilitate design and implementation of audio-visual applications, creating foundation for such applications in Internet environment. However, primary goal of those standards is to create network components common for every application, allowing wider interoperability and easier collaboration.

Data compression

Data compression is the reduction in the amount of space that must be allocated for the information. It allows to decrease the transmitted signal bandwidth, what is particularly important in current network environments where bandwidth is the most crucial constraint.

Variety of compression techniques may be divided into two classes: redundancy reduction and entropy reduction. Redundancy reduction techniques remove or reduce the redundancy in the information; however, enabling these modifications to be inverted and data structures to be reconstructed. Thus, redundancy reduction does not introduce any signal distortions or information losses. Term entropy refers to average information in data. Therefore, entropy reduction algorithms reduce information, that cannot be recovered. Hence, this method is irreversible and introduces signal distortion and losses.

There exist many general purpose compression algorithms. Unfortunately, they do not work very efficiently, as far as audiovisual data are concerned. Accordingly, special methods dealing with these types of information were introduced. They take into consideration specific characteristics of audiovisual data, utilizing them to remove redundant or unnecessary information.

Following two sections address those issues, analyzing audio and video formats and presenting techniques to reduce the allocated space. They describe existing standard solutions, chosen according to their effectiveness and performance. Most of them are widely used in variety types of multimedia applications.

Audio compression

Transporting uncompressed digital audio takes significant bandwidth. Therefore, in most videoconferencing system various compression algorithms are used. Some of them are applicable to general audio signals, others are specifically designed for compression of human speech.

Digital audio

Frequencies perceived by human ear as sounds are typically between 20 Hz and 20 kHz. Human voice can produce frequencies between 40 Hz and 4 kHz. Sounds to be digitized must be converted from the continuous time and value domain into the discrete one.

Process of converting analog sound in time domain is called sampling. According to Nyquist’s theorem, the signal has to be sampled with rate at least twice higher than its maximal frequency. Typically computer audio cards offer sampling rates from 8 kHz to 44.1 kHz depending on required quality. 8 kHz sampling rate is sufficient for the human voice sampling.

Then audio signal is quantized (converted to discrete values). During this process some information is lost, which results in appearance of quantization noise. Its influence on audio quality depends on the number of quantization levels. Increase of the number of quantization levels leads to necessity of coding audio sample with more bits. Usually this number varies from 8 bits (256 levels - voice quality) to 16 bits (65536 levels - CD quality). Because human ear is not equally sensitive to signal changes at different levels, some quantization methods (e.g. PCM) are not uniform, but logarithmically spaced. It improves audio quality without changing the sample size.

ADPCM

Adaptive Differential Pulse Code Modulation (ADPCM) belongs to the class of predictive coding methods.[2][1] Predictive coding, based on previous signal samples, predicts the value of the current sample and encodes only the difference between the prediction and the real value. This approach takes advantage of the fact, that for most data sources the variance of the original data is higher than the variance of the difference. Thus, range of compressed data is lower and it is possible to encode it with less number of bits. In stationary, highly correlated signals, this operation allows to remove data redundancy.

Methods in this class differs in the algorithm of finding the predictor. The simplest predictor is just the previous sample value. Usually, linear prediction techniques are used. In this case the predictor is a sum of a number of previous samples weighted by appropriate coefficients. Coefficients are chosen to minimize the error between original samples and decoded values. Usually, the Mean Square Error (MSE) function is used to calculate compression error:

MSE = E [(S - ()2]

where: E - expected (mean) value

	S - actual signal value

	(- predicted value

Predictive coding with fixed coefficients works very well only for stationary signals. If signals characteristics change (signal is not stationary), the set of coefficients is not optimal anymore. Audio signals are rather locally than generally stationary. It means that for a short terms their characteristics are constant but they do change on long-term bases. Therefore, for audio signals it is more suitable to use techniques, where coefficients are regularly updated. This solution imposes another difficulty connected with an algorithm of coefficients modification. In terms of computational intensivity the best solution is an adaptive method, where there is a fixed coefficient and an adaptive quantizer, which added to the coefficient, gradually converges it to the optimal value.

There are few ADPCM standards like e.g. Intel/DVI or G.721. Intel/DVI is not very computationally intensive, and the quality of compressed audio is reasonable good even for music. Disadvantage of those methods is an error propagation – error in a transmission of one sample affects all consecutive samples, since this sample value is used to reconstruct the value of the next one and so on. It may result in unwanted effects in decoded signal.

GSM 06.10

GSM (Global System for Mobile telecommunication) is a telephony standard defined by the European Telecommunications Standards Institute (ETSI). The GSM 06.10 is a voice coding technique, that utilizes a priori information about the human speech, in particular mechanism that produces it. [3][1]

Human voice is created by vibrations of the vocal cords. Those vibrations before leaving the mouth go through vocal tract containing the throat, the tongue, the teeth and lips. During short period of time a sound made by human voice remains constant. These atomic speech sounds are called phonemes. There are two type of phonemes: voiced and voiceless. Voiced phonemes are pulses of given pitch created mainly by vocal cords. Voiceless phonemes appear as a result of blowing air through the vocal tract. Vocal tract is shaped according to the type of sound we want to make.

Vocal tract can be physically modeled as a system of connected, lossless tubes. At the tubes boundaries a wave is reflected and interferes with other waves. Given the coefficients of those reflections we can simulate impact of the vocal tract on the speech. However, there are some differences, that affect the accuracy of this model: vocal tract is not lossless, its walls resonate with voice waves, there is also nasal tract.

We can realize this model according to the Figure 1. White noise generator simulates the voiceless phonemes, impulse generator – voiced phonemes, adaptive filter – vocal tract. We need to provide following information:

type of phoneme (voiced or voiceless)

pitch

signal strength

filter coefficients

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
1
� The source-filter model of speech production

Based on this information (instead of signal waveform), it is possible to replicate input signal, simulating the speech production. Still, there is a problem connected with design and implementation of vocal tract filter. The solution is long-predictive coding filter (LTP) or actually its modification used by GSM standard – RPE-LTP (regular pulse excitation long-term predictor).

Architecture of GSM codec is presented on Figure 2. Short term analysis calculates the residual signal – the signal which going through vocal tract filter produces the sequence closest to the original samples. Long term analysis determines the LTP gain and lag. LTP gain is a scaling factor for the samples – according to the scaling factor during the RLE encoding stage they are scaled down and packed into 3 bits units. LTP lag decides of the size of the window in which sequence will be analyzed, filtered and retrieved. In order to do that, long-term analysis calculates the signal correlation (to find the sequence that matches best the current samples). Finally, to be able to put 40 audio samples into 47 bits, RPE encoding removes every two out of three samples (since there is no need to transport precise signal – especially voiceless phonemes), first subtracting the long-term predictable values (we are able to retrieve them on the decoding side).

�

Figure � SEQ Figure * ARABIC �
2
� GSM codec architecture

Decoding proceeds in the opposite directions. First, encoding samples are expanded to full size 40 samples (RPE decoding). Then, they are multiplied by gain factor and added to incoming pulse (long-term synthesis), which is in turn filtered by short-term synthesis.

GSM encoder compress 160 16-bit voice samples into 264-bit GSM frame. GSM 06.10 is faster than codebook lookup algorithms such as CELP. It offers 13 Kbps bandwidth.

Video compression

An uncompressed digital image is usually too large to effectively store, treat or transmit through the network. Many compression techniques have been devised to compress digital video.

Requirements for an efficient video codec are very demanding: it must have a high compression ratio, keep the image quality and be fast. Additionally, lossless compression methods such as Huffman, Arithmetic Coding or LZW do not work well on the images. It was hence necessary to create compression techniques designed specially for video. At present, the most popular algorithms for low bandwidth video compression are based on the ITU H.261 recommendation.

Video formats

To represent any color distinguished by a human eye three primary components are necessary. This phenomenon is widely used in television and video technology. By mixing three color components, red, green and blue (RGB), it is possible to display all other colors. In RGB representation, a certain number of bits is assigned to represent each color component. The most demanding applications call for an 8-bit representation for each R, G, and B, for a total of 24 bits (3 bytes) per pixel. This representation is known as “True Color”.

Color images and videos are notoriously demanding in their storage requirements. For practical networked applications, images and video must be compressed. We will discuss basics of the image and video compression later. The physiology of human eye suggests that, as a first step towards compression, a more efficient color representation is possible by isolating the luminance signal responsible for brightness and the two chrominance components describing colors. Since the human eye is less sensitive to color than to brightness changes, it is possible to reduce the amount of information in chrominance components without affecting the image quality. Another advantage of this format is concentration of the image information in the luminance component, which results in reduced elements correlation. Hence components can be compressed separately without much efficiency loss. Image size reduction is achieved by subsampling chrominance components at the rate of 2, 4, or even 16 times lower than the luminance component.

Television standards use different types of color spaces. In European’s PAL and SECAM, YUV color space is used, while YIQ representation is used by NTSC standard. In both representations the Y component (luminance) is the same. For digital applications, the equivalent of YUV is YCbCr where Cb and Cr correspond to U and V components respectively. This representation allows normalization of color components ranges. If the luminance range is between <0; 1> the UV range is undefined but Cb and Cr ranges are between <-0.5; 0.5>.

The conversion between RGB and YCbCr formats can be represented by the following matrix transform:

�EMBED Equation.3���

�EMBED Equation.3���

Additionally, H.261, H.263 and MPEG conversions perform slightly different scaling. According to CCIR Recommendation 601, color space is re-scaled and shifted according to the following formula: Y’ = 219/255 * Y + 16, Cb’ = 224/255 * Cb + 128, Cr’ = 224/255 * Cr + 128.

H.261 compression algorithm

H.261 is the International Telecommunication Union, Telecommunication Standardization Sector (ITU-T) low bandwidth video compression algorithm.[6][7] H.261 compression uses two different techniques enabling effective video compression:

spatial redundancy removal – both INTRA and INTER frames coding

temporal redundancy removal – INTER frames coding.

