Find this at http://www.npac.syr.edu/users/gcf/cps615PDEIter95/

CPS615 Module on Iterative PDE Solvers

Given by Geoffrey C. Fox at CPS615 Basic Simulation Track for Computational Science on Fall Semester 95. Foils prepared 8 November 1995

This Introduces the three fundamental types of PDE's -- Elliptic, Parabolic and Hyperbolic and studies the numerical solution of Elliptic Equations
The sparse matrix formulation is used and iterative approachs -- Jacobi, Gauss Seidel and SOR are defined
These are motivated by analogies between equilibrium of diffusive equations and elliptic systems
Eigenvalue analysis is used to discuss convergence of methods


This mixed presentation uses parts of the following base foilsets which can also be looked at on their own!
CPS615-95G               CPS615 Foils -- Master set G for Iterative 
                          Approachs to PDE Solution
CPS615FEMetc95           CPS615 Foils on Finite Element Methods, Gauss
                           Seidel, Conjugate Gradient and Differential
                           Operators

Table of Contents for CPS615 Module on Iterative PDE Solvers



Important references are
               CPS615-95G 001 001 Iterative Solver Module
                                  CPS 615 -- Computational Science in
                                  Simulation Track
                                  Solution of Simple Partial 
                                  Differential Equations and Iterative
                                   Solvers
                                  Fall Semester 1995
               CPS615-95G 002 002 Abstract of PDE and Iterative Solver
                                   CPS615 Module

Introduction to PDE's and their Classification

               CPS615-95G 003 003 Partial Differential Equations: Use 
                                  in Continuum Physics 
                                  Examples and basic Notation
               CPS615-95G 004 004 Examples of Different Types of 
                                  Partial Differential Equations:
                                  The Wave Equation (Hyperbolic) and 
                                  Typical One Dimensional Solution
               CPS615-95G 005 005 Examples of Different Types of 
                                  Partial Differential Equations:
                                  The Parabolic Equation
               CPS615-95G 006 006 Examples of Different Types of 
                                  PDE's: Laplace and Poisson Elliptic 
                                  Equations
               CPS615-95G 007 007 What Conditions are sufficient for 
                                  solution of PDE's -- Cauchy Boundary
                                   Conditions and Hyperbolic,Parabolic
                                   and Elliptic PDE's 
               CPS615-95G 008 008 Closed Boundaries; Dirichlet and 
                                  Neumann Conditions
                                  Summary of what PDE Types have What 
                                  Boundary Conditions
               CPS615-95G 009 009 Examples of Open(Diffusion) and 
                                  Closed(Laplace) Boundary Conditions

Discretization of Laplace's equation and Sparse Matrix Form

               CPS615-95G 010 010 Solutions to Elliptic Equations by 
                                  Finite Differences
               CPS615-95G 011 011 Central Difference Operator with 
                                  error O(h2)
               CPS615-95G 012 012 Difference Equation form of the 
                                  Operator to solve Laplace's equation
               CPS615-95G 013 013 The 12 by 12 Block Tridiagonal 
                                  Equations Coming from Laplace's 
                                  Equation on a Tiny 5 by 6 Grid
               CPS615-95G 014 014 General Form of Sparse Matrix Coming
                                   from Laplace's Equation - I
               CPS615-95G 015 015 General Form of Sparse Matrix Coming
                                   from Laplace's Equation in two 
                                  dimensions - II

Artificial Time Motivation of Iteration

               CPS615-95G 016 016 Iterative Methods and Analogy to 
                                  Diffusion with an Artificial Time
               CPS615-95G 017 017 Solution of Artificial Time Equation
                                   as a Diffusion System Discretized 
                                  in Space and Time
               CPS615-95G 018 018 General 2D Artificial Time Diffusion
                                   Equation in Iterative Form
               CPS615-95G 019 019 Traditional Iterative Methods as 
                                  Special Cases of Artificial Time 
                                  Diffusion Formalism

General Formulation of Iterative Solvers

               CPS615-95G 020 020 Simple Iterative Methods: Jacobi, 
                                  Gauss-Seidel, SOR
               CPS615-95G 021 021 Matrix Notation for Iterative 
                                  Methods
               CPS615-95G 022 022 General Iteration Matrix Splitting 
                                  and Preconditioning

Jacobi Iteration

               CPS615-95G 023 023 Explicit Form of General Jacobi 
                                  Iteration 
                                  in Matrix and Component Formalism
               CPS615-95G 024 024 The Special Case of Jacobi Iteration
                                   for Laplace's Equation
               CPS615-95G 025 025 Pseudo Code for the Jacobi Method

