Franco-Polish School of new information

and communication technologies

Internship at Northeast Parallel Architectures Center

at Syracuse University

Syracuse, New York

Michal Kurmanowicz

Index No. 80

SYRACUSE, 1996

�Abstract : This report presents the results of the internship held at Northeast Parallel Architectures Center by Michal Kurmanowicz. It describes two projects. First project deals with design and implementation of the closed-caption parser - a video indexing utility.

The second project covers the issues reated to database support for Video On Demand technology with the working name ‘Server Management Layer’. Server Management Layer

�

� SPISTREŚCI \o "1-3" �1. General Information About Internship	� PRZYCISKIDŹDO _Toc347752101 � STRONAZAKŁADKI _Toc347752101 �3��

1.1 Place:	� PRZYCISKIDŹDO _Toc347752102 � STRONAZAKŁADKI _Toc347752102 �3��

1.2 Duration:	� PRZYCISKIDŹDO _Toc347752103 � STRONAZAKŁADKI _Toc347752103 �3��

1.3 Supervisor:	� PRZYCISKIDŹDO _Toc347752104 � STRONAZAKŁADKI _Toc347752104 �3��

2. Description Of NPAC	� PRZYCISKIDŹDO _Toc347752105 � STRONAZAKŁADKI _Toc347752105 �4��

2.1. General Information	� PRZYCISKIDŹDO _Toc347752106 � STRONAZAKŁADKI _Toc347752106 �4��

2.2. Infrastructure	� PRZYCISKIDŹDO _Toc347752107 � STRONAZAKŁADKI _Toc347752107 �4��

2.3. Human relations	� PRZYCISKIDŹDO _Toc347752108 � STRONAZAKŁADKI _Toc347752108 �5��

3. Tasks to accomplish during the internship	� PRZYCISKIDŹDO _Toc347752109 � STRONAZAKŁADKI _Toc347752109 �6��

4. Environment and used tools	� PRZYCISKIDŹDO _Toc347752110 � STRONAZAKŁADKI _Toc347752110 �6��

4.1. Video indexing	� PRZYCISKIDŹDO _Toc347752111 � STRONAZAKŁADKI _Toc347752111 �6��

4.2. What is closed-caption?	� PRZYCISKIDŹDO _Toc347752112 � STRONAZAKŁADKI _Toc347752112 �8��

4.3. Visual Basic	� PRZYCISKIDŹDO _Toc347752113 � STRONAZAKŁADKI _Toc347752113 �9��

4.4. Video For Widows and Media Control Interface	� PRZYCISKIDŹDO _Toc347752114 � STRONAZAKŁADKI _Toc347752114 �10��

4.5. Database Support for Video On Demand	� PRZYCISKIDŹDO _Toc347752115 � STRONAZAKŁADKI _Toc347752115 �11��

5. Design and implementation of the caption parser	� PRZYCISKIDŹDO _Toc347752116 � STRONAZAKŁADKI _Toc347752116 �12��

5.1. Requirements	� PRZYCISKIDŹDO _Toc347752117 � STRONAZAKŁADKI _Toc347752117 �12��

5.2. Structure	� PRZYCISKIDŹDO _Toc347752118 � STRONAZAKŁADKI _Toc347752118 �13��

5.3. Graphical User Interface	� PRZYCISKIDŹDO _Toc347752119 � STRONAZAKŁADKI _Toc347752119 �15��

5.4. Source Code	� PRZYCISKIDŹDO _Toc347752120 � STRONAZAKŁADKI _Toc347752120 �16��

5.5. Communication with the VCR	� PRZYCISKIDŹDO _Toc347752121 � STRONAZAKŁADKI _Toc347752121 �17��

5.6. Closed-Caption receiving and parsing	� PRZYCISKIDŹDO _Toc347752122 � STRONAZAKŁADKI _Toc347752122 �17��

5.7. Random Access Into Video Bitstreams	� PRZYCISKIDŹDO _Toc347752123 � STRONAZAKŁADKI _Toc347752123 �18��

5.8. Controlling the Graphical User Interface	� PRZYCISKIDŹDO _Toc347752124 � STRONAZAKŁADKI _Toc347752124 �19��

5.9. Summary	� PRZYCISKIDŹDO _Toc347752125 � STRONAZAKŁADKI _Toc347752125 �20��

6. Server Management Layer For Video On Demand Integration	� PRZYCISKIDŹDO _Toc347752126 � STRONAZAKŁADKI _Toc347752126 �21��

6.1. Background	� PRZYCISKIDŹDO _Toc347752127 � STRONAZAKŁADKI _Toc347752127 �21��

6.2. Design	� PRZYCISKIDŹDO _Toc347752128 � STRONAZAKŁADKI _Toc347752128 �24��

6.2.1. First design	� PRZYCISKIDŹDO _Toc347752129 � STRONAZAKŁADKI _Toc347752129 �24��

6.2.2. Second design	� PRZYCISKIDŹDO _Toc347752130 � STRONAZAKŁADKI _Toc347752130 �25��

6.3. Information Retrieval	� PRZYCISKIDŹDO _Toc347752131 � STRONAZAKŁADKI _Toc347752131 �28��

6.4. Database Load Interface	� PRZYCISKIDŹDO _Toc347752132 � STRONAZAKŁADKI _Toc347752132 �30��

6.5. Process of contents producing	� PRZYCISKIDŹDO _Toc347752133 � STRONAZAKŁADKI _Toc347752133 �32��

7. Further work	� PRZYCISKIDŹDO _Toc347752134 � STRONAZAKŁADKI _Toc347752134 �34��

8. Conclusions	� PRZYCISKIDŹDO _Toc347752135 � STRONAZAKŁADKI _Toc347752135 �35��

9. Glossary	� PRZYCISKIDŹDO _Toc347752136 � STRONAZAKŁADKI _Toc347752136 �36��

10. Bibliography	� PRZYCISKIDŹDO _Toc347752137 � STRONAZAKŁADKI _Toc347752137 �40��

�

1. General Information About Internship

1.1 Place:

The internship was held at Northeast Parallel Architectures Center at Syracuse University, Syracuse, New York.