�Spatial redundancy removal

�

Figure �seq Figure * Arabic �
3
� INTRA frame coding

Spatial redundancy removal is a method based on the Discrete Cosine Transform (DCT). The YUV image is divided into blocks 8x8 pixels each. DCT is performed on each block according to the following equations:

�EMBED Equation.3���

�EMBED Equation.3���

After DCT, subsequent block values represent information for increasing signal frequency. Frequency coefficients could also be obtained using FFT (Fast Fourier Transform) but FFT is slightly less stable as a computational method.

Since the human eye is less sensitive to higher frequencies, it is possible to eliminate them without losing much of the image quality. Such elimination, or actually reduction, of the component information is achieved during the coefficient quantization step. Each block value is divided by the proper constant collected in the quantization table. There are different quantization tables for luminance and chrominance signals. Scaling quantization tables by a certain factor increases or decreases image quality. Additionally, custom quantization tables can be used and put into the image header.

The next step of the compression process is the Zig-Zag scan. It converts a two-dimensional 8x8 block into a 1x64 vector, grouping low frequencies at the top of the vector. On such a prepared vector the standard RLE (Run Length Encoding) and Huffman compression algorithms are performed.

�

Figure �seq Figure * Arabic �
4
� Zig-Zag Scan

Temporal redundancy removal

The temporal redundancy removal technique uses the correlation between two consecutive frames in a video stream to reduce their compressed size. To achieve this goal, the encoded H.261 stream consists of two types of video frames:

INTRA (I-frames) -- coded only with the spatial redundancy removal technique

INTER (P-frames) – “predicted”, coded based on the “pseudo-difference” from the previous frame.

The first stage of INTER frame coding is the motion vector estimation process. For each macroblock in the coding frame (a macroblock is a structure consisting of four luminance blocks and two chrominance blocks, Cr and Cb), the area of the previous frame (reference frame) that matches it best is found. Then, instead of coding the macroblock, it is enough to code the difference between the best match area and add the information about the motion vector to the compressed stream. Such information can be put into the macroblock header. The difference is then coded using spatial redundancy removal, the only difference being separate quantization tables for INTER frames.

 Bitstream structure

As we mentioned above, to efficiently compress a video stream, apart from the video signal data we also need some additional information. Thus, it was necessary to create an H.261 video stream structure to enable efficient information retrieval by the decoder. A simplified scheme of the H.261 bitstream structure with a brief description of its fields is presented below.

�

Figure �seq Figure * Arabic �
5
� H.261 Bitstream structure

�Table � SEQ Table * ARABIC �
1
� H.261 Bitstream fields description

Field�Description��PSC�Picture Start Code, unique sequence to delineate boundaries between pictures ��TR�Temporal Reference, timestamp used for audio synchronization��Ptype�Picture type (INTRA / INTER)��GOB�Group of Blocks��Grp #�Group number, enables skipping the whole group indicating its number��Gquant�Group Quantization Value - common value used for quantization of whole group��Addr�Address of macroblock in case it is exact match��Type�If good match cannot be found block may be coded in INTRA mode��Quant�Quantization Value for macroblock��CBP�Coded Block Pattern, bitmask indicating which blocks are present in case they matched poorly��

Motion vector search

Motion vector estimation is the most computationally intensive part of the H.261 encoding process. Hence, it is very important to implement an effective method of search. Thus far multiple algorithms have been used for this purpose. Usually a faster method means lower video quality. The two most important motion estimation algorithms are:

full spiral search -- checks all the positions in the searching area starting from the middle and moving spirally outward

two-dimensional logarithmic search – similar to a binary search, checks only a few locations in the area then continues searching around the location that matched best. A logarithmic search is the least computationally intensive; however, it does not provide the highest quality

H.263 compression algorithm

H.263 is an improved version of H.261 compression algorithm. [4] The idea of image coding is the same but some additional elements were added which significantly increased the compression efficiency. At the same percepted image quality it was possible to reduce bit stream size by 30-50%. The main factors that enabled this significant progress are:

half pixel motion vector prediction

negotiable options [5]

improved VLC tables

The most important of those new features is introducing the negotiable options. Those options should be negotiated between the encoder and the decoder at the beginning of the media transportation process. The encoder should be capable of utilizing all of them during the compression stage to take a full advantage of H.263 effectiveness. Decoder may implement only a subset of negotiable options, requesting data streams with only those options, it is capable to decode. Negotiable options are briefly described below.

Unrestricted Motion Vector (UMV) mode. In this mode motion vectors are allowed to point outside the picture. “Non-existing” pixels from outside of a picture are reconstructed based on the edge pixels. This mode offers extensive advantage during movements along the edges of a picture (including camera movements)

Advanced Prediction mode. In addition to 16x16 motion vector for some macroblocks four 8x8 vectors are used. Encoder decides which type of vectors to use. Four vectors take more bits but offer better prediction.

Syntax-based arithmetic coding mode. Instead of VLC coding this mode utilizes arithmetic coding. It improves compression ratio of 3-4%, keeping SNR at the same level.

PB-frames mode. In this mode two consecutive pictures are coded as one unit, similarly to the MPEG compression. There is one frame predicted from the last decoded frame (P) and one predicted bidirectionally (B) from the last decoded frame and currently decoded P-frame. For simple video sequences it allows to double the frame rate without increasing the bandwidth.

Multimedia standards

Modern network environments are a perfect field for applying standards. Eventually, computer networks are all about connecting people and standards provide the means for that. Unfortunately, there are several problems with the existing standards and their applications. First of all, many standards do not define the issues detailed enough to allow the real interoperability. In addition, the extremely fast networks evolution makes some standards outdated. Another group of problems connected with standards is a vendors approach. They are often more interested in products differentiation than interoperability. Many products are “partially” compliant to the standards, what really make them unusable in the multi-applications systems.

This section briefly presents existing multimedia standards, that may provide videoconferencing applications interoperability. The standards presented below deal with the general issues in real-time multimedia applications. Other standards describing particular audio and video compression algorithms are presented in chapter 2.

Real-Time Protocol (RTP)

RTP is a transport protocol for real-time applications. [14] It provides functions to transport real-time data, such as audio, video or simulation data, over multicast or unicast network services. RTP does not cover resource reservation and does not guarantee quality of services. Services provided by RTP include: payload type identification, sequence numbering, timestamping and delivery monitoring. To perform the latter RTP is augmented by Real-Time Control Protocol (RTCP). RTCP conveys information about the participants and on-going sessions enabling loosely coupled sessions – without membership control and session set-up.

RTP presents new type of protocol, rather integrated in application processing than implemented as separate layer. RTP is intended to be modified according to application needs. Therefore, for particular application it requires specific profile and payload format definition.

RTP is designed to allow users the maximum flexibility. If both audio and video media are used in conference, two separate RTP channels are created. The reason for this separation is ability for some participants to receive only one medium. Real-time protocol addresses also issue of mixers and translators. Mixers and translator are used whenever needs of some users are different then others. One example is low bandwidth participant connected to high-bandwidth conference. Instead of reducing bandwidth (and quality) for whole conference, it is possible to place mixer on the way to low-bandwidth user, that translates media steams reducing its bandwidth. Other examples of mixers and translators applications are: firewall funneling, different network protocols translating and group scene video mixers.

RTP header structure

RTP header format is presented in Table 2. First twelve octets (up to SSRC) are present in every RTP packet. CSRC fields are optional.

�Table � SEQ Table * ARABIC �
2
� RTP header structure

V=2

2�P1�X1�CC

4�M1�PT

7�sequence number

16��timestamp

32 bits��synchronization source (SSRC) identifier

32 bits��contributing source (CSRC) identifiers

32 bits

…��

Short description of RTP header fields:

version (V): 2 bits�identifies version of RTP (current version is two)

padding (P): 1 bit�indicates if packet contains additional padding octets at the end (they are not part of the payload), padding octets are needed for some applications

extension (X): 1 bit�indicates if packet contains header extension, specified by the standard

CSRC count (CC): 4 bits�number of CSRC identifiers following the fixed header

marker (M): 1 bit�additional bit enabling marking of special events (e.g. frame boundaries), its interpretation is defined by the profile

payload type (PT): 7 bits�identifies packet format enabling its proper interpretation by application, there are several standard payload type define by RTP companion profile

sequence number: 16 bits�number of packet in sequence, enables packet loss detection and restoring packets sequence

timestamp: 32 bits�clock value at the moment of packet sending, allows media streams synchronization and network jitter calculation, timestamp resolution is application dependendent and specified by the profile

synchronization source (SSRC): 32 bits�randomly chosen identifier for the synchronization source, intended to be unique

contribute sources (CSRC) list: 0-15 items, 32 bits each�list of contributing sources, number specified by CC field, inserted by mixers to specify sources that contributed to the packet content

RTP control protocol (RTCP)

RTCP is created for periodical transmission of control packets to all participant in the session. RTCP uses the same distribution mechanism as data packets. Control protocol channel is separated from data channel. As a result, we obtain data and control independence, allowing more application flexibility.

Primary function of RTCP is to provide feedback on the quality of data distribution. Each session participant receiving data send reports to all participants. It allows to detect and locate problems and evaluate if they are global or local. RTCP carries persistent identifier for RTP source – CNAME (based primarily on user IP address). The difference between SSRC and CNAME is that SSRC is changed each time session is restarted or conflict has occurred. Also, there may be several SSRC for one user (CNAME) identifying many sessions in which the user participates. CNAME in connection with other, optional information about participants convey session control identification data and may be used to control number of participants in session and simple session management. To obtain this goal RTCP packets must be sent by all participants at the same, controlled rate.

RTCP specification defines several RTCP packets types:

Sender Report (SR) – transports statistics from active senders

Receiver Report (RR) – transports statistics from all other participants

Source Description Items (SDES) – convey source description items (in particular CNAME)

BYE – indicates session leaving

APP – reserved for application specific functions

SR and RR packets should be sent as often as bandwidth constraints will allow. SDEC is sent as soon as CNAME identifier is obtained.