Convergence of Iterative Methods
               CPS615-95G 026 026 Formalism for Convergence of 
                                  Stationary Iterative Methods
               CPS615-95G 027 027 Eigenvalue Analysis of Iterative 
                                  Methods
               CPS615-95G 028 028 Estimation of largest Eigenvalue in 
                                  One Dimension
               CPS615-95G 029 029 Eigenvalues and Convergence Rate of 
                                  Jacobi Iteration
               CPS615-95G 030 030 Difficult and Easy Eigenfunctions 
                                  Controlling 
                                  Convergence of Jacobi Iteration
               CPS615-95G 031 031 Decoupling of Even and Odd Grid 
                                  Point Updates in Basic Jacobi 
                                  Iteration
               CPS615-95G 032 032 Damping of Eigenfunctions of Short 
                                  and Long Wavelength
               CPS615-95G 033 033 Extension of Jacobi Eigenvalue 
                                  Analysis to two or more Dimensions

Comparison of Iterative and Direct Methods

               CPS615-95G 034 034 Direct Solution Method for Ax=b
               CPS615-95G 035 035 Banded Matrix Computational 
                                  Complexity
               CPS615-95G 036 036 Comparison of Computational 
                                  Complexity between Direct and 
                                  Iterative Methods
               CPS615-95G 037 037 Memory Use in Direct and Iterative 
                                  Methods

Over Relaxation
               CPS615-95G 038 038 Over Relaxation (SOR) and Relation 
                                  to Jacobi and Gauss-Seidel
               CPS615-95G 039 039 Over Relaxation Eigenvalues and 
                                  Matrices for Jacobi Iteration
               CPS615-95G 040 040 Jacobi Iteration Eigenvalues as a 
                                  function of Over Relaxation 
                                  Parameter
               CPS615-95G 041 041 Jacobi Relaxation for Over 
                                  Relaxation Parameter w =1/2

Gauss Seidel Iterative Methods
               CPS615-95G 042 042 Introduction to Gauss-Seidel 
                                  Iterative Approach
           CPS615FEMetc95 006 043 6:Mathematical and Pseudo Code Form 
                                   of Gauss Seidel Iteration Method
           CPS615FEMetc95 007 044 7:Mathematical (Matrix) Form  of 
                                  Gauss Seidel

Parallelism in Gauss Seidel

           CPS615FEMetc95 008 045 8:Parallelism in Gauss-Seidel 
                                  Iteration
           CPS615FEMetc95 009 046 9:Matrix Example Stencil
           CPS615FEMetc95 010 047 10:Matrix---Wavefront Parallelism  
                                  for Gauss Seidel
           CPS615FEMetc95 011 048 11:The Red-Black Two Phase Parallel 
                                   Gauss Seidel Iteration
           CPS615FEMetc95 012 049 12:Analysis of Parallel Red Black  
                                  Gauss Seidel

Convergence of Gauss Seidel

           CPS615FEMetc95 013 050 13:Eigenvalues of Gauss Seidel  
                                  Iteration Matrix
           CPS615FEMetc95 014 051 14:Comparison of Convergence of  
                                  Gauss-Seidel and Jacobi Iteration

Successive Over Relaxation

           CPS615FEMetc95 015 052 15:Successive Overrelaxation 
                                  Iteration  Method (SOR)
           CPS615FEMetc95 016 053 16:Convergence of SOR Compared to  
                                  Jacobi and Gauss Seidel
           CPS615FEMetc95 017 054 17:Estimate of Over Relaxation  
                                  Parameter 
           CPS615FEMetc95 018 055 18:Pseudo Code for SOR---Successive 
                                   Over Relaxation

List of Foils Used as they occur

CPS615-95G               CPS615 Foils -- Master set G for Iterative 
                          Approachs to PDE Solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
CPS615FEMetc95           CPS615 Foils on Finite Element Methods, Gauss
                           Seidel, Conjugate Gradient and Differential
                           Operators
6 7 8 9 10 11 12 13 14 15 16 17 18

Sorted List of Foils Used

CPS615-95G               CPS615 Foils -- Master set G for Iterative 
                          Approachs to PDE Solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
CPS615FEMetc95           CPS615 Foils on Finite Element Methods, Gauss
                           Seidel, Conjugate Gradient and Differential
                           Operators
6 7 8 9 10 11 12 13 14 15 16 17 18


© on Tue Oct 28 1997