111 College Place

Syracuse University

Syracuse, New York 13244-4100

phone:	+01 315 443 17 22

fax:	+01 315 443 19 73

1.2 Duration:

August 16th, 1995 - January 27th, 1996.

1.3 Supervisor:

Dr Marek Podgorny, NPAC Associate Director.

�2. Description Of NPAC

2.1. General Information

The Northeast Parallel Architectures Center at Syracuse University.

The Northeast Parallel Architectures Center (NPAC) is a research and development center at Syracuse University, focusing on high performance computing and communications.

Established at Syracuse University in 1987, the center is directed by Geoffrey C. Fox, a pioneer in the development and application of parallel computers, who assumed NPAC leadership in 1990. Since then the scope of NPAC has broadened to include world class computational science research and education, and most recently research and development in high performance communications with particular focus on support for

the National Information Infrastructure (NII).

There is a strong emphasis on computational science applications where one seeks to obtain "real solutions to real problems."

NPAC's InfoMall technology transfer program puts high-performance computing and communications (HPCC) to work in industry. Other major projects include research and development in the areas of parallel languages and parallel compilers, including work on High Performance FORTRAN (HPF) -- a standardized parallel version of FORTRAN; distributed computing; parallel database technology; integration of relational databases with the NII;

parallel algorithms; distributed and cluster computing; and networked digital multimedia applications providing Information, Video, Imagery, and Simulation on demand. Our major research and development programs naturally strengthen the new educational program in computational science.

2.2. Infrastructure

NPAC’s infrastructure is quite impressive. A large internal network is centered around a main router DECNIS, which is an external gateway leading to the Internet. Most of the subnets are Ethernet-based, but NPAC also has an FDDI backbone and an ATM link, which makes part of the NYNET - NYNEX ATM project.

�NPAC’s workstations are very diverse. You can find here SUNs, DECs, SGIs. SGI which is NPAC’s technology partner in various project is present here with its best: Indy and Indigo workstations as well as Challenge Server and one ONYX with Reality Engine2 graphic card.

PCs and Macs have also found its presence in NPAC. Macs are mostly use as graphical workstations providing NPAC staff with powerful graphical and presentation tools.

Surprisingly, PCs are strongly involved in NPAC’s projects. First, they are essential for the VOD Lab were they are the most reliable platform (Windows NT) and secondly they are used for ISDN-related projects.

Describing NPAC infrastructure I should not forget about supercomputers as they form NPACs name (Parallel Architectures). The parallel machines currently installed in NPAC include a CM5 of TMC, iPSC 860, two DECmpp machines, an SP2, and an nCUBE2. They represent the major current architectural trends in for MPP platforms.

NPAC infrastructure is not only hardware components. An Oracle 7 Parallel Server in NPAC is one of the best in its category, and you can find more of such examples.

2.3. Human relations

From a newcomer point of view, NPAC might not be seen as an strongly organized place. And in fact it is not. NPAC has a very flat organizational hierarchy:

Director Professor Geoffrey C. Fox, then 12 project leaders and students (mostly graduate ones). In such environment most of the people working there know each other pretty well and this makes new employees feel comfortable easily.

Also the word bureaucracy does not fit here - the staff is only 6 people and the tasks are divided clearly.

�

3. Tasks to accomplish during the internship

1. 	Design and implementation of the caption parser - a video indexing utility via closed-caption extraction

2. 	Design and implementation of the Server Management Layer for Video on Demand Technology

4. Environment and used tools

4.1. Video indexing

NPAC research activity, among the other fields, is very much education-oriented and it concentrate on developing educational applications in the emerging field of Video On Demand. The technologies have general applicability in business, entertainment and government applications. This project, however makes part of the larger one such as News On Demand which is a corporate effort of Syracuse University, NPAC, and news agencies like Reuters, CNN and Discovery channel.

The goal of the project is the integration of many kinds of digital data into homogenous database system from which the data may be easily retrieved independently from the data type. Assuming that, the goal of the project would be to develop a large database system storing text, video, audio files.

In such a system the indexing of the stored information plays crucial role.

As for text files indexing is quite well known and largely used, it is not true in the case of video or audio material. I’ll concentrate more on video indexing now.

When the problem of video indexing has been introduced for the first time, soon many different approaches appeared. The most obvious one would be to implement an application of automatic motion picture recognition and by its means perform video indexing. This approach however it’s not feasible in the current state of technology. The motion picture recognition engine would require a huge supercomputer and still it wouldn’t be able to perform such an analysis in the real-time or even in comparable time.

That’s why this approach has been abandoned for a while and researchers started to look for another ways of video indexing. There have been some projects to perform video indexing by object-recognition or color content measurements but generally these methods have never been precise enough to become a serious source of video indexing.

Manually entered description of video material still remained the most popular way of performing it.

Quite recently, in 1993, Electrical Industries Associates introduced a new standard of closed-captioning the TV broadcast signal. Since it has become a standard it has a serious impact on television broadcasters and digital equipment manufacturers and more and more TV stations were broadcasting closed-captioned program.

In this way closed-caption could became a source of alternative video indexing facilities.

Since the notion of closed-caption may be new, the next section describes the main ideas behind it.

�4.2. What is closed-caption?

Captioning is an electronic process which converts the audio portion of a television program into written words. These words usually appear at the bottom of a television screen with decoding capability or through a peripheral decoder. Unlike subtitles, captions are designed specifically for the deaf and hearing-impaired: in addition to on-screen dialogue, sound effects and off-screen nuances that are significant to a particular scene may also be described.

NTSC TV broadcast signal consists of 525 lines at 30 frames per second. Individual images forming the motion picture are divided by a 21-line-wide horizontal vertical bar called Vertical Blanking Interval (VBI). VBI can carry additional information for usually for the synchronization purposes. Since 1993 Electrical Industries Associate (an American standard body) defines a standard for transmission of the closed-caption characters in the 21st line of the Vertical Blanking Interval - EIA-608. This service is also known as the line 21 service.

There are 2 fields in 21st line each carrying 1 character at a time for 9 different channels. There are 4 closed-caption channels (CC1, CC2, CC3, CC4), 4 text channels (TX1 - 4) and one Extended Data Services channel (XDS) as defined in EIA-608.