RTCP packets allow to control the number of session members, allocation required bandwidth and control transported data based on session reports.

ITU-T H.323

H.323 standard describes visual telephone systems and equipment for local area networks without guaranteed quality of service (QoS). [15] H.323 presents systems and devices capable to carry real-time audio, video and data, or any combination of these. H.323 uses logical channel signaling procedures described in recommendation H.245, including capabilities negotiations.

This recommendation defines components of H.323 system: terminals, gateways, gatekeepers, multipoint controllers, multipoint processors and multipoint control units. It addresses also issues of components interactions and communication. H.323 components are divided into two classes: endpoints and entities. Endpoints participate directly in call set-up procedures. Entities are contacted to provide additional functionality.

Terminals

Terminal is an endpoint capable of creating two-way, real-time communication channel with another terminal, gateway or multipoint control unit. Terminal provides means for communication control, indications, audio, video and data transportation.

Terminals consist of user interfaces, video and audio codecs, telematic equipement, H.225.0 layer, system, control functions and network interface. Their structure is shown on Figure 6. Elements within scope of H.323 are briefly described below.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
6
� H.323 Terminal equipment

Audio codec

Audio codec is a mandatory element of every H.323 terminal. It supports at least G.711 audio format, both A-law and u-law. Optionally it can be capable of encoding and decoding audio using other formats (e.g. G.722, G.728, MPEG 1). Coding option is set during capability exchange stage. Audio codec should be able to operate asymmetrically i.e. send and receive audio in different formats. Additionally, it may send more than one audio channel at the same time (e.g. speech in two languages). Audio stream is packed according to recommendation H.225.0.

Video codec

Video codec is an optional element of H.323 terminal. All terminals supporting video should be capable to encode and decode H.261 QCIF video. Additionally, they may support other H.261 and H.263 formats. Similarly as for audio codec video option is set during capability exchange stage and terminal can send more than one video channel.

Data channel

H.323 provides also support for other than audio and video data exchange. Particularly, it allows to combine applications implemented according to T.120 standard to be integrated into H.323 terminal. T.120 connection establishing procedures are performed either during H.323 call as its inherent part or prior to the call. T.120 operation after connection establishing is outside the scope of H.323 recommendation.

H.245 control function

H.245 defines control protocol for multimedia communication. It is utilized to manage operation of H.323 endpoints. H.245 provides following functionality:

master/slave determination

capabilities exchange

logical channel signaling

mode request

round trip delay determination

maintenance loop signaling

Most important task of H.245 procedures is logical channels establishing. Logical channels are created for audio, video, data and control information. They are unidirectional or bidirectional. Terminal can open many logical channels for each media type except control channel that must be one per call.

H.225 layer

Except logical channels, terminal uses signaling channels for call control and gatekeeper related functions. Those channels formats are defined in recommendation H.225.0

Gateways

A gateway is H.323 entity that is responsible for conversions between data formats and control protocols. In particular gateway provides a bridge between local area networks and switched circuit networks (SCN e.g. ISDN). In this case gateway performs all the call set-up and clearing procedures on both LAN and SCN side and is responsible for all data formats translations. Functionality provided by gateway is transparent for the endpoints.

Gatekeepers

A gatekeeper is an optional H.323 system component, which provides call control functionality to the endpoints. It is logically separate element; however, it can be physically combined with terminal, gateway or multipoint control unit. A gatekeeper performs following functionality:

address translation – translates alias address to transport address

admission control – authorizes sessions access

bandwidth control – sets sessions bandwidth limits

zone management – creates and manages separate zones within which sessions take place

call control signaling (optional) – takes over some call control functionality from terminals

call authorization (optional) – decides if a call is accepted or rejected

call management (optional) – keeps information about on-going calls and takes appropriate actions

Multipoint controllers (MC)

A multipoint controller is responsible for creating and managing conferences between three or more endpoints. It performs capabilities exchange on behalf of every participating endpoint. All capabilities may be common for all nodes or some of them may have different set. MC is able to change the capabilities during session. MC may be located in multipoint control unit, terminal, gateway or gatekeeper.

Multipoint processors (MP)

MP is multipoint system component that converts audio, video and data streams. It may change their formats and mix or switch among streams from different endpoints. It communicates with MC; however, this process is not subject to standardization. Usually MP resides in multipoint control unit together with MC.

Multipoint Control Units (MCU)

MCU is an endpoint that supports multipoint conferences. It consists of MC and several MPs. Functionality of MCU is based on recommendation H.243. MCU provides centralized, decentralized or hybrid multipoint capabilities. It may perform additional operations such as conference rate matching or lip synchronization.

ITU-T T.120

T.120 is series of recommendation describing protocol integrating multiple data formats in multipoint conference. [9] T.120 has a support for real-time audio-video applications. It provides:

support for establishment of a conference

participant identification and capabilities exchange mechanism

mechanism for setting up flexible communication channels

Table � SEQ Table * ARABIC �
3
� T.120 series of recommendations

T.121�Generic Application Template (T.GAT)��T.122�Multipoint Communication Service for Audiographic Conferencing: Service Definition ��T.123�Protocol Stacks for Audiographic and Audiovisual Teleconference Applications��T.124�Generic Conference Control��T.125�Multipoint Communication Service Protocol Specification��T.126�Multipoint Still Image and Annotation Protocol��T.127�Multipoint Binary File Transfer��T.128�Audio Visual Control for Multipoint Multimedia Systems��

�Structure

T.120 has a layered structure presented on Figure 7. Each layer provides services to the layer above, using functions performed by the layer below. Communication between layers is performed by sending Protocol Data Units (PDU). It allows extendibility, network and platform independence and interoperability. T.120 does not impose any constraints on conference topology, however the most common is star topology with single Multipoint Control Unit (MCU).

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
7
� T.120 Structure

Top-level layer is user application with its protocols both standard and non-standard. The series includes a set of protocols for the most popular applications. It also provides Generic Application Template that distinguish and describe functionality common for all collaborative applications. At the same level we have also node controller existing in all systems, performing conference management functions and providing interface over Generic Conference Control (GCC) layer.

Layers below create communication infrastructure that provides multipoint connectivity with reliable data delivery. It includes three standardized components: Generic Conference Control (GCC), Multipoint Communication Service (MCS) and Transport Protocol Profiles for each of the supported networks.

Generic Conference Control (GCC)

GCC described in T.124 provides set of functions for creating, managing and terminating conferences. It combines independent MCS channels into one multipoint domain. GCC serves also as central point that identifies application channels, maintain applications database and exchange application information and capabilities. Nodes can query GCC about on-going conferences, and perform all the operations necessary to join it.

Multipoint Communication Service

MCS (T.122/T.125) uses point-to-point connections provided by the network layer and collects them to form a multipoint channel. It is independent of underlying network connections. MCS organizes the conference nodes into a tree structure. This way it acts as resource (channels and tokens) provider to layers above. It transports data stream to other nodes not knowing anything about its content.

MCS distinguish two kinds of channels: static and dynamic. Static channels have preassigned definition and are open in a sense, that any node can join it. Dynamic channels are created on request. They come in two types: multicast channels that have open access similar to static channels and private channels. Private channels have their owner (the node that created the channel) and are joined by invitation only.

MCS data are sent in two ways: ordinary data – sent to destination by the shortest route, hence streams from different sources may come in different order for different users and uniform sequenced data – sent through a common point and received by all users in the same order.

MBone

MBone is the Internet backbone for distributing real-time multimedia data to multiple destinations. MBone was created in 1993 by Internet Engineering Task Force (IETF). Its name was inspired by the name of the European backbone network “EBONE”. In recent years it became very popular in the Internet community.

The basic idea behind the MBone is the concept of multicast. Normally, Internet packages are transmitted in point-to-point unicast mode. It means that to achieve one-to-many transmission, separate copies of data must be sent to each destination. This process is very bandwidth consuming. Multicast introduces a more efficient way to deliver data to multiple destinations. Sources send data to the multicast IP addresses (a special range of IP addresses reserved for multicast purposes), instead of sending them to each destination. Multicast address represents a group of hosts, that are willing to receive all the data sent to this address.

The implementation of multicast requires the specific routers, that determine what groups are active on particular subnet and which hosts belongs to them. Multicast packets are encapsulated inside the standard IP packets and sent between the multicast routers like normal unicast messages. This process is know as “tunneling” and is presented on Figure 8.

�

Figure � SEQ Figure * ARABIC �
8
� Muticast delivery

Most newer Unix operating systems support multicast. Special software modifying older ones is available free via ftp. Many routers are already equipped with multicast functionality. Although, MBone is still experimental technology, it is very likely that soon it will become a popular standard.

Videoconferencing products

During last couple of years many desktop, videoconferencing products emerged on the market. However, most of them are simple point-to-point video phones. We chose a few of them based on offered quality and standards compliance. It should be emphasized that situation in videoconferencing changed significantly since our system was designed. This is actually one of the areas that evolves fastest in the Internet environment. Therefore, many features that were innovative during the initial implementation phase of our system, are now elements of many other applications. Yet, we believe, that in many fields our system offers capabilities going beyond what is currently available.

Intel Internet Video Phone

Internet Video Phone is application created by Intel. It is implemented only for one platform – Windows 95. Intel Video Phone is compliant to RTP/RTCP protocol described in RFC 1889/90 and H.323 conferencing standard. Nevertheless, audio and video compression algorithms are proprietary. Audio-video data are distributed only in unicast mode, since this application offers only point-to-point connections using approach similar to standard telephone. It is possible to call someone giving his IP address. Call may be answered or ignored. Any time you call can be hang up. Intel Video Phone has simple and friendly user interface. However, its bandwith equals 30-40 kbps for QCIF mode what makes it difficult to use with modem connections. Additionally, lack of multipoint mode and only single platform implementation substantially limit its usage.

�IBM BambaPhone

BambaPhone is part of the IBM Bamba suite of research technology demonstrations which includes Web browser plug-ins for audio and video streaming. It is very similar to Intel application. Implemented exclusively for Windows 95/NT is also only point-to-point unicast system. BambaPhone includes modular components for call setup, multimedia control, and video and audio support. Application itself was written with high-level API of those components.

The telephone paradigm is moved even further – BambaPhone is equipped in dialing telephone-like keyboard, where you can call someone by choosing his IP number. It makes its user interface to look very impressive but is not very convenient.

IBM application also uses RTP protocol for audio-video data exchange. IBM claims only partial compliance to H.323 standard, what results in lack of interoperability with other video phones. Compression algorithms are proprietary and do not comply to any existing standards. The advantage over Intel product is ability to choose a connection type. Based on that BambaPhone automatically negotiates compression technique, what definitely makes it more flexible. However, its main disadvantages are single platform implementation and only point-to-point mode.

CU-SeeMe

CU-SeeMe is definitely the most advanced product available on the market. Is created by Cornell Research Foundation. Unlike presented thus far it is multi-user system. Moreover, it offers several features, that facilitates conference establishment and management such as phone book and directory service. System is fully based on H.323 standard. It also supports H.263 video compression. It has an additional whiteboard application supporting T.120 and a text chat. It provides functionality to fully control transmission bandwidth from modem 28.8 connection to LAN. Audio offers some kind of echo reduction system.

CU-SeeMe multi-user architecture is based on central control point called reflector. Reflectors are implemented by White Pine corporation. Each conference participant sends their data streams to reflector, that distributes them to all other session members. Latest version provides both broadcast and multicast packets distribution modes. Reflectors also manage conferences, and control their access, having even capabilities for billing and tracking system users.

Unfortunately, CU-SeeMe is available only for Windows 95/NT 4.0 platform. Reflector approach to multi-user conferences, although simplifying system operation, creates intermediate point that may affect transmission delays and network jitters. Product does not provide any audio standards making its interoperability impossible to achieve.

Vic/Vat

Videoconferencing Tool (VIC) and Visual Audio Tool (VAT) are developed by Lawrence Berkeley Laboratories. These are separate applications that may run independently. However, Berkeley Laboratories created also Session Directory (SD), that coordinates operation of those two, providing also additional functionality such as advertising of on-going conferences. System was implemented on the top of the MBone architecture, taking advantage of multicasting. Hence, this environment structure is fully open, not imposing any kind of restrictions on conferences participation. VIC supports several standard compression algorithms: MPEG, JPEG, NV, CellB and its proprietary intraH.261. Both VIC and VAT are based on RTP standard, allowing loosely coupled session scheme.

Big advantage of Berkeley package is variety of platforms on which system is available: DEC, FreeBSD, HP, Linux, SGI, SunOS, Solaris. Nevertheless, all of them are Unix environments, it does not support the most popular one – Windows 95/NT. System provides variety of compression and bandwidth modes, what makes it very flexible. Separate components architecture is not very convenient neither to install, nor to use. SD functionality provides only open session model which is not appropriate for many applications, lacking security and access protection. VIC/VAT is an example of a non-commercial environment, offering state-of-the-art technologies but neglecting user convenience and necessary robustness.

Summary

Products presented above present variety of different features and miscellaneous functionality. However, each of them possesses several disadvantages and constraints, making their use difficult or impossible in certain situations. Most of them are only videophones, without any support for multi-user conferences. Usually, they cover only one operating system – Windows 95/NT, what significantly hinder their general and flexible usage. Majority of audio and video compression algorithms are proprietary, affecting products interoperability. Many architectures are not optimal in terms of system performance, extendibility and flexibility.

Therefore, next section is to propose a system free of presented above drawbacks with completely new functionality which may be very useful for a videoconferening application.

Design and implementation

Introduction

In recent years many videoconferencing systems emerged on the software market. They offer different audio and video quality and require different hardware capabilities. However, none of them is moving toward enriching its functionality beyond the audio-video data exchange and integration into multiplatform, collaborative tool, enabling variety of applications in different domains.

Therefore, we undertook some activities in order to create such a system in Internet and Web environment. The conclusions presented in this thesis are results of specific approach based on idea of creating independently videoconferencing, real-time system and Web-oriented collaborative environment which were integrated afterwards. In real-time applications we paid particular attention to archiving capabilities including random access to stored conference data.

All the solutions were implemented and tested in NPAC both on SGI Indy and PC Windows 95/NT platforms. Our product was called BuenaVista. It was released on the WWW as public domain product. BuenaVista was used during virtual course “Name” held from Syracuse University to Jackson State University in fall semester of 1997.

System objectives

Analyzing existing conference products in Chapter 3, we enumerated several disadvantages they own. In addition, we found several videoconferencing systems features not implemented thus far, though making them much more convenient to use. The most important of them is the ability to archive the content of audiovisual meetings. Based on that knowledge we can define the objectives of our system. It should possess following features:

flexibility – ability to adapt to different circumstances, in particular network options; BuenaVista should operate both in the Internet environment and on high bandwidth Intranets

interoperability – this feature covers actually two aspects of system operation: platform interoperability – capacity to operate on different platforms and products interoperability – capability to collaborate with other existing videoconferencing products

extensibility – ability to add new components and to modify the system, meeting future needs of videoconferencing products

archiving capability – capacity of store and retrieve the content of audiovisual sessions

To achieve the goals above we decided to adopt solutions described briefly below:

variety of compression options both for video and audio tools, characterized with different compression ratios, CPU performance requirements and offered quality (e.g. H.263, YUV9, GSM, PCM)

full control over compression options and offered bandwidth through simple connection settings

implementation of the system on two currently the most popular multimedia platforms: SGI workstations and PCs; in addition, this choice provides ability to port the system easily on other similar platforms such as Sun workstations or Macs

compliance with the existing standards (e.g. RTP, H.261, H.263, ADPCM)

modular structure enabling modifying a component or adding a new one without necessity of any changes in other system parts

separate archiving subsystem, easy to integrate but optional, allowing to store and retrieve conferences content

System architecture

Designing the system architecture our primary concern was its modularity. Modular system structure enables easy and quick modification and improvements of some of its parts without affecting the others. Based exclusively on the core modules, it is possible to add new collaborative applications utilizing existing system mechanisms. This property is especially important in an Internet environment where system context evolves dynamically.

BuenaVista modularity covers both the physical system components and logical layered structure. Physically, BuenaVista consists of two main modules. The first one is the Conference Engine (CE) which contacts the remote hosts, processes control messages and passes the indications of events to the Conference Manager (CM). Conference Engine also processes local requests from the Conference Manager. To create and control the Conference Manager the environment provides a set of API functions. They facilitate and organize the process of implementing arbitrary conference management components.

Other system components supported by an API are applications. Applications are the components defining only what data are to be transported and how to present them to a system user. All other aspects of collaboration are responsibilities of the CE and CM. Hence, it is possible to add a new application without any concern about conference control and multipoint communication.

An optional, element of the system is a directory service, which provides advertisement of users and conferences functionality and facilitates sessions management. Figure 9 presents physical system components and their interactions.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
9
� System components

Apart from splitting the system into physical components, it is also divided into logical layers, responsible for providing different functionality. Logical structure of BuenaVista can be viewed on Figure 10. Logical layers are closely related with the physical components. Usually, a physical component implements one logical layer. However, one-to-many relation between a component and layers is also possible. Following sections describe the logical layers with their relations to components.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
10
� Logical system structure

Multipoint Communication Layer

Multipoint Communication Layer (MCL) provides means for transporting conference data to all the session participants. MCL uses point-to-point transmission methods specific for the network type and combines them into multipoint channels. For MCL, content of transported data is fully transparent. Since both Session Control Layer and applications use multipoint channels MCL is an element of both Conference Engine and application API.

BuenaVista MCL is able to arrange two type of multipoint channels: reliable and non-reliable. Reliable multipoint channels are based on TCP (Transmission Control Protocol) and are used primarily for conference control purposes. All the requests from Session Control Layer (SCL) are served with reliable channels. Control messages are not very sensitive to network delays but are extremely prone to data losses or transmission errors. Therefore, reliable channels are the only reasonable way to distribute control messages.

Unlike control messages, most of data transmitted by real-time audiovisual applications are severely dependent on network delays, having some tolerance for data losses or errors. Thus, the best suitable protocols for those purposes are non-reliable protocols. They do not posses time-consuming packets resending procedures, offering better network performance. In particular, BuenaVista MCL implements non-reliable channels based on UDP (User Datagram Protocol).

However, not all application data have the characteristics described above. Data oriented application, such as whiteboard or text chat, transport information in a way more similar to control messages. Hence, they could take advantage of reliable channels. Moreover, even real-time applications usually have some kind of a control protocol (e.g. for capabilities exchange), that work more efficient with reliable communication. Therefore, applications have a choice of a channel option, being even capable of using both channel types at the same time.

Session Control Layer

Session Control Layer (SCL) is the central element of the conferencing system. SCL is physically implemented inside the Conference Engine. Both Conference Manager and system applications are connected to the CE. SCL is responsible for events distribution and handling both with local entities (CM and applications) and remote hosts. Hence, it is the only system component that has full knowledge about conference status and is capable to control it.

Functionality of the SCL can be divided into two groups: events distribution and handling and conference information management. Using services provided by MCL, Session Control Layer distributes control messages to other conference participants. This process does not include conference data, which are responsibility of conference applications and utilize different distribution mechanisms. SCL also handles messages received from other BuenaVista nodes. The control communication scheme is organized into Session Control Protocol described in section 4.4. Moreover, SCL interacts with local entities: Conference Manger and applications. The protocol used for this communication is briefly described in API section 4.3.4. Based on received requests SCL makes the decision about the event distribution and its destinations. For example receiving notification about a new user joining the session SCL send the indication both to the Conference Manager and applications.

However, SCL is not only events distribution module. It manages all the information needed throughout the session. The Conference Engine keeps information about session participants and applications. Based on that it controls session growth and its modifications. Conference Manager and applications can query SCL about this information. Many decisions made by SCL are based on current conference status.

