This lecture covers two distinct areas. |
Firstly a short discussion of LInear Programming -- what type of problems its used for, what the equations look like and basic issues in the difficult use of parallel processing |
Then we give an abbreviated discussion of Full Matrix algorithms covering
|
CPS615Master96 Master Set of Foils for 1996 Session of CPS615 CPS713OPT CPS713 Lectures on Practical Optimization Methods 1994-1996 CPS615Matrix95 Parallel Full Matrix Algorithms
CPS615Master96 083 001 Delivered Lectures for CPS615 -- Base Course for the Simulation Track of Computational Science Fall Semester 1996 -- Lecture of December 5 - 1996 CPS615Master96 086 002 Abstract of Dec 5 1996 CPS615 Lecture
CPS713OPT 005 003 5:Examples IV -- Linear Programming CPS713OPT 046 004 46:Linear Programming CPS713OPT 047 005 47:Convex Regions and Linear Programming CPS713OPT 048 006 48:Matrix Formulation of Linear Programming
CPS615Matrix95 003 007 Review of Matrices seen in PDE's CPS615Matrix95 004 008 Examples of Full Matrices in Chemistry CPS615Matrix95 005 009 Operations used with Hamiltonian operator CPS615Matrix95 006 010 Examples of Full Matrices in Electromagnetics CPS615Matrix95 007 011 Computational Electromagnetics Formalism I CPS615Matrix95 008 012 Computational Electromagnetics Formalism II CPS615Matrix95 009 013 Comments on Computational Electromagnetics CPS615Matrix95 010 014 Summary of Use of Full Matrices in Chemistry CPS615Matrix95 011 015 Notes on the use of full matrices CPS615Matrix95 012 016 Full Matrix Multiplication CPS615Matrix95 013 017 Sub-block definition of Matrix Multiply CPS615Matrix95 014 018 Some References CPS615Matrix95 015 019 The First Algorithm (Broadcast, Multiply, and Roll) CPS615Matrix95 016 020 The first stage -- index n=0 in sub-block sum -- of the algorithm on N=16 example CPS615Matrix95 017 021 The second stage -- n=1 in sum over subblock indices -- of the algorithm on N=16 example CPS615Matrix95 018 022 Second stage, continued CPS615Matrix95 019 023 Look at the whole algorithm on one element CPS615Matrix95 020 024 Cartesian Topology in MPI -- General CPS615Matrix95 026 025 Matrix Multiplication MPI Style Pseudocode CPS615Matrix95 027 026 Matrix Multiplication Pseudocode, continued CPS615Matrix95 032 027 Performance Analysis of Matrix Multiplication CPS615Matrix95 033 028 Cannon's Algorithm for Matrix Multiplication CPS615Matrix95 043 029 Parallel Decomposition
CPS615Master96 Master Set of Foils for 1996 Session of CPS61583 86
CPS713OPT CPS713 Lectures on Practical Optimization Methods 1994-19965 46 47 48
CPS615Matrix95 Parallel Full Matrix Algorithms3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 26 27 32 33 43
CPS615Master96 Master Set of Foils for 1996 Session of CPS61583 86
CPS713OPT CPS713 Lectures on Practical Optimization Methods 1994-19965 46 47 48
CPS615Matrix95 Parallel Full Matrix Algorithms3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 26 27 32 33 43