Closed-caption channels as well as text ones may carry characters for 4 different channels each in different language. Extended Data Services is supposed to carry various kinds of information such as weather condition, general information about the current television program (summaries, time to end etc.).

However, currently only one closed-caption channel is being used - CC1 - and that’s where caption parser takes its characters from.

Closed-captioned video material carries itself a textual information about the content of the video. The audio component which is directly correlated to the image is translated into the text. One could extract closed-caption stream from the TV signal and assign time stamps to them so that he or she obtains a correlation between them. In a such way a search for key word would return a time value in the video stream at which the key word appeared. This mechanism served for a basis of the design of caption parser.

�4.3. Visual Basic

Visual Basic (VB) offers a different way of programming then common languages like C or Pascal.

The main difference is that one starts building Visual Basic application not from writing the code but from the designing the Graphical User Interface (GUI). Then all the code which controls the interface can be written.

The main idea behind such way of programming was Rapid Application Development (RAD).

VB is a completely extensible development system. Almost any feature not directly supported by Visual Basic itself is available in the form of either a Windows dynamic linked library (DDL), or a custom control (so called VBX - Visual Basic eXchange).

And with the new Windows object linking and embedding (OLE) system, entire programs can become custom controls, embedded and control by our own Visual Basic programs.

Visual Basic code is different from other languages.

 The Visual Basic programming is event-driven. The developer specifies actions (callbacks) which must be executed which each interaction with Graphical User Interface.

The code doesn’t have a linear, sequential structure. The code is scattered which makes it incomprehensible with Graphical User Interface.

There are notions of object-oriented programming as VB provides a large set of graphical objects: frames, buttons, forms, custom controls which have properties and methods associated with them. However, there is no inheritance or operator overloading.

Each application in Visual Basic is called project. Projects are stored in makefiles (as in Visual C++ applications). Makefile contains all the forms (windows FRM modules), Basic code (BAS modules), and custom controls (VBX modules). Makefile reflects quite well the application structure.

�4.4. Video For Widows and Media Control Interface

Video for Windows

The Microsoft Windows 3.1 come with a new multimedia development kit - Video For Windows. Video For Windows (VfW) provides Development Kit (DK) provides developers with services for developing video-capture, editing, and playback application. It contains a set of application programming interfaces (APIs) necessary to create these types of applications as well as audio and video compression and decompression (codec) drivers and video-capture drivers. The Development Kit also includes C window classes, Visual Basic custom controls, sample code, debugging tools, and the VidCap and VidEdit video-capture and editing tools.

The Video For Windows DK is designed for developers who are developing

·	End-user tools for video processing

·	Device drivers for audio and video data capture and compression

·	Content application that incorporate video sequences.

The Video For Windows provides tools for creating a playback application. Both the video class library, MCIWnd, and the Visual Basic control MCIWNDX.VBX, provide a way to quickly build a complete playback application with a minimum amount of development time.

Media Control Interface

Media Control Interface (MCI) provides a high level interface to control various media devices through generalized commands such as play, stop, pause. Specific command sets defined for different device types provide MCI control over these devices. MCI uses MCIVISCA.DRV driver to control and operate Video Cassette Recorder.

Multimedia MCI consists of a set of high-level, device-independent commands that control audio and visual peripherals. The first MCI command you issue is the open command. This command opens the specified MCI device and identifies the file that will play on the device.

There are two interfaces to the Media Control Interface - mciSendCommand interface and mciSentString interface. With mciSendCommand interface the application must fill the data structure and make sure that the flags it sets match the data structure members it uses. With mciSendString interface the application must handle the conversion of string data for anything that might be variable in the application. In caption parser application I used this second interface together with custom control MCIWNDX.VBX.

�4.5. Database Support for Video On Demand

In an emerging technology like Video On Demand nothing is established yet and almost everything is allowed. NPAC VOD technology needed a tool for integrating the VOD information and a retrieval utility for it. That is where the Server Management Layer has its roots.

This task has been added to my internship program relatively late, in the middle of my stay in NPAC and it turned out to be the most important assignment. What is described in this chapter is the idea, and implementation behind the Server Management Layer. This work has been presented at the Supercomputing’95 in December 1995 in San Diego. It worked good, but as it usually happens in the new designed applications, it also showed some design errors and possible or even necessary extensions. That’s why the Server Management Layer has two implementations.

First implementation, presented at Supercomputing’95 is operational and can be accessed through the WWW site: http://trurl.npac.syr.edu/vns/index.html. However, this implementation is very simple and not flexible enough for the purposes of the future extensions of the project.

Second implementation is not finished. I hadn’t managed to finish it before I left Syracuse, but a part of it can be accessed trough the same WWW site by clicking “VNS II prototype” link.

�5. Design and implementation of the caption parser

5.1. Requirements

As I have already mentioned it before, NPAC needed an automatic process of video indexing, which would allow the systematization and easy retrieval of video material for Video On Demand technology. The implementation of caption parser would provide us with a tool which could produce a content-based indexing.

 It was one of the system requirements to implement the caption parser in Visual Basic. Visual Basic was a new tool for me and I had to learn it from the beginning.

As the target platform Windows 3.1. has been chosen as Windows NT Media Control Interface driver for VCR has not been available.

�5.2. Structure

The general structure of the caption parser is shown on the picture below:

�

Picture No.1 Closed-caption parser architecture

Caption Parser operates on the 2 serial ports of the PC: COM1 and COM2. First one is used to capture the upcoming caption characters and the second one is responsible for the communication with the VCR.

The frame accurate VCR plays a regular video material containing the closed-caption characters. The output signal is being sent to the TV screen trough a caption decoder.

The decoder extracts the characters from the TV signal and sends them to the PC through the serial port. Since not all characters are readable, caption decoder translates them to the closest referring form.

Caption Parser receives the characters and parses them. It recognizes the end of sentences,

and once the end of sentence occurs it assigns a time stamp to it.

The time stamp is in the form of frame number. The output is being written to the file which must be specified by the user.