RTP Layer

Multipoint non-reliable channels do not satisfy all the requirements for transporting real-time, multimedia data. Audiovisual applications should be capable of determining variety of additional information to effectively process received media streams. For this purpose we implemented Real-Time Protocol (RTP) Layer.

RTP protocol is an existing standard for transporting real-time media streams. It is briefly described in section 2.2.1. For more information refer to [14]. RTP is an application level protocol, that needs additional profile specification.

RTP packet fields convey useful information, enabling throughout analysis of network and connection status and initialize appropriate correction activities if necessary. Brief description of RTP header fields, with the methods they are used in audio-video applications, is presented below:

time-stamp – allows to determine network delay and jitter and set appropriate bandwidth constraints

sequence number – enables lost or misplaced packet detection and initialize recovery procedures

source ID – determines source of the packet, allowing to demultiplex media streams from different participants (e.g. displaying video streams from different users on separate windows)

message type – describes the content of the packet, enabling its appropriate processing (e.g. choosing the decompression option)

In addition RTP packets are used to maintain statistics about communication process, that can be viewed and analyzed by a user, offering measurable estimation of session quality and difficulties.

Application Programmer’s Interfaces (APIs)

BuenaVista APIs were created to facilitate development of system-based applications. Conference Engine and APIs provide the backbone for the conferencing system. They allow: flexible improvement of BuenaVista, creating a variety of new applications and enriching of their functionality. According to the type of an application that is implemented, there are two different kinds of API functions:

session API - for development of conference management applications (e.g. Conference Manager)

application API - for development of ordinary conference applications (e.g. Video Tool, Whiteboard)

API functions perform all the message exchange operations and offer easy and straightforward callbacks mechanism to proliferate system events. They also enable acquisition of all kinds of conference information that may be useful for an application.

Session API

Session API provides convenient functions for conference creation and management. However, the session API functions do not perform those operations directly. Actually, they only send appropriate requests to the Conference Engine, which is the main elements responsible for all the session control. Session API is rather an implementation of the internal protocol between Session Control Layer and Conference Manager. Nevertheless, handling SCL indications, session API also control several data structures, which may be useful for the CM.

Session API functions can be divided into four classes: initialization and cleanup, events processing, requests generation and information acquisition. The first step of the Conference Manager is conference initialization. This operation is performed via ncsSessionInitialize() function, which returns error value upon initialization failure. Initialization opens the control socket, prepares all necessary data structures and informs the Conference Engine that managing application is active. Similarly manager should perform all necessary cleanup invoking ncsSessionQuit() function.

Events processing functions rely on the system callbacks mechanism. Callbacks are a simple and convenient way to inform applications of conference events. Developer writes the procedures handling events and adds them as callbacks to the conference system. Upon the event reception, appropriate callback is invoked automatically without any additional developer’s effort. A conference callback is set with ncsSessionAddCallback() function.

To properly react to system events, application developer must implement a checking loop. The checking loop is a simple sequence of code, that constantly and regularly checks the connections with SCL for new messages and initializes their processing. Depending on developing platform, it may be either an X-Windows working procedure, a Windows thread, or an ordinary loop. Inside the loop one can obtain the application file descriptors set, which may be then used as a parameter for the standard socket select() command. If at least one of the file descriptors is active, a function processing incoming messages (ncsProcessIncoming()) should be invoked.

Requests generation functions are probably the biggest group in the session API. They are responsible for converting local user actions into requests to the Conference Engine. We will present only a small subset of functions that provide the most basic functionality. User may start a new session invoking ncsSessionCreate() function. After that, the SCL is informed that user is a member of an existing conference and automatically rejects any invitation received. The next step in conference set-up is inviting a new participant. This operation is performed via ncsSessionAddMember() functions. Receiving the invitation user may accept it with ncsSessionAccept() or reject it with ncsSessionReject().

The last group of session API are information acquisition functions. Conference Manager may query the system about conference participants or active applications. Some of this information are stored by the session API and do not require sending requests the CE. Other must contact CE and receive the appropriate indication.

Session API provides all the necessary functionality for creating Conference Manager. Therefore, it is possible to create different types of managers fitting best the users preferences. This is one of the methods to provide BuenaVista flexibility.

Application API

Application API is probably the most important element in terms of system extensibility. It provides all necessary means to create a new conference application without any concern of session control or data distribution mechanisms. Application developer is responsible only for the choice of data transported and their view for the application user.

In its structure application API is similar to session API. It can be divided for the same function classes. To collaborate within the current session, each application must attach to the Conference Engine with ncsAppAttach() command, which returns the application handle used by all other conference operations. Application detaches from Conference Engine using a call to ncsAppDettach().

Application API takes advantage of the same callback mechanism. It also handles the incoming messages in a similar way. Additional element of the application API are functions connected with data distribution. In the check loop function ncsAppGetData() must be invoked to retrieve incoming messages from other participants. Conference data can be distributed to all the session participants or the selected ones via ncsAppSendData() function. Variety of conference information, in particular about session participants, can be retrieved with the API functions.

Session control protocol

BuenaVista Session Control Protocol (SCP) is the control protocol for tightly coupled conferences. The design of this protocol was, in part, guided by the ITU-T recommendation T.120 (section 2.2.3) and H.323 (section 2.2.2). SCP was created to provide the following functionality:

conference participants management

conference applications management

maintaining additional conference information

All those elements must be controlled in such a way, that a consistency of the conference state is ensured. SCP utilizes messages passing mechanism to maintain the conference status. Every received message is checked, if it meets the consistency requirements. SCP is based on TCP protocol to allow maximum reliability.

During normal operating mode, from the end-user point of view, all the session nodes are treated in the same way. However, SCP does distinguish one special type of node – the statekeeper. The statekeeper is a session node that is responsible for resolving any conflict connected with concurrent operations. Usually, the conference initiator is the statekeeper. In some situations it is possible to transfer the statekeeper status to another session member (e.g. when the initiator leaves).

Participants management

SCP conference creation paradigm is based on the invitation model. A user who wants to start the conference with particular people sends them invitations, which they may accept or reject. After a conference creation each session participant is allowed to invite new users. This model ensures the tight conference structure – no one from outside is allowed to join a conference without a direct request. This pattern is accomplished with following message types:

INVITATION�This message informs a user that he is invited to participate in a conference. In addition, the invitation message conveys information about the caller ID to allow the user to accept only the invitations from certain sources.

ACCEPT�An accept message confirms the user will to participate in a conference. It includes accepting party ID, allowing to identify the joining participant in a possible set of invited users.

REJECT�Informs the inviting party, that a user is not interested in joining the conference. As a result the conference status will not change and other participants will not be notified about the invitation.

STATUS�A joining user needs to initialize the conference status information. A status message enables this update, carrying all the necessary status data, in particular conference participants. This message is sent upon receiving the invitation acceptance. A reception of this message is also a switching point from free (willing to join a conference) to busy (automatically rejecting any invitations) state.

NEW_USER�Thus far the whole joining process took place only between two participants: inviting and accepting. Now, all other session participants need to be informed about a new user. This operation is performed via NEW_USER message, sent by a new participant after conference status initialization.

LEAVE�Informs all conference participants that the sending user is leaving the conference. Upon reception of this message all participant modify their session status by deleting the leaving user. Any conference participant is allowed to quit at any time. Therefore, all the participant should be ready to process this message immediately.

Conference participants are identified within the conference by unique and simple participants IDs. A participant ID is assigned dynamically upon joining the session, remains constant only for the time of participation in the conference and is independent of the participant network address. SCP IDs are used for primary participant identification by all the conference model logical layers.

During normal system operation conference initiator is the statekeeper. However, when a statekeeper leaves, conference system should transfer his functions to another session node. This operation is based on SCP IDs. Initially, conference initiator (and statekeeper) has ID equal to zero. When his functions are being transferred, the statekeeper status is assigned to the conference participant with the lowest ID. This mechanism provides the simple and robust method for maintaining consistent statekeeper status.

Application management

Because of the system modular structure, SCP has to manage the conference applications as well. The goal is to obtain the same subset of conference applications, running on all participants machines. This functionality could be simplified, keeping all the application running all the time. However, often participants want to use only some applications (e.g. only audio) and running all of them would be a waste of resources. On the other hand, it is possible that a participant does not wish to receive or send a particular type of data (e.g. his CPU is not able to process the video stream). Thus, application management should leave participants a level of flexibility with choosing their applications.

In BuenaVista this issue was solved by forcing participants to start all the application in the session, leaving them freedom of closing them without any effect on the conference. However, SCP was designed to leave the solution of this problem to particular implementation of the higher logical layer (Conference Manager). SCP provides exclusively means of indicating such events to SCL layer.

BuenaVista applications are identified inside the system by their unique IDs. In particular these are application BSD socket port number. However, for the SCP, the strategy of assigning numbers is immaterial as long as they are unique. Application management is performed with two message types:

START_APP�Includes the application ID. Informs that sender of this message started the application.

CLOSE_APP�Similarly to previous message it includes the application ID. Informs that sender of this closed the application

Both those messages are distributed by the SCL layer to all session participants.

SCP provides also convenient functionality of transporting the application data through the control channel. These services may be useful for applications based primarily on non-reliable multipoint channels, sending infrequently important, need-to-know, short information. An example of such an application is the Video Tool, which sends all the multimedia, video data through the non-reliable channels but sporadically informs the participants about the beginning or the end of a transmission, what allows them to prepare or cleanup appropriate display devices. The message type performing this operations is:

SEND_APP_DATA�Includes application ID and conveyed data. Receiving this message, SCL may distribute this event to appropriate application which can handle it accordingly. For SCP content of this message is fully transparent. All the data inside are simply passed to the higher level layer.

Maintaining additional conference information

SCP is equipped with the additional functionality, which may useful in some situations but is not part of the main conference control process. Thus far, it allows to contact and obtain information from a simple user directory, keeping data about all the active system users. To accomplish this goal SCP includes following message types:

SRV_REGISTER�Informs the server (user directory) that a user started the videoconferencing system and may be reached through the invitation mechanism. Includes user IP address and operating system user name. Allows the user directory to update its structures adding user to the active list.

