This Introduces the three fundamental types of PDE's -- Elliptic, Parabolic and Hyperbolic and studies the numerical solution of Elliptic Equations |
The sparse matrix formulation is used and iterative approachs -- Jacobi, Gauss Seidel and SOR are defined |
These are motivated by analogies between equilibrium of diffusive equations and elliptic systems |
Eigenvalue analysis is used to discuss convergence of methods |
CPS615-95G CPS615 Foils -- Master set G for Iterative Approachs to PDE Solution CPS615FEMetc95 CPS615 Foils on Finite Element Methods, Gauss Seidel, Conjugate Gradient and Differential Operators
CPS615-95G 001 001 Iterative Solver Module CPS 615 -- Computational Science in Simulation Track Solution of Simple Partial Differential Equations and Iterative Solvers Fall Semester 1995 CPS615-95G 002 002 Abstract of PDE and Iterative Solver CPS615 Module
CPS615-95G 003 003 Partial Differential Equations: Use in Continuum Physics Examples and basic Notation CPS615-95G 004 004 Examples of Different Types of Partial Differential Equations: The Wave Equation (Hyperbolic) and Typical One Dimensional Solution CPS615-95G 005 005 Examples of Different Types of Partial Differential Equations: The Parabolic Equation CPS615-95G 006 006 Examples of Different Types of PDE's: Laplace and Poisson Elliptic Equations CPS615-95G 007 007 What Conditions are sufficient for solution of PDE's -- Cauchy Boundary Conditions and Hyperbolic,Parabolic and Elliptic PDE's CPS615-95G 008 008 Closed Boundaries; Dirichlet and Neumann Conditions Summary of what PDE Types have What Boundary Conditions CPS615-95G 009 009 Examples of Open(Diffusion) and Closed(Laplace) Boundary Conditions
CPS615-95G 010 010 Solutions to Elliptic Equations by Finite Differences CPS615-95G 011 011 Central Difference Operator with error O(h2) CPS615-95G 012 012 Difference Equation form of the Operator to solve Laplace's equation CPS615-95G 013 013 The 12 by 12 Block Tridiagonal Equations Coming from Laplace's Equation on a Tiny 5 by 6 Grid CPS615-95G 014 014 General Form of Sparse Matrix Coming from Laplace's Equation - I CPS615-95G 015 015 General Form of Sparse Matrix Coming from Laplace's Equation in two dimensions - II
CPS615-95G 016 016 Iterative Methods and Analogy to Diffusion with an Artificial Time CPS615-95G 017 017 Solution of Artificial Time Equation as a Diffusion System Discretized in Space and Time CPS615-95G 018 018 General 2D Artificial Time Diffusion Equation in Iterative Form CPS615-95G 019 019 Traditional Iterative Methods as Special Cases of Artificial Time Diffusion Formalism
CPS615-95G 020 020 Simple Iterative Methods: Jacobi, Gauss-Seidel, SOR CPS615-95G 021 021 Matrix Notation for Iterative Methods CPS615-95G 022 022 General Iteration Matrix Splitting and Preconditioning
CPS615-95G 023 023 Explicit Form of General Jacobi Iteration in Matrix and Component Formalism CPS615-95G 024 024 The Special Case of Jacobi Iteration for Laplace's Equation CPS615-95G 025 025 Pseudo Code for the Jacobi Method
CPS615-95G 026 026 Formalism for Convergence of Stationary Iterative Methods CPS615-95G 027 027 Eigenvalue Analysis of Iterative Methods CPS615-95G 028 028 Estimation of largest Eigenvalue in One Dimension CPS615-95G 029 029 Eigenvalues and Convergence Rate of Jacobi Iteration CPS615-95G 030 030 Difficult and Easy Eigenfunctions Controlling Convergence of Jacobi Iteration CPS615-95G 031 031 Decoupling of Even and Odd Grid Point Updates in Basic Jacobi Iteration CPS615-95G 032 032 Damping of Eigenfunctions of Short and Long Wavelength CPS615-95G 033 033 Extension of Jacobi Eigenvalue Analysis to two or more Dimensions
CPS615-95G 034 034 Direct Solution Method for Ax=b CPS615-95G 035 035 Banded Matrix Computational Complexity CPS615-95G 036 036 Comparison of Computational Complexity between Direct and Iterative Methods CPS615-95G 037 037 Memory Use in Direct and Iterative Methods
CPS615-95G 038 038 Over Relaxation (SOR) and Relation to Jacobi and Gauss-Seidel CPS615-95G 039 039 Over Relaxation Eigenvalues and Matrices for Jacobi Iteration CPS615-95G 040 040 Jacobi Iteration Eigenvalues as a function of Over Relaxation Parameter CPS615-95G 041 041 Jacobi Relaxation for Over Relaxation Parameter w =1/2
CPS615-95G 042 042 Introduction to Gauss-Seidel Iterative Approach CPS615FEMetc95 006 043 6:Mathematical and Pseudo Code Form of Gauss Seidel Iteration Method CPS615FEMetc95 007 044 7:Mathematical (Matrix) Form of Gauss Seidel
CPS615FEMetc95 008 045 8:Parallelism in Gauss-Seidel Iteration CPS615FEMetc95 009 046 9:Matrix Example Stencil CPS615FEMetc95 010 047 10:Matrix---Wavefront Parallelism for Gauss Seidel CPS615FEMetc95 011 048 11:The Red-Black Two Phase Parallel Gauss Seidel Iteration CPS615FEMetc95 012 049 12:Analysis of Parallel Red Black Gauss Seidel
CPS615FEMetc95 013 050 13:Eigenvalues of Gauss Seidel Iteration Matrix CPS615FEMetc95 014 051 14:Comparison of Convergence of Gauss-Seidel and Jacobi Iteration
CPS615FEMetc95 015 052 15:Successive Overrelaxation Iteration Method (SOR) CPS615FEMetc95 016 053 16:Convergence of SOR Compared to Jacobi and Gauss Seidel CPS615FEMetc95 017 054 17:Estimate of Over Relaxation Parameter CPS615FEMetc95 018 055 18:Pseudo Code for SOR---Successive Over Relaxation
CPS615-95G CPS615 Foils -- Master set G for Iterative Approachs to PDE Solution1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
CPS615FEMetc95 CPS615 Foils on Finite Element Methods, Gauss Seidel, Conjugate Gradient and Differential Operators6 7 8 9 10 11 12 13 14 15 16 17 18
CPS615-95G CPS615 Foils -- Master set G for Iterative Approachs to PDE Solution1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
CPS615FEMetc95 CPS615 Foils on Finite Element Methods, Gauss Seidel, Conjugate Gradient and Differential Operators6 7 8 9 10 11 12 13 14 15 16 17 18