�

The makefile file in Visual Basic shows the structure of caption parser. It consists of the following parts:

module�object name�description��child1.frm�Child1�displays closed-captions on the screen��frmportc.frm�frmPortConfig�configures caption port��mdiform1.frm�MDIForm1�main program windows, handles all events��commv4.bas�----(n/a)�declarations of Windows API functions and communication procedures.��

Table No.1 The structure of closed-caption parser project file

Modules with extension *.frm refer to Visual Basic forms. Forms are seen on the screen as regular windows. Each one of the form has its own Graphical User Interface, as well as the code associated with it. The module with an extension *.bas refer to Visual Basic code module written in regular Basic.

To install the caption parser on a PC machine the following conditions

must be fulfilled:

1. PC has 2 serial port working.

2. it has the Media Control Interface and the VCR driver installed.

3. The VCR has to be connected to the closed-caption decoder.

The caption decoder has been set at the following settings:

Baud rate: 19200 bps

Odd parity

7 information bits

1 stop bit

�5.3. Graphical User Interface

As it has already been mentioned before, the Visual Basic application are centered around the Graphical User interface. The interface reflects the general structure and imposes the code structure.

After launching caption parser the main window application appears (MDIForm). It is split into 3 main parts. This can be seen on the picture of Closed-Caption Parser below:

�OSADŹ PBrush ���

Picture No.2 Graphical User Interface of the closed-caption parser

The top window is responsible for VCR control. By clicking on the command buttons in this window the user controls the operation of the VCR. This window contains embedded MCIWNDX.VBX custom control which speaks to the MCI VCR driver. The driver sends the received commands through the serial port to the VCR. The frame accurate VCR is connected to this port trough the 9 pin RS232 connector.

The large top button is responsible for opening and closing connection to VCR driver. The rest of the buttons are issuing MCI commands to the VCR driver. Each command is captioned on the button.

The VCR control has the following features: Play, Stop, Fast Forward, Rewind, Step Forward, Step Backwards, Fast Forward with View, Rewind with View.

It also displays the starting position where parsing began and the current position of the VCR counter. The numbers are displayed in frames.

The middle window display the received closed-caption stream. Whenever the text reaches the borders of the window the window is scrolled in the upwards.

The bottom part of the application is responsible for parsing operation. One must specify the output caption file (file extension *.cap) and the title of the clip. The default language is set to English.

Two command buttons Start At and End At specify the start and end positions of parsing respectively. The values set in this text tags control the VCR as well. When the StartAt value is set the VCR will automatically rewind the tape to this position and start parsing there. It will also control the VCR counter so that it won’t exceed the value EndAt. If so, the parsing will be stopped (as it can be seen on the picture above).

In the future extensions to the caption parser StartAt and EndAt tags will be set by the encoder batch files. This feature will be explained later in this report.

5.4. Source Code

VB has a large set of custom controls called VBX - (Visual Basic eXchange) which give the user access to every single aspect of Windows programming. Moreover, a VB programmer can take advantage of the Windows API. All these features make VB a powerful, high-end and easy-to-use programming tool capable creating the most diverse Windows applications. It can also be integrated with Visual C++, Windows Object Linking and Embedding (OLE) interface and Dynamically Linked Libraries (DLL).

We can divide the code into 3 major parts:

1. Communication with the VCR.

2. Receiving, handling and parsing of the closed-caption stream

3. controlling the GUI.

5.5. Communication with the VCR

The Visual Basic (VB) custom control MCIWNDX.VBX has been used to obtain a control over VCR.

The multimedia MCI control manages the recording and playback of multimedia files on Media Control Interface (MCI) devices. Conceptually, this control is a set of push buttons that issues MCI commands to devices such as audio CD players, videodisc players, and video tape recorders and players.

In my program, the communication with the VCR is obtained by sending standard messages to MCI driver using mciSendString command. At the level of custom control it is done using MCIWnd.Command method.

Here is a recap of Media Control Interface callbacks.

VCR action�Command string sent to MCI driver��Play�set speed 1000

play��Stop�stop��Fast Forward�seek to end��Rewind�seek to start��Forward with View�set speed 2500

play��Rewind with View�set speed 2500

play reverse��Step Backward�step��Step Forward�step back��

Table No.2 Messages sent to Media Control Interface VCR driver.

5.6. Closed-Caption receiving and parsing

Once the user decided to begin parsing (by clicking the Parse button) on the front panel, the application opens the serial port on which the caption (subroutine Comm_Open) with OpenComm API call.

The three parameters to the OpenComm are the communication port name (such as COM1) and the sizes, in number of bytes, of the receive and transmit queues.

These sizes are limited to 32,767 bytes per queue, although typical values range from 1K to 16K bytes.

The OpenComm function returns a variable, nCid (pipe handle), which is used in subsequent communication API calls. If the nCid is less then zero then, then the port the COM port was not opened, and nCid represents the error code instead.

Then Comm_Poll subroutine is listening to the port for upcoming characters and whenever it receives them it sends them to the Print_To_Form subroutine. This subroutine writes them to a caption file as well as on the screen. Whenever it encounters a sentence deliminator ("."; "!"; "?") it attaches a time stamp to the sentence.

Time stamp is obtained trough the MCIWNDX method Position which returns the current position of the VCR in the desired format. This information is written to the caption file which structure is shown on the picture below:

Caption script follows

 0 >>> ABOUT AN HOUR AGO, I SPOKE WITH CNN CORRESPONDENT CHRISTIANE AMANPOUR IN SARAJEVO, ABOUT THE SITUATION IN BOSNIA.

 187 I ASKED HER IF THERE IS A CHANCE THAT RADOVAN KARADZIC WOULD TRY TO BACK OUT OF THE PEACE PLAN..

 435 >> FIRST OF ALL, I DON'T THINK HE'S GOING TO BACK OUT OF THE AGREEMENT HE HAS ALREADY PUBLICLY ACCEPTED IT AND PUBLIC SAID THAT THE IMPLEMENTATION WILL FORCE WILL COME.