SRV_UNREGISTER�Informs the server that the user is quitting his videoconferencing application and will not be available anymore. Includes user IP address and operating system user name. Allows the user directory to update its structures removing user from the active list.

SRV_USERS_REQ�Requests list of active users from the server.

SRV_USERS_IND�Indication from the server including the list of active users. Upon reception, this message should be distributed to higher control layers, allowing displaying the information to the end-user.

In addition, we intend to include the token control functionality into the SCP. Tokens manage concurrent access to the limited resources. They allow a user to have special status within the session. An example of application of tokens may be conductorship assignment (teacher-student mode), which may be particularly useful in education.

Example scenario

This section presents an example scenario, showing how SCP is applied to the conference creation and management. This is only one possibility, aiming to illustrate the process of SCP operation, not to document its functionality.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
11
� Example session control scenario

Figure 11 presents the simplest possible scenario of a conference creation with SCP. User 0 which is the conference initiator invites first User 1, and after successful session join, User 2. It should be noted that User 1 could also invite User 2 without any consequences for future conference przebieg. All the INVITATION messages are acknowledged with the ACCEPT packet. Passing the STATUS indication is confirmed with NEW_USER message sent to all the participants. For simplicity Figure 11 presents only the elements connected with participants management. Users signal leaving the conference with LEAVE message.

Applications

Audio Tool

The Audio Tool is probably the most important application of the videoconferencing system. It enables the real-time voice communication between the conference participants. Mainly, the application was designed to transport the speech signals, however transmission of low quality music is also possible. To achieve this goal, the application utilizes 8 KHz sampled, 16 bits/sample, mono audio signal as a base for compression and distribution. In addition, following compression algorithms are adopted:

GSM – low bandwidth (13 kbps), low quality codec with the highest CPU performance requirements. It offers capabilities to compress exclusively speech signals.

Intel/DVI ADPCM – medium bandwidth (32 kbps), good quality codec with relatively low CPU performance requirements. Designed for general audio signals, it is capable to compress low bandwidth music.

PCM – raw 8 KHz, 16 bits/sample, mono signal; high bandwidth (128 kbps), good quality, general purpose

Application structure

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
12
� Audio application structure

The audio application structure can be divided into two main subgroups: sending path and receiving path. Sending path is responsible for capturing the audio signal from microphone, compressing it and distributing to other participants. Receiving path handles the incoming audio packets, eventually directing them to the speaker.

Sending path

First, sending path subsystem captures audio samples, controlling the process by the half-duplex switch described in section 4.5.1.1.3. Then, captured audio samples are stored in the microphone buffer. Actually, to provide continuous audio samples supply, the double-buffering scheme is used – when first buffer is processed, capturing operates on the other one. Afterwards, audio signal is directed to the appropriate compressor. The compressor selection depends on the application settings, which in this case are determined through connection user menu. Employment of the application settings is handled through the control unit. Besides compression option control unit is responsible fo half-duplex switching. Finally, compressed audio chunks are packed into RTP structures and sent to the network port.

Receiving path

Receiving path has significantly higher complexity due to necessity of handling multiple audio streams. Its structure highly depends on the hardware platform and available audio libraries. On SGI Indy the structure is definitely simpler. There are several reasons explaining this property. SGI Indy workstations equipment includes standard audio card and drivers. Thus, audio libraries are created specifically for this hardware type, providing several mechanisms facilitating audio applications development. The most important of them is the internal mechanisms of multiple audio streams buffering and multiplexing. Another convenient feature of the SGI audio device is full-duplex mode which totally removes necessity of half-duplex switching.

PC audio application must take into consideration several factors connected with variety of available hardware audio devices. First, it has to query available devices about supported formats. Then, it has to decide which of the devices is most suitable for the videoconferencing purposes. Since multiplexing and buffering mechanisms are not accessible, they have to be implemented inside the application. PC Audio Tool must also adapt to the half-duplex mode, that requires addtional switching mechanism.

Structure on Figure 12 presents the most general option. First, RTP audio packets from different sources are analyzed in order to retrieve the necessary information about their content. In particular, data about packet source and content type are obtained. The content type is used to determine, which decompression option should be used.

After decompressing, decoded stream consist of packets from different sources. It has to be demultiplexed using RTP packet source information and directed to the appropriate secondary buffer. Secondary buffers are locations where data from particular user are stored. Then, decoded and sorted packets must be multiplexed again to create final audio stream sent to the speaker. To properly multiplex incoming data and to make playing operation independent of receiving process Audio Tool utilizes two levels buffering scheme. Application puts the data into secondary buffers according to their rate of coming from the network. Main playing loop add the content of all active secondary buffers to the primary buffer and send them to the speaker with constant rate dependent on audio stream properties. Final access to the speaker is controlled by the half-duplex switch.

Half-duplex switching

Convenient property of a conferencing audio device is full-duplex mode i.e. ability to capture and play audio streams in parallel. Unfortunately, many audio cards do not support this option, allowing either capturing or playing audio streams, exclusively. This operation mode is called half-duplex.

Half-duplex mechanism in videoconferencing system requires switching the audio device between capturing and playing. Since during normal conversation, it is unusual to speak in parallel with another participant, the switching tool may provide functionality to simulate the full-duplex mode, detecting silence periods and switching accordingly.

The simplest possible solution is to leave the switching to the user. Application GUI is equipped with the “push-to-talk” button, that changes the active device either to the microphone or to the speaker. Unfortunately, this solution is inconvenient for the user, requiring constant attention for efficient conversation.

Therefore, another option is the automatic silence detection and switching. However, there are several problems connected with efficient automatic half-duplex system. First of all, it is difficult to determine how long silence periods should be before changing the mode. In addition, sometimes participants talk at the same time. Hence, usage of half-duplex mode requires a discipline in adapting the conversation to the applied solution.

Video Tool

Video communication enhances the quality of a conference. It introduces a sense of presence and allow to convey the information through gesturing. Unfortunately, process of effective video transportation in network environment causes several serious problems. First of all, two-dimensional video data bandwidth is usually significantly higher than audio. Therefore, efficient compression algorithms are extremely important for video applications.

In order to provide flexible solution, offering different bandwidth options we adopt following video compression algorithms:

H.263 – state-of-the-art video compression standard, offering very low bandwidth but extremely CPU intensive

H.261 – popular H.263 predecessor, less bandwidth efficient and less CPU intensive, Video Tool utilizes also modified H.261 Intra mode. Sending exclusively I-frames, it offers better performance, yet introducing significant bandwidth increase

YUV9 – Intel video format, essentially without any compression, extremely bandwidth inefficient but requiring very little CPU power

Implementing Video Tool we took advantage of H.261/H.263 codecs available on WWW public domain for non-commercial use. However, in their existing forms those solutions were not suitable for videoconferencing purposes. Hence, we undertook activities, described in following section, to overcome those obstacles.

Adapting H.261/H.263 codecs for videoconferencing purposes

Source code for the Video Tool compression algorithms was obtained from the Stanford Univerity H.261 and Telenor’s H.263 video codecs. Both of them were fully compliant with the existing standards and very similar in their structure. Thus, below we present only the modifications introduced to Stanford H.261 codec, since we utilized similar procedure to adapt the other one.

Stanford University source code was organized into a file-to-file streaming codec, encoding whole video sequences in one step. Applying this solution directly to the conferencing tool would require buffering strategies, introducing a substantial delay to images transmission process. Hence, following modifications were interposed:

converting existing program into a library, allowing to invoke separate procedures rather than coding the whole video sequence

retrieving the initialization procedures and single frame encoding/decoding functions

converting I/O functions – thus far they communicated only with the files, they were converted to pass the data in argument and return data as a memory pointer

multiplexing all the reference frame information for multi-stream decoding (streams from different participants)

inserting regularly the INTRA frame into the encoded sequence – necessary to prevent application crash if one frame is lost

Moreover, the performance offered by the Stanford implementation was unacceptable for real-time, conferencing purposes. Improving the situation required extensive source code analysis and testing to determine the weakest points and optimize them.

The H.261 algorithm is asymmetric – image encoding is much more time consuming than decoding. Therefore, we focused on optimizing the compression algorithm. Testing confirmed theoretical hypothesis that the most crucial encoder component in terms of performance was the motion estimation procedure. It was estimated, that this procedure took about 70 % of compression time. Stanford codec adopted full spiral motion vector search algorithm, offering good quality but very inefficient. Since quality issues are not very important for slowly changing videoconference sequences, it was decided to replace the spiral search algorithm with faster logarithmic search. (Results of this change are compared in Table XXX. !!!!!!!!!)

Application structure

The video application structure is very similar to the Audio Tool structure presented on Figure 12. The hardware devices in this case are a camera and a monitor. In addition, there is no multiplexing unit, since separate video streams may be displayed on different application windows. Both operation: video capturing and displaying are handled through separate hardware cards, thus they may be performed in parallel eliminating any switching between those two. Certainly, different types of data codec are used. The rest of the application is exactly the same: receive path with RTP analysis, decompression and streams demultiplexing and sending path with capturing, compression and RTP packager. Actually, those units are the components of a generic application model, common for all the real-time system applications.

Other issues in designing and implementing video application

Frame rate control

We already mentioned that the encoding of video images is a very CPU intensive process. Therefore, a rate of compressing video is limited not only by the network bandwidth, but also by the CPU performance. The application operation requires to use CPU effectively, allowing other application to work (in particular Audio Tool). This constraint imposes necessity of implementing a frame rate control mechanism, that analyses the processor usage and sets the rate limit. Once again, the solution of this problem is hardware dependent. Hence, implementations are different on SGI Indy and PC.