 737 THE DAYTON PEACE DEAL IS NOT UP FOR RENEGOTIATION.

 794 THE U.S. NEGOTIATORS SAID THAT CLEARLY AND ALSO U.N. OFFICIALS HERE HAVE BEEN GOING UP TO PARLAY THE BOSNIAN SERB STRONGHOLD TO TELL THEM THERE IS NO CHANGES PERCEIVED FOR THE FUTURE AND THEY SHOULD LOOK FORWARD TO THE FUTURE, IN FACT.

 1186 NOW, THE PROBLEM IS OF COURSE IS THAT IT IS RADOVAN KARADZIC WHO IS MEANT TO BE MARGINALIZED POLITICALLY IN ANY FUTURE HERE WHO HAS BEEN ON TELEVISION, WHO HAS BEEN THE SPOKESPERSON TELLING HIS PEOPLE CERTAIN THINGS AND THIS IS SOWING A LOT OF DISCONTENT, FEAR ANGST AMONG THE BOSNIAN SERB PEOPLE IN THE SUBURBS OF SARAJEVO THAT ARE MEANT TO BE HANDED BACKS TO THE BOSNIAN CROAT FEDERATION.

 1897 THE PEOPLE ARE CONCERNED BECAUSE THEY'RE LISTENING TO THIS MAN WHO HAS BEEN THEIR LEADER AND IS MEANT TO ACCORDING TO DAYTON PEACE ACCORDS MARGINALIZED FOR THE FUTURE.

 2237 AS I SAY THEY'RE AFRAID.

Picture No.3 The structure of the caption script

�

5.7. Random Access Into Video Bitstreams

Once the video indexing is implemented one needs a random access capability to access the compressed video files. For MPEG compressed files random access is not trival.

The MPEG standard desribes access points into the standard compressed stream by the name of Group Of Pictures (GOP). Knowing where GOP header starts the encoder can randomly enter the bit stream at that point and start playing from that point. Unfortuanately Group Of Picture don’t occur regularly, because of the variable bit rate nature of MPEG.

From the video server point of view to guarantee random access, the server would have to read the MPEG file ‘on-the-fly’ while playing the movie in order to find Group Of Pictures. .

Knowing all these facts, it has been decided to store the MPEG random access points in the files. Such files would contain a cross-refeerrence data where to each Group Of Pictures value, a file offset would be assigned. Such file obtaained the extension FRS (FRame Stamp).

--NPAC BEG

0 2357

15 95957

30 193717

45 289397

60 391317

75 484917

90 578517

105 674197

120 769877

135 863477

150 957077

165 1052757

180 1148437

195 1244117

210 1339797

225 1433397

240 1529077

…..

--NPAC END

Picture No.4 Structure of FRS file.

By combaining the FRS files with caption scripts one obtains the random access capability into the MPEG files.

�5.8. Controlling the Graphical User Interface

In this section I describe how to operate the caption parser Graphical User Interface.

Operation:

here come a list of step-by-step instructions a user has to follows in order to parse to desired piece of closed-captioned video material.

1. insert the video tape to VCR. The VCR must be in the REMOTE control state.

Check if the VCR is connected to COM2.

Rewind the tape to the beginning and reset the counter.

2. check if closed-caption decoder has the following settings:

CC1, baud rate 19200,1

and if it is connected to the COM1.

3. Launch Close Caption Parser from the Windows group Caption Decoding.

4. Once the Caption Parser appears on your screen, specify an output file by command Open in the File menu entry. The closed-caption file have *.cap extension.

5. Specify the title of clip you want to parse.

6. You can browse the video tape using VCR control panel to specify the beginning and end positions of parsing by clicking

Start At and End At command buttons.

7. Click Parse button to begin parsing (the Video Tape will be started automatically)

8. If you specified the EndAt value parsing will end automatically otherwise you will have to do it yourself by clicking the END button.

Created cap file will be concatenated with MPEG file offsets file to create a database input file.

5.9. Summary

Caption Parser provides an automatic video indexing capability in a simple, reliable way. Although it was implemented in the Visual Basic, it doesn’t reflect on its performance features.

In the future extensions to this particular application, there is an idea to join it together with MPEG encoding application, so that the content producing become more automated.

�6. Server Management Layer For Video On Demand Integration

6.1. Background

By the time of my arrival in Syracuse, NPAC had basic VOD technology implemented and operational. However what has been implemented was just a simple client-server architecture with the proprietary video protocol based upon the TCP/IP.

The Netscape browser served as an interface to the video client.

The whole model was relatively simple: a couple of hypertext links leading to a small ASCII text files which were supposed to spawn the video client-server interaction.

To make it clearer, the picture below shows the previous VOD architecture:

�OSADŹ Word.Picture.6 ���

Picture No.5 Previous Video On Demand Architecture

NPAC had 2 video servers on 2 different platforms. The first has been implemented in Windows NT environment and it was residing on the 100 MHz Pentium PC and the second on Silicon Graphics ONYX, 4 62,5 MHz processor machine running IRIX Operating System. Both machines were located on the same Ethernet segment although there were some experiments of putting them on different subnets.

�

Picture No.6 Networking architecture of Video On Demand technology

There were 2 video client programs : the first - PC-based, relying on the Optibase hardware MPEG 1 decoder and the second one - a software MPEG 1 decoder written by NPAC staff.

It was obvious that in this pretty diverse architecture the information management was crucial for the future extension of the system which was lacking of information management functionality.

Another driving force was coming from the premise that the client should have the random access capability into the MPEG file stream played from the network. There are several ways of doing this, but attempts of doing that by scanning the MPEG stream by seeking the Group Of Pictures headers “on the fly” did not work out. That’s why we decided to store scanned information in a separate file (called *.frs file) which were also supposed to be put in the database.

That is why, a need for a reliable information storage and management system has been existing and we wanted to provide a tool to store all the information.

We designed and implemented a database support layer for the VOD technology with a working name "Server Management Layer". The picture below shows basic architecture of Server Management Layer.

�

Picture No. 7 Server Managemnet Layer - an extension of previous VOD architecture

We decided to use an Oracle relational database server together with Web interface to it. This integration of technologies has already been proven to be efficient and operative in NPAC �

On the other hand in the present model, the video client was using the Web browser, and that is why we decided to continue this path.

Seeing those two sides of the problem one can say that the Server Management Layer should has been designed at the junction of the three technologies: database, WWW and VOD.

�6.2. Design

6.2.1. First design

First design of the database was very simple but, at the time, it had a very high time constraints since the decision about implementing it before Supercomputing’95 was made a week before the event. Also at that time, we didn’t have enough experience to foreseen

all necessary features of the database for the user point of view.

This, however, didn’t influence the end-product as it was one of the most innovative products shown during the conference.

In the first model, the database was composed of two tables:

Row name�Description�Oracle data type��clipid 	�a primary key - clip identification�number (10)��title	�title of the clip	�varchar2(255)��filename�a filename containing the MPEG file together with a full path leading to it.�Varchar2(255)��server�server’s IP address�varchar2(15)��encoding�type of encoding technique (MPEG1, AVI)�varchar2(10)��length�length of the clip in frames�number(10)��start_fr�start frame of the clip�number(10)��end_fr�end frame of the clip�number(10)��start_off�start offset of the clip�number(10)��end_off�end offset of the clip �number(10)��foff�URL leading to the frs file containing the file offsets�varchar2(255)��

Table No.3: CLIP: clip + server properties

Row name�Description�Oracle data type��clipid 	�clip identification�number(10)��fr_st�frame number at which the captions appear.�number(10)��file_offset�file offset at which the captions start. �number(10)��text�caption text at this frame�varchar2(2000)��

Table No.4: TEXT: caption scripts storage together with the associated time stamps.

The fact that the table CLIP contained the information on both clips and servers made this architecture very inflexible and uncomfortable to modify. We noticed that an additional table for server information storage is needed, as the servers may change their locations, interfaces, performance features and implementations.

The most obvious need was already been spotted at Supercomputing where one video server changed its IP address and it required updating many rows in the database.

At the conference there was also many demands from the people who saw it for the first time for the system to have annotation capability i.e. a manually entered description of the video material as well as the demands for the brand new WWW feature introduced by NCSA Mosaic called inverse-link. In our case it would be a situation where a user after having received a video material can browse trough another type of data associated with it. This feature has been strongly recommended for the educational purposes.

6.2.2. Second design

Since the database was supposed to store all the information needed to manage the growing system we kept the design possibly large and we remembered to leave make it open for the future extensions.

Additionally caption parser developed before was giving us a capability of indexing moving picture and have a automatic video annotation.

The database has been designed in the following manner:

5 tables:

table name�description��cliptable�clip properties��servertable�server properties��clipserver�cross-reference between clip and server��captions�closed-captions with associated time stamps��annotations�to implement the idea of an inverse-link. ��

Table No.5 database structure

Description of each table follows:

CLIPTABLE:

Row name�Description�Oracle data type��clipid 	�a primary key - clip identification�number (10)��title	�title of the clip	�varchar2(255)��encoding�type of encoding technique (MPEG1, AVI)�varchar2(10)��length�length of the clip in frames�number(10)��frsfile�file name of cross-reference between frame number and MPEG file offset.�long��

Table No.6 CLIPTABLE structure

SERVERTABLE:

Row name�Description�Oracle data type��serverid 	�a primary key - server identification�number(10)��sname�name of the server�varchar2(255)��ipaddress�IP address of the server�varchar2(15)��platform�name of the platform�varchar2(255)��Table No.7 SERVERTABLE structure

CLIPSERVER:

Row name�Description�Oracle data type��clipid 	�unique clip identification number�number(10)��serverid�unique server identification number�number(10)��filename�file name with path to the clip�varchar2(255)��

Table No.8 CLIPSERVER structure

CAPTIONS:

Row name�Description�Oracle data type��clipid 	�clip identification�number(10)��frameno�frame number�number(10)��text�caption text at this frame�varchar2(2000)��

Table No.9 CAPTIONS structure

ANNOTATIONS:

Row name�Description�Oracle data type��clipid 	�clip identification�number(10)��frameno	�frame number at which the inverse-link should start to be visible�number(10)��duration�duration in frames of the inverse-link�number(10)��datatype�data type of the annotation (text, image, etc.)�varchar2(10)��data�body of data�long raw��

Table No.10 ANNOTATIONS structure

The user who wants to see the movie clip must query the database. This has been implemented as an HTML fill-out form which sends the query-data to the CGI-scripts residing on the Web server located on the same machine as Oracle server (in order to simplify the process of querying the database).

�6.3. Information Retrieval

By the means of the fill-out form in the Netscape browser, a user can obtain information about all clips in the database, or he or she can lower focus the scope of the search by identifying the server, encoding method or perform a simple search by key word.

The fill-out form contains the following points of entry:

search by keywords�user enters keywords which will be searched in the caption scripts associated with each of the clips in the database.

��server search�user specifies a server (or servers) and obtains the list of clips available from this server.

��search by encoding�user wants to see clips coded only with one technique (for the users having only one kind of decoder)

��

The feature of searching movies by keywords was made possible by the means of closed-caption indexing. The indexing information is stored in the database and we perform a simple key word search on it.

After the user submitted options of his or her search, the specified search options are being sent to the Web server which run a CGI search-script.

This CGI script has been implemented in Ora*Perl, an SQL extension to Perl. The script translates the HTML form query into the standard SQL query. It also retrieves all hits which match the specified condition as well as prints it out back on the Web client side in the form of hit list.

The hit list is in the form of set of links. By choosing one of them, the client decides which video clip he or she wants to pop up on the screen.

Once the user decided which clip is to be played (by clicking on one of the hypertext links) it sends this request back to the Web server. In this interaction all the data needed to launch the video client are already in the link ('QUERY_STRING' variable) but we wanted to show the caption script on the Web client side too. That is why we used a new feature introduced in the NetScape 2.0 namely multipart document extension. This feature allows the browser to receive many different documents at a single interaction with the Web server. The Web server specifies the content type variable to the multipart/x-mixed-replace;boundary=---EndString\n\n.