SGI provides the developer with the internal capturing buffer. It captures the images with a preset rate, but allows to get the pointer to the current frame at any time. The control mechanism measures the time needed to decode the frames for all other users and the rates with which they are sent. Based on this information the interval required for the decoding process is calculated. After capturing and encoding each frame the process waits the calculated interval and continues to obtain the next frame. This method allows to adaptively adjust to the circumstances and leaves the computer and the conferencing system operation undisturbed.

Unfortunately, adaptive control is not possible on PC. The capturing process invokes the callback procedure, for every new frame. The rate adjusting requires time consuming reset of the whole capturing module. Thus, different approach was employed. Initially, the rate is set at the relatively low level, that can be maintained by majority of modern PCs (with at least Pentium processor). During the several first images capturing, application analyses the compressing and decompressing times and calculates the maximum rate that the machine is able to support. Finally, the value is set and from that moment capturing operation is uncontrolled. There are several events that may force to recalculate the value (e.g. new participant starts to send the video), but during relative long periods of time this limit is constant. This leaves several possibilities, when system will not work optimally (e.g. a new time consuming application is started). However, they are very difficult to control.

Video formats conversions

Modern video capturing cards come in a variety of offered video formats. But even the most popular format – RGB24 is not supported by all of the cards. Additionally, available images displaying libraries have limited choice of possible formats. Therefore, the video application requires to make several video conversion to meet the constraints of capturing devices, displaying procedures and compression algorithms. It deals primarily with two major types: RGB and YUV, that are often implemented in several variants. This problem is particularly important on PCs, that may be equipped with several different video cards. The Video Tool completed conversions among the most popular formats: YUV22, YUV11, YUV9, RGB24 and RGB16. This set was sufficient for many video cards tested during the development stage.

Other collaborative applications

Text chat

Text chat is a simple application enabling participants to distribute short text messages. Its functionality seems to be redundant, having superior audiovisual communication. However, under some circumstances text chat is very useful. First of all, it is possible to transport complicated char strings such as addresses, names etc. without complicated and error prone spelling process.

Moreover, audio and video applications are very sensitive to several configuration and environment problems. Changing an audio card or a driver sometimes causes serious problems with a device stable operation. Even the most advanced networks often experience bandwidth constraints making audio and video applications unusable. This is particularly severe in the Internet environment. For all those cases users are left with only one solution – text chat.

Design and implementation of the text chat is so simple, that it will not be described in this thesis. This section is only to mention the importance of chat applications in a videoconferencing system. The text chat for BuenaVista was initially implemented in Java, but since Java applications require an interpreter, what significantly complicates the system installation process, we implemented simple chat in C++.

Whiteboard

Whiteboard is a very convenient collaborative tool that allows the sharing of drawings among conference participants. It is possible to perform the following operations:

drawing lines and basic geometrical shapes

choosing drawing colors

choosing line width

displaying text

saving and retrieving a drawing from a file.

�Implementation

Each drawing element is stored in memory as an “graphic object”. Object consists of following information:

object type

object position

additional location

object properties (color, line width etc.).

The application creates and manages a list of objects that can also be saved and retrieved from a file. Each object type has its own drawing procedure. Objects are exchanged between applications using BuenaVista distribution mechanisms. Objects received are handled the same way as other user input.

Directory Service

Directory service is an additional, optional element of the videoconferencing system. One of the assumptions for the system design was its ability of operating independently of any servers or network components except local clients. However, for the users convenience it is very important to have information about active BuenaVista nodes and on-going conferences. Therefore, we created directory service.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
13
� Location of Directory Service in conference structure

Main purposes of directory service are:

to keep information about active nodes (users willing to participate in conferences)

to keep information about on-going conferences

to facilitate creating, joining and managing conferences

to ensure sessions protection and security

This functionality requires storage and management of variety of data regarding conferences and users. Initially, they will be stored internally by directory service, eventually we intend to create database system for information control. Structure of data stored in directory service is presented in Tables 4 and 5.

User that created conference becomes its ‘master’ – he defines conference properties and may control the conference access. One of the most important conference property is its type. We distinguish three types of conferences:

open – accessible without any restrictions

password protected – access to conference controlled with password

master controlled – access to conference by master acceptation

Normally conferences are created dynamically by BuenaVista users. However, there is also set of predefined static sessions, that by definition have open character.

Upon starting application automatically connects to the directory service. Its location is element of system configuration and can be changed whenever convenient. It is predicted to implement also automatic directory service detection. Directory may accept or reject a new user. If the user is accepted directory registers him and if necessary creates appropriate entity in database.

Table � SEQ Table * ARABIC �
4
� Data structure for conference information

Field name�Field type�Short description��Name�String�Unique name by which conference will be identified and which will be presented to system users��Type�Implementation dependent�Conference type identifier, described above ��Participants�List�List of conference participants��Password�String�Password controlling access to conference (applied only for password protected conferences)��Properties�Implementation dependent�Additional conference properties e.g. audio and video capabilities of conference participants��

Registered users can query service about active users and existing conferences. They can also send requests for new conference creation, termination, joining existing session or information about an active user. User may create new conference if he has appropriate rights. He must be accepted to join open session. He is asked to type the password to join password protected session. When he tries to join master controlled session, special indication is sent to session master, who can accept or reject it. User may terminate only conference, that he created.

Table � SEQ Table * ARABIC �
5
� Data structure for user information

Field name�Field type�Short description��Name�String�User name which will be presented to other users��Address�IP address�IP address of host from which user is connected��e-mail�String�User e-mail address��Info�Text�Additional info, comment etc. (defined by user)��Rights�Implementation dependent�User rights (conference creation etc.)��

Archiving

Employing a videoconferencing system, very convenient capability would be to store the sequence of events occurred during a session. Then, the conference content could be retrieved, replayed or searched, enriching the collaboration process. BuenaVista includes such archiving functionality, allowing to retrieve the session events in the real-time mode.

�Synchronous vs. Asynchronous archiving

Normally, multimedia data are stored in a synchronous way. Data stream has the constant set of properties, that enables efficient interpretation of retrieved data. Throughout the whole storing process data are homogenous – they have the same type and structure. In particular, multimedia data have specifically defined its timing constraints.

Videoconferencing data have completely different profile. The data come from different applications (audio, video, whiteboard etc.), having characteristics that often change. For example video stream has usually changing framerate and compression type (depending on available bandwidth or CPU performance). In addition, we usually deal with data from different users that could be combined together within current session.

There are two solutions to the problem above. First one is to store data of different formats, from different users in separate streams and then convert each stream to homogenous format. Another solution is based on universal storing and retrieving mechanism handling different types of data with different properties (including different timing) simple neglecting their content and encapsulating them in additional containers.

First solution provides data streams in standard formats, allowing to retrieve them with commonly available applications. Therefore, it offers standard content that can be easily transformed or modified. However, it introduces high complicity connected with data converting and managing. All the formats must be standardized, information about each session must be created and controlled. It creates huge overhead on application development.

Second solution stores data in proprietary format, that can be retrieved, viewed or modified only by applications created specially for this purpose. In that sense it is much less flexible. Nevertheless, big advantage of this implementation is its simplicity. This type of archiving system is application independent. Internal system mechanisms provide the means for storing and retrieving application data seamlessly for conference application developer. Therefore, any new collaborative application supports archiving functionality without any extra effort from its developer. Since archiving capabilities were not our primary concern designing the system, we adopted this solution for BuenaVista.

Architecture

Archiving system structure can be divided into two logical and physical components: recorder and retriever. It is presented on Figure 14. Recorder is the element responsible for the conference content storage, first converting it to an appropriate format. Retriever reads the stored content and perform operations enabling its replaying.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
14
� Archiving System Structure

Both of those modules are characterized below:

Recorder—intermediate point between BuenaVista applications and file storage. Recorder multiplexes messages from different applications adding their unique identification numbers, inserts time stamp for every message and store them to the file.

Retriever—performs similar functions in opposing direction. After retrieving a message it schedules its sending time based on time stamps, waits until scheduled moment and send data to appropriate application using its identifier.

During normal operation, archiving capabilities are not active. Conference Manager is responsible for starting this functionality upon a user request.

System integration

Archiving system components are optional but tightly integrated parts of the BuenaVista videoconferencing system. To support their functionality several existing system elements must be adapted:

BuenaVista application API — improved of communication with the recorder capabilities and switching on/off database mode upon the BuenaVista engine request (sending messages to the database all the time would be wasteful and would affect application performance)

BuenaVista engine—enriched in receiving and handling Conference Manager archiving requests procedures. Handling those requests includes: starting recorder or retriever, requesting archiving mode from applications, transmitting reliable application data to recorder.

BuenaVista session API—enables switching between recording, retrieving or normal working mode.

Location of both modules in the BueanVista structure is presented on Figure 15. Archiving functionality is activated by a request from Conference Manager. Having received the request, Conference Engine starts appropriate components (recorder or retriever) and distributes the indications to conference applications. When the applications are notified, they commence to send all the conference data (both received from remote participants and local) to the recording module. The activated retriever reads the stored data from the disk and distributes them to appropriate applications, controlling the time constraints.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
15
� Archiving capabilities management

Database integration

Simple conference content archiving offers very limited functionality to the system users. Stored conferences should be organized and managed, enabling random access to session events, acquiring information about session participants, date, discussed subjects and search of all the stored sessions for a particular information.

Therefore, we intend to integrate the archiving component with a database system. A database can perform all the described above operation, creating powerful tool for people communication.

�Other issues in system design

Java API

Our conferencing system was written in C++. However, the only constraint for a conference application is to meet the internal protocol requirements. Hence, it can be created in any language supporting TCP/UDP network capabilities. A huge advantage to application developer is existing API (described in section 4.3.4), which enables creating applications without getting into complicated protocol issues. Initially such API was implemented only for C++ and C applications. Nevertheless, to prove that it is possible for any other language and to provide a tool to create such an application in winning enormous popularity in recent years, multiplatform Java programming language – we created API for this environment.

As an example of BuenaVista collaborative application written in Java, we successfully ported Web based chat application to our conferencing system. Therefore, we achieved the goal of language and platform independence.