The feature of multipart extension to the HTML documents is shown below:

Content-type: multipart/x-mixed-replace;boundary=---EndString\n\n

Content-type: vod/mps

						FIRST DOCUMENT

--EndString

Content-type: text/html

captions script				SECOND DOCUMENT

--EndString

Picture No.8 The structure of multipart extension HTML document.

The first part of the document spawns the video client. The second displays the caption on the screen. After the video client had been spawned, it establishes a communication link with the video server and it begins to play the clip. The interaction between the video server and the video client is limited only to data-streaming. This was an assumption we made during the initial design.

The most spectacular feature of the Server Management layer is that in the HTML form one can specify several key words to seek the clips which contain those words.

After such words have been specified the database will spawn a list of all the clips which contain the desired word (the keywords are referred to captions in the database) plus the file offset to the desired piece of video. It is up to the video server to provide the client with the video starting from the desired location.

This gives us a content-based video indexing through captions.

�6.4. Database Load Interface

Database Load Interface also has two implementations. The first one, which refers to the first database design is

The database load interface was implemented as a set HTML fill-out forms and several CGI scripts written in Ora*Perl. The interface encompasses the following functionality:

Adding a new clip to the database.

Modifying/Deleting clips from the database

Adding/Modifying/Deleting servers from the database

Adding/Modifying/Deleting annotations from the database.

It is a major tool to manage the information stored in the database.

Structure of this interface is basically identical to the previously described features: a set of HTML fill-out forms on Web client side and several scripts on the Web server side which translates the HTTP query into SQL query.

After the user had chosen to alter the database content, he or she has a possibility to choose from the following options (http://trurl.npac.syr.edu/binvns/management.pl):

Add server

Modify server properties

Delete server

Add clip

Modify clip properties

Delete clip

To demonstrate how the database interface work let’s follow an example of adding a server to the database. After the database manager had chosen the Add server link, the CGI script launched on the Web server side will log on Oracle’s database server and query the database for the list of existing servers. Once such a list is retrieved CGI script logs off Oracle’s server and the list it is being sent back to the client.

The CGI script also creates the rest of the fill-out form where properties of the new server can be specified.

Once the user receives the fill-out form it can enter the new server to the list by filling the INPUT tags and submitting the query by pressing “Add server” button.

The submitted data will be sent to another CGI script which will read the posted data and update the database.

This shortly explains the idea behind the Netscape-based interface to the database. Such an interface is very flexible since all the modifications can be done remotely and it omits the low-level SQL interface to Oracle’s server.

�6.5. Process of contents producing

The process of creating the contents for the Video News database is shown on the picture below:

�OSADŹ Word.Picture.6 ���

Picture No.9 The content production flow chart.

Frame accurate VCR serves as the input to this flow chart. It plays a previously recorded video material (preferably with closed-captions).

The video signal is put on the input of close-caption parser as well as on the input of MPEG hardware encoder.

The caption parser performs a caption parsing (presented earlier in this report). It creates a caption script which will be loaded into the database.

On the other side the same video signal is being transmitted to the MPEG hardware encoder from Optibase. This is a real-time, Windows 3.1x-based MPEG encoder.

It generates a professional, 30 frames per second, MPEG1 video stream in SIF format. It also has capabilities of off-line multiplexing and demultiplexing, frame grabbing, and batch-processing.

After encoding the MPEG file is being parsed to obtain the cross reference file (so called frs file) which combines frame numbers with file offsets. This file is generated by a program which decodes MPEG file and writes out the file offsets for each of GOP (Group Of Pictures - an access point to MPEG file). I wrote this program by modifying the freeware software MPEG decoder from Berkeley.

After all these steps have been completed, and the MPEG file has been put on the video server, the user (video-system manager) has to gather all the data associated with the production line simply called metadata and load it to the database.

In this case, one can take advantage of the database load interface which simplifies great deal, the loading procedure, and it has an easy Netscape-based interface.

The database load interface has been designed as a set of CGI scripts implemented in Ora*Perl.

�7. Further work

At the end of my work in NPAC the first version of Server Management Layer has been fully operational. However the experience obtained during the Supercomputing’95 pointed out some of the design errors that have been made in the design of the first generation of the system. That is why version two of the system has been designed. Unfortunately, because of the lack of time I wasn’t able to implement it to the end.

Also the content producing process needs a significant improvement. The goal of this project would be to have closed-caption parsing done while encoding of video. Unfortunately, it is not possible right away since NPAC doesn’t have an API to MPEG encoder. Having such an API would allows me to write an application which would encode the MPEG stream (using the real-time Optibase Hardware encoder) while parsing the closed-caption stream coming from the closed-caption decoder.

However, for an instant result, an remarkable improvement could be achieved. It would require to write an extension to the existing Caption Parser which would read the batch files from the Optibase MPEG encoder. In his manner, the caption parser would obtain the same points of entry as the MPEG encoder and the MPEG file and caption script would have the same length.

Another improvement is to display the closed-caption on the screen while playing the movie. It would require either an interaction between the Video Client and Oracle Database or downloading the caption script from the database in the launching file. The latter solution will extend the launching time.

�

8. Conclusions

In this document the details of caption parser application and server management layer have been described.

The first part of the report concentrated on issues related to video indexing utility, caption parser. The background problems of video indexing have been described and the closed-caption idea has been explained. Then the design and implementation of the closed-caption parser application have been presented.

Caption parser application provides the user with an flexible and comfortable tool to index video.

The second part of the report covers issues related to Video On Demand technology, particularly, problems related to storing and managing of metadata i.e. data related to general architecture of the Video On Demand technology. The Video Client-Server architecture has been presented and Server Management Layer idea has been explained.

Server Management Layer provides the user of Video On Demand technology with an easy-to-use tool to manange, store and retrieve multimedia information from throuh an friendly interface like Netscape browser.

The report desribes also the possible and necessary extensions to the existing infrastructure.

�9. Glossary

Analog Video - Video in which all the information representing images is in a continuous-scale electrical signal for both amplitude and time

API - Application Program(mmers) Interface. A set of routines that an application uses to request and carry out services performed by a software package.

Aspect Ratio - The Ratio of width to height of a pixel or an image.

AVI- Audio Video Interleaved. Original term for Microsoft's Video For Windows.

Bandwidth - Refers to the frequency range transmitted by an analog system. In video systems, specifying the highest frequency value is sufficient, since all video systems must transmit frequencies down to 30 Hz or lower.

Bit stream - A serial sequence of bits.

Bitmap - An image made up of pixels on the screen, stored as a collection of bits.

Cap file - caption script file

CCIR-601 - CCIR is the International Committee on Telegraph and Telephones, 601 describes the format of 720x486 at 30 Hz

CD-ROM - Compact Disc - Read Only Memory, a high capacity storage device that can read, but not write data.

CGI - Common Gateway Interface, a term which refers to executable programs on the Web server side which can be launched by the Web clients.

Closed-Caption: Captioning is an electronic process which converts the audio portion of a television program into written words. These words usually appear at the bottom of a television screen

CoDec - Acronym for coder and decoder.

Coding - The process of representing a varying function as a series of digital numbers.

Compact Disc (CD) - The 12cm optical read-only disc used for digital audio, or video in different systems.

Composite Video - A color video signal that contains all of the color information in one signal. Typical composite signals are NTSC, PAL, and SECAM.

Compression - A digital process that allows data to be stored or transmitted using less than the normal number of bits. Video compression techniques reduce the number of bits required to store or transmit images.

DEC - Acronym for Digital Equipment Corp. - a computer technology manufacturer.

Decode - The term meaning the decompression.

Digitizing - The process of converting an analog signal into a digital signal. With images, it refers to the process of scanning and analog to digital conversion.

DLL - Dynamically Linked Library. A development tool.

Driver - A software entity that provides a software interface to a specific piece of hardware. For example, the MPEG - 5000 video driver provides software access to the video board hardware.

DVI - Digital Video Interactive., Intel Video compression scheme, rejected by ISO for the MPEG standard.

EIA-608 : an American standard from Electrical Industries Associated describing transmission of closed-captions in the TV broadcast signal.

Encode - A term meaning compression.

Frame rate - a frame rate of the video pictures refers to how many frames are viewed each second.

FRS file - frame stamp file - a cross reference between Group Of Pictures (in frames) and MPEG file offsets.

Full Motion Video - Video reproduction at 30 frames per second for NTSC-original signals or 25 frames per second for PAL-original signals.

HTML - Hyper Text Modeling Language - language used to construct Hyper Text documents.

HTTP - Hyper Text Transmission Protocol - a protocol of exchanging HTML documents between Web servers and clients.

HTTPd - HTTP daemon - an exchangeable term for Web server.

IEC - International Electrotechnical Commission, a governing body working with a ISO.

Image - A still picture, or one frame of a motion sequence.

ISO - International Standard Organization. The governing body that creates standards.

JPEG - Joint Photographic Expert Group, an ISO committee formed to develop the standard for the compression of the still images.

MJPEG or Motion JPEG - A deviation from the JPEG specification where still image compression is used to compress video.

MPEG - Acronym for "Motion Picture coding Expert Group" - a working party of the ISO-IEC Joint Technical Committee 1, working on algorithm standardization for compression of motion video.

MPEG I - ISO standard designed for low bandwidth of compressed digital video and audio.

MPEG II - ISO standard designed for transmission of high bandwidth compressed digital video such as that used by broadcast television.

MPEG Lab Suite - An MS Windows interface to Optibase MPEG I encoder and decoder.

NTSC - Acronym for "National Television Systems Committee", the standardizing body which in 1953, created the color television standards for the United States. This system is called the NTSC color television system. Thirty frames are reproduced per second with 525 lines.

Ora*Perl - an SQL extension to Perl.

PAL - Phase Alternation Line describes the video standard used in UK television. Video standards conforming to this standard reproduce 25 frames per second with 625 lines.

Perl - Practical Extraction and Report Language - the most popular scripting language to write CGI scripts.

Pixel - a single element in a picture.

SECAM - Acronym for "Sequential Colore Avec Memoire", which is the color television system developed in France.

Seek time - In a mass storage device, the time required to position the read head over the track containing desired data.

SGI - Silicon Graphics Inc.

SIF - term describing a resolution of 352x240 (NTSC) pixels or 352x288 pixels (PAL).

SMPTE time code - A standard for a signal recorded on video tape to uniquely identify each frame of the video signal. It is used to control editing operations. SMPTE stands for Society of Motion Picture and Television Engineering.

Stream - a flow of data as a sequence of bits. Also bit stream.

VBI - Vertical Blanking Interval - a horizontal bar between to sequential images in the television signal (invisible for the viewer) during which the cursor travels from the right bottom position of the screen to top left one. For NTSC signal VBI covers first 21 lines, for PAL signal first 22. VBI is used to carry additional information which is associated with the TV signal like text (more popular in Europe) or Closed-Caption (mostly in the US)

Video Client : in Video On Demand technology, an application capable of playing a compressed video bit stream received from the network.

Video Server : in Video On Demand technology an application capable of pumping a number of compressed video streams into the network at the requested address.

VFW - Video For Windows, Microsoft's interface for digital video.

VOD - Video on Demand. A term describing the ability of a user to request any video at any given time.

VTR - Video Tape Recorder, a frame accurate recording and play back tape deck, usually of professional capabilities.

WWW - World Wide Web - also simply called Web - 40 million computers over Internet communicating with each other using HTTP protocol.

�10. Bibliography

Electrical Industries Associates “EIA-608 21 Line Service Standard”

EEG Enterprises, Inc. “Data Recovery Decoder Model DE 241-DR” User’s Manual”, Copyright © 1995.

Microsoft Corporation “Microsoft® Visual Basic™ - Programming System for Windows™ Version 3.0” (Language Reference, Programmer’s Guide, Professional Features 1)

Scott Jarol “Visual Basic Multimedia Adventure Set”

Zane Thomas, Robert Arnson, Mitchell Waite “Visual Basic How-To” Second Edition

Optibase Corp. “MPEG Lab Suite User’s Manual”

�STRONA �19�

�STRONA \# "'Page: '#'�'" ��� The Net search system designed by Gang Cheng and Piotr Sokolowski also uses this technology mixture.