Session security

BuenaVista session model provides support for the conference security. Tightly coupled, close for the users from outside session model meets the requirements for the secure system. The only remaining issue is the confidentiality of distributed data.

Thus far, confidentiality components were not included in BuenaVista. However, during the design stage those issues were taken into consideration, specifying place of confidentiality elements within the system. Addressing confidentiality of conference data requires implementing encryption layer, placed between RTP layer and MCL. Arbitrary encryption algorithm can be utilized, disregarding content and structure of higher level packets (RTP).

Security issues were also analyzed, designing Directory Service. The goal of introducing password protected and master controlled session types was to provide privacy mechanisms to directory users. This way it is possible to take full advantage of the system functionality without concern about privacy issues.

Standards compliance

System standard compliance issues can be divided into three classes: compression standards, data transportation standards and session control standards. First group is fully covered by the system implementation. All the compression algorithms both audio and video are fully compliant to the existing standards. At the application level the system is fully open – it can communicate with any other standards compliant videoconferencing application.

BuenaVista uses RTP protocol for application data exchange. This solution provides standardization at the transport level. All application packages can be received and properly interpreted by other open systems. This structure altogether with the application level compatibility offers full application data exchange standards compliance. The only feature of RTP not covered by BuenaVista is the RTCP. However, this protocol was created primarily for lousily coupled conferences. Since BuenaVista adopts tightly coupled session model most of this functionality is unnecessary. The only exceptions are the participant reports, offering useful information about transmission problems. Thus, we intend to include those elements into the future version of the system.

Thus far, the only area not supporting any standards is the session control. Currently, the best solution for the session control protocol is definitely H.323 standard. Adopted already by many software vendors probably will prevail as the most popular conference control standard. Although, BuenaVista does not implement H.323, our control model is very similar to the one offered by the standard. Therefore, we predict to port the system to the H.323 platform easily, effectively and quickly.

Integration with Web-oriented Collaboration System

In recent years, World Wide Web (WWW) has become the most popular and attractive area of the Internet. Millions of people browse the Web every day, accessing tons of information. But modern Web is much more than a tool to display text and images. Many interactive application transformed the Web into the biggest multimedia, collaborative tool available. Therefore, we attempted to combine our system with this powerful environment. As a connecting element, facilitating the integration we chose the Web collaborative application developed in NPAC – Tango, presented briefly below.

Overview of Tango collaborative environment

Tango is an integration platform which enables building Web-based collaborative environments. The system provides the means for fast integration of Web and non-Web-applications into a multi-user collaborative environment. The main functionality provided by the system consists of session management, communication between collaborating applications, user authentication and authorization and event logging. Application of this Java/WWW-based collaborative framework is focused on military command and control, Internet distance education and remote collaboration.

Tango has client-server architecture, seamlessly integrated into the World Wide Web. Key server and client components are written in Java for multi-threaded Java collaborative server management, session control and a Web user interface. System is integrated with the Netscape Navigator browser, which serves as a client collaboration interface and working environment. The most important client-side component is the Netscape plugin, that allows placing the system inside the browser. For inter-applet communications Tango system utilizes Netscape LiveConnect technology. It is anticipated, that Tango will be ported also to Internet Explorer platform.

The environment provides simple APIs for Java and C applications, that can be easily integrated into the system. Tango is the multi-user and multiplatform system, currently available for SGI, Sun and PC. It offers several collaborative applications like whiteboard, chat, collaborative browser, presentation tool and various educational applications and demos.

Tango vs. BuenaVista

Both presented above systems have many unique features enabling collaboration in Internet environment. However, none of them cover full scope of possible collaboration aspects. Tango is Web-oriented system based on idea of connecting applications through central server. This solution gives better control over management and maintenance of collaboration process and enables multisession mode. It also allows adding new applications easier, with less work overhead (e.g. Java applets). Nevertheless, it does not support efficient enough real-time applications. Central server that is big advantage concerning mentioned above features, becomes bottleneck and decreases performance of such applications, not meeting their needs. Web-independent, “out-of-browser” system is also more reliable and more suitable for this specific requirements.

Taking into account all those features, we concluded that the best solution would be integrated system consisted of both Tango and BuenaVista. Certainly both systems can work separately matching the particular needs of some users, but combined hybrid is a powerful tool based on state-of-the-art technologies, offering rich functionality necessary in modern desktop collaboration environment.

Obviously, reaching this goal is connected with variety of different problems. Both systems are based on opposite approaches. Their architecture, communication channels and protocols are totally distinct.

Structure of integrated videoconferencing application

Therefore, to obtain seamless integration following activities were undertaken:

removing existing graphical user interface

creating BuenaVista-Tango control protocol

installing Tango communication unit instead of GUI

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �
16
� (a) BuenaVista-user interaction (b) BuenaVista-Tango integration

The main problem of the integration was linking the multi-session Tango with the one-session BuenaVista. It was overcome allowing just one BuenaVista session per machine and creating a simple user interface enabling BuenaVista applications management.

Conclusions

Conferencing system described in this article goes beyond functionality offered in other systems created thus far. First of all, it is multiuser environment enabling fully distributed conference participation. System provides all necessary functionality to effectively create and control multiuser sessions, providing ability to participate in audiovisual meetings.

Its functionality is accessible from different platforms. It covers two currently most popular multimedia environments: SGI Unix workstations and PCs. Additionally, covering 32 bits Windows platform and Unix environment, it allows to be easily ported to Macs, Suns and other popular operating systems.

Another important advantage of the system is its extensibility. One of the assumption during design stage was ability to modify existing environment or add new components. Therefore, we decided to create modular system, where new components do not interfere with existing ones and one element modification does not result in changes in whole system. We implemented development APIs for different programming languages (C, C++, Java). Thus, it is possible to port an application written in any of those languages. Java API enables to create universal applications working on all platforms.

BuenaVista presents flexibility needed for modern collaborative tool and abilities not just to exchange information but also to manage them. Audio-video applications offer several operating modes, allowing to adapt the system to different circumstances. It is particularly convenient to be able to control application bandwidth and quality based on accessible network connections. System can be also integrated with other collaborative environments currently available. It was verified linking BuenaVista with Web-based Tango collaborative environment.

Our product addresses another issue which have not appeared anywhere else, so far. It is support for archiving of audiovisual conference content. Archiving of real-time, multiuser, distributed sessions if extremely complicated problem. BuenaVista offers such capabilities. For the time being those are only local storage and retrieval of conference content. However, we intend to further development of that functionality, eventually integrating the system with multimedia database.

Finally, applying variety of multimedia standards such as RTP, H.263, H.261, GSM, ADPCM, we provided system interoperability. Although, for the time being some of the standards are implemented only partially and it is not possible to cooperate directly with other systems, we intend to make it fully compliant. Additionally, none of the product existing on the market does not offer full interoperability, either. Thus, issue of interoperability for videoconferencing product is still open.

Certainly, our product has also several disadvantages. As we stated, we still lack full standards compliance, especially regarding H.323. In spite that the system was extensively tested there are still some problems connected with its robustness. Importance of this factor caused even creating simplified, combined version of BuenaVista – simpler and much more stable but not so flexible and extensible. Another issue is some drawbacks in control paradigm such as: only one session per host and session joining model. Finally, especially from commercial point of view, problem of graphical user interface (GUI) seems to be very important. However, since this product was primarily concerned about creating system infrastructure and solve technological problems, issue of GUI was of secondary importance for us.

Appendices

BuenaVista for PC screendumps

�

References

[1]	Lynch, Thomas J. “Data Compression Techniques and Applications”, Van Nostrad Reinhold Company Inc., 1985

[2]	Clarkson, Peter M. “Optimal and Adaptive Signal Processing”, CRC Press Inc., 1993

[3]	Degener, Jutta “Putting the GSM 06.10 RPE-LTP algorithm to work”, December 1994, http://www.ddj.com/ddj/1994/1994.12/degener.htm

[4]	ITU-T Recommendation H.263, July 1995, http://www.fou.telenor.no/brukere/DVC/h263_wht/

[5]	Telenor “H.263 Advanced Negotiable Options”, December 1995, http://www.fou.telenor.no/brukere/DVC/h263_options.html

[6]	ITU-T Recommendation H.261 “Video Codec For Audiovisual Services at P x 64 kbits”, March 1993

[7]	Hung, Andy C. “ PVRG-P64 Codec 1.1”, November 1993

[8]	Insoft Inc. “OpenDVE Architectural Overview”, 1996

[9]	ITU-T Recommendation T.120 “Data Protocols for Multimedia Conferencing”

[10]	VTEL Corporation “H.320: A Quality Requirement Guide”, 1996

[11]	Bulawa, Janusz “Integration of multimedia collaboratory environment with Web browser” – Master Thesis, September 1996

[12]	Rettinger, Leigh Anne “Desktop Videoconferencing: Technology and Use for Remote Seminar Delivery” (Under the direction of Dr. Thomas K. Miller III.), 1995, http://www2.ncsu.edu/eos/service/ece/project/succeed_info/larettin/thesis/

[13]	C. Bormann, J. Ott, C. Reichert “Simple Conference Control Protocol”, Internet Draft, June 1996

[14]	H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson “RTP: A Transport Protocol for Real-Time Applications”, RFC 1889, January 1996

[15]	ITU-T Recommendation H.323 “Visual Telephone Systems and Equipment for LAN which Provide a Non-guaranteed Quality of Service”, November 1996

[16]	M. Handley, H. Schulzrinne, E. Schooler “SIP: Session Initiation Protocol”, Internet Draft, August 1997

VITA

NAME OF AUTHOR: Tomasz Stachowiak

PLACE OF BIRTH: Poznan, Poland

DATE OF BIRTH: July 25, 1973

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

Franco-Polish School of New Information And Telecommunication Technologies, Poznan, Poland

Technical University of Poznan, Poznan, Poland

PROFESSIONAL EXPERIENCE:

Research Assistant, Northeast Parallel Architectures Center, Syracuse University 1997

�PAGE �

�PAGE �
80